爬山算法、模拟退火算法、遗传算法

爬山算法、模拟退火算法、遗传算法
爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing )

介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算

法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到

达到一个局部最优解。

爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜

索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点

这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不

能得到更优的解。

二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不

到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头)

爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。

以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动

若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

P(dE) = exp( dE/(kT) )

其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)

爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

模拟退火的伪代码:

代码

/*

* J(y):在状态y时的评价函数值

* Y(i):表示当前状态

* Y(i+1):表示新的状态

* r:用于控制降温的快慢

* T:系统的温度,系统初始应该要处于一个高温的状态

* T_min :温度的下限,若温度T达到T_min,则停止搜索

*/

while( T > T_min )

{

dE = J( Y(i+1) ) - J( Y(i) ) ;

if ( dE >=0 ) //表达移动后得到更优解,则总是接受移动

Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动

else

{

// 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也

if ( exp( dE/T ) > random( 0 , 1 ) )

Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动

}

T = r * T ; //降温退火,0

/*

* 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。

若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值

*/

i ++ ;

}

模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。遗传算法是受达

尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识

作为遗传算法生物背景的介绍,下面内容了解即可:

种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因( Gene ) :一个遗传因子。

染色体( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

三.遗传算法思想

借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值

低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出

适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可

以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1

字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,

随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而

且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生

出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单

的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。

例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1

字符串作为0-1背包问题的解就属于二进制编码。

遗传算法有3个最基本的操作:选择,交叉,变异。

选择:选择一些染色体来产生下一代。一种常用的选择策略是“比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + ……..

+ f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette

Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:

轮盘赌算法

/*

* 按设定的概率,随机选中一个个体

* P[i]表示第i个个体被选中的概率

*/

int RWS()

{

m =0;

r =Random(0,1); //r为0至1的随机数

for(i=1;i<=N; i++)

{

/* 产生的随机数在m~m+P[i]间则认为选中了i

* 因此i被选中的概率是P[i]

*/

m = m + P[i];

if(r<=m) return i;

}

}

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:

交叉前:

00000|011100000000|10000

11100|000001111110|00101

交叉后:

00000|000001111110|10000

11100|011100000000|00101

染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:

变异前:

000001110000000010000

变异后:

000001110000100010000

适应度函数( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

四.基本遗传算法的伪代码

基本遗传算法伪代码

/*

* Pc:交叉发生的概率

* Pm:变异发生的概率

* M:种群规模

* G:终止进化的代数

* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程

*/

初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop

do

{

计算种群Pop中每一个体的适应度F(i)。

初始化空种群newPop

do

{

根据适应度以比例选择算法从种群Pop中选出2个个体

if ( random ( 0 , 1 ) < Pc )

{

对2个个体按交叉概率Pc执行交叉操作

}

if ( random ( 0 , 1 ) < Pm )

{

对2个个体按变异概率Pm执行变异操作

}

将2个新个体加入种群newPop中

} until ( M个子代被创建)

用newPop取代Pop

}until ( 任何染色体得分超过Tf,或繁殖代数超过G )

五.基本遗传算法优化

下面的方法可优化遗传算法的性能。

精英主义(Elitist Strategy)选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

遗传算法模拟退火matlab编程

单钻头退火算法matlab编程 clear clc a = 0.999; % 温度衰减函数的参数 t0 = 97; tf = 3; t = t0; Markov_length = 2800; % Markov链长度 coordinates = [ ]; coordinates(:,1) = []; amount = size(coordinates,1); % 城市的数目 % 通过向量化的方法计算距离矩阵 dist_matrix = zeros(amount, amount); coor_x_tmp1 = coordinates(:,1) * ones(1,amount); coor_x_tmp2 = coor_x_tmp1'; coor_y_tmp1 = coordinates(:,2) * ones(1,amount); coor_y_tmp2 = coor_y_tmp1'; dist_matrix = sqrt((coor_x_tmp1-coor_x_tmp2).^2 + ... (coor_y_tmp1-coor_y_tmp2).^2); sol_new = 1:amount; % 产生初始解 % sol_new是每次产生的新解;sol_current是当前解;sol_best是冷却中的最好解; E_current = inf;E_best = inf; % E_current是当前解对应的回路距离; % E_new是新解的回路距离; % E_best是最优解的 sol_current = sol_new; sol_best = sol_new; p = 1; while t>=tf for r=1:Markov_length % Markov链长度 % 产生随机扰动 if (rand < 0.5) % 随机决定是进行两交换还是三交换 % 两交换 ind1 = 0; ind2 = 0; while (ind1 == ind2) ind1 = ceil(rand.*amount); ind2 = ceil(rand.*amount); end tmp1 = sol_new(ind1); sol_new(ind1) = sol_new(ind2);

遗传-模拟退火-蚁群三个算法求解TSP的对比讲解

数学与统计学院 智能计算及应用课程设计 设计题目:智能计算解决旅行商问题 摘要 本文以遗传算法、模拟退火、蚁群算法三个算法解决旅行商问题,将三个算法进行比较分析。目前这三个算法广泛应用于各个领域中,本文以31个城市为例,运用遗传算法、模拟退火、蚁群算法分别进行了计算,将他们的计算结果进行了比较分析。 关键词:遗传算法模拟退火蚁群算法旅行商问题 背景: 遗传算法: 20世纪60年代初,美国Michigan大学的John Holland教授开始研究自然和人工系统的自适应行为,在从事如何建立能学习的机器的研究过程中,受达尔文进化论的启发,逐渐意识到为获得一个好的算法仅靠单个策略建立和改进是不够的,还要依赖于一个包含许多候选策略的群体的繁殖,从而提出了遗传算法的基本思想。 20世纪60年代中期,基于语言智能和逻辑数学智能的传统人工智能十分兴盛,而基于自然进化思想的模拟进化算法则遭到怀疑与反对,但Holland及其指导的博士仍坚持这一领域的研究。Bagley发表了第一篇有关遗传算法应用的论文,并首先提出“遗传算法”这一术语,在其博士论文中采用双倍体编码,发展了复制、交叉、变异、显性、倒位等基因操作算子,并敏锐地察觉到防止早熟的机理,发展了自组织遗传算法的概念。与此同时,Rosenberg在其博士论文中进行了单细胞生物群体的计算机仿真研究,对以后函数优化颇有启发,并发展了自适应交换策略,在遗传操作方面提出了许多独特的设想。Hollistien在其1971年发表的《计算机控制系统的人工遗传自适应方法》论文中首次将遗传算法应用于函数优化,并对优势基因控制、交叉、变异以及编码技术进行了深入的研究。 人们经过长期的研究,在20世纪}o年代初形成了遗传算法的基本框架。1975年Holland 出版了经典著作“Adaptation in Nature and Artificial System",该书详细阐述了遗传算

爬山算法、模拟退火算法、遗传算法

一.爬山算法( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算 法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到 达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜 索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点 这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不 能得到更优的解。 二.模拟退火(SA,Simulated Annealing)思想(跟人一样找不 到最优解就最产生疑惑,我到底需不需要坚持,随着时间的推移,逐渐的慢慢的放弃去追寻最优解的念头) 爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。 以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。 若J( Y(i+1) )>= J( Y(i) ) (即移动后得到更优解),则总是接受该移动 若J( Y(i+1) )< J( Y(i) ) (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定) 这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为: P(dE) = exp( dE/(kT) ) 其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。 随着温度T的降低,P(dE)会逐渐降低。 我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。 关于爬山算法与模拟退火,有一个有趣的比喻:(有点意思)

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

遗传模拟退火算法及其应用

本科毕业设计(论文)外文参考文献译文及原文 学院轻工化工学院 专业制药工程 (天然药物方向)年级班别20 09级(2)班 学号3109002300 学生姓名黄学润 指导教师魏关锋 2013年6月

遗传/模拟退火算法及其应用 Guangming Lv, Xiaomeng Sun, Jian Wang College of Mechanical and Electronic Engineering, Harbin Institute of Technology, Harbin Heilongjiang, China lgmhit@https://www.360docs.net/doc/278472459.html, 摘要:本文将模拟退火算法和遗传算法相结合,提出了一种新的算法。遗传算法(GA)中嵌入模拟退火算法(SA),结合成一个新的全局优化算法。SA的使用降低了GA的参数选择的困难。此外,新算法可以缩减组合的搜索区域,并避免了遗传算法中存在的“过早收敛”问题,提高了算法的收敛性。遗传操作的交叉算子在该算法中发挥着重要作用。通过计算机仿真,我们可以看到新的算法相对于传统的遗传算法和模拟退火算法更具优势。 关键词:模拟退火法;遗传算法;过早收敛;交叉算子 I.引言 遗传算法(GA)首先由密歇根大学教授J.Holland提出,源于对自然和人工系统的自适应行为的研究。GA是模拟生物在自然环境中的遗传和进化过程而形成的一种基于达尔文的进化论和孟德尔的遗传学说的自适应全局优化概率搜索算法。对于复杂的优化问题,没有必要使用GA的建模和复杂操作[1]。与传统的搜索算法相比,GA将优化问题的解空间转换成遗传空间。它从一个种群中产生问题的一个解,并根据“优胜劣汰”的原则,一代又一代的达到问题的最优解或最近解。 遗传算法的主要特点是:处理对象不是参数本身,而是参数集的编码操作;GA同时处理的几个群体中个体,即同时估计在搜索空间中的几个解;GA只利用问题的目标函数,不需要任何其他条件或辅助信息;GA不采取一定的角色,而采用概率的变化规律来指导搜索方法;GA可以在较大的解空间快速搜索。 GA通过选择复制的行为和遗传因素保持优化种群的进化使得他们最终收敛到最优解。选择复制给予个体更大的适应性和函数值更大的复制概率,并能加速

智能计算-模拟退火算法(matlab实现)

模拟退火算法 摘要:阐述了模拟退火算法的基本原理及实现过程,运用MATLAB语言实现了该算法。并将其运用到解决旅行商问题的优化之中。数值仿真的结果表明了该方法能够对函数进行全局寻优,有效克服了基于导数的优化算法容易陷入局部最优的问题。该方法既可以增加对MATLAB 语言的了解又可以加深对模拟退火过程的认识,并达到以此来设计智能系统的目的。 关键词:模拟退火算法,全局寻优,搜索策略

simulatedannealing algorithm Abstract:This paper describes the basic principles and processes simulatedannealing algorithm, using MATLAB language implementation of the algorithm. And use it to solve the traveling salesman problem among optimization. Simulation results show that the method can be a function of global optimization, effectively overcome the derivative-based optimization algorithm is easy to fall into local optimum. This method not only can increase the MATLAB language can deepen understanding and awareness of the simulated annealing process, and in order to achieve the purpose of the design of intelligent systems. Keywords:simulatedannealing algorithm,Global optimization,strategy

遗传算法代码

%求下列函数的最大值% %f(x)=10*sin(5x)+7*cos(4x)x∈[0,10]% %将x的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% %将变量域[0,10]离散化为二值域[0,1023],x=0+10*b/1023,其中b是[0,1023]中的一个二值数。 %2.1初始化(编码) %initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), %长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name:initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength));%rand随机产生每个单元为{0,1}行数为popsize,列数为chromlength的矩阵, %roud对矩阵的每个单元进行圆整。这样产生的初始种群。 %2.2计算目标函数值 %2.2.1将二进制数转化为十进制数(1) %遗传算法子程序 %Name:decodebinary.m %产生[2^n2^(n-1)...1]的行向量,然后求和,将二进制转化为十进制function pop2=decodebinary(pop) [px,py]=size(pop);%求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2);%求pop1的每行之和 %2.2.2将二进制编码转化为十进制数(2) %decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置 %(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1), %参数1ength表示所截取的长度(本例为10)。 %遗传算法子程序 %Name:decodechrom.m

遗传模拟退火算法matlab通用源程序

% maxpop 给定群体规模 % pop 群体 % newpop 种群 %t0 初始温度 function [codmin,finmin]=fc0(cc,v0,t0) N=length(cc(1,:)); %定群体规模 if N>50 maxpop=2*N-20; end if N<=40 maxpop=2*N; end %产生初始群体 pop=zeros(maxpop,N); pop(:,1)=v0; finmin=inf; codmin=0; for i=1:maxpop Ra=randperm(N); Ra(find(Ra==v0))=Ra(1); Ra(1)=v0; pop(i,:)=Ra; end t=t0; while t>0 %用模拟退火产生新的群体 pop=fc1(maxpop,pop,N,cc,v0,t); %转轮赌选择种群 f=zeros(1,maxpop); for i=1:maxpop for j=1:N-1 x=pop(i,j); y=pop(i,j+1); fo1=cc(pop(i,j),pop(i,j+1)); f(i)=f(i)+fo1; end f(i)=f(i)+cc(pop(i,1),pop(i,N)); end fmin=min(f); for i=1:maxpop if fmin==inf&f(i)==inf dd=inf; end

if fmin~=inf|f(i)~=inf dd=fmin-f(i); end ftk(i)=exp(dd/t); end [fin1,cod]=sort(-ftk); fin=abs(fin1); %f(cod(1)) if f(cod(1))=RR); % cod newpop(i,:)=pop(cod(cod2(end)),:); end %单亲繁殖 if N>32 jmax=round(N/9); end if N<=32 jmax=2; end if mod(jmax,2) jmax=jmax-1; end for i=1:maxpop for j=1:2:jmax nn=randperm(N); x=nn(j); y=nn(j+1); if newpop(i,x)==v0|newpop(i,y)==v0 continue; end box1=newpop(i,x); newpop(i,x)=newpop(i,y); newpop(i,y)=box1; end end %变异 Pc Pc=0.02; for i=1:maxpop

遗传模拟退火算法matlab通用源程序

% maxpop给定群体规模% pop群体 % newpop种群 %t0初始温度 function [codmin,finmin]=fc0(cc,v0,t0) N=length(cc(1,:)); %定群体规模 if N>50 maxpop=2*N-20; end if N<=40 maxpop=2*N; end %产生初始群体 pop=zeros(maxpop,N); pop(:,1)=v0; finmin=inf; codmin=0; for i=1:maxpop Ra=randperm(N); Ra(find(Ra==v0))=Ra(1);

pop(i,:)=Ra; end t=t0; while t>0 %用模拟退火产生新的群体pop=fc1(maxpop,pop,N,cc,v0,t); %转轮赌选择种群 f=zeros(1,maxpop); for i=1:maxpop for j=1:N-1 x=pop(i,j); y=pop(i,j+1); fo1=cc(pop(i,j),pop(i,j+1)); f(i)=f(i)+fo1; end f(i)=f(i)+cc(pop(i,1),pop(i,N)); end fmin=min(f); for i=1:maxpop if fmin==inf&f(i)==inf

end if fmin~=inf|f(i)~=inf dd=fmin-f(i); end ftk(i)=exp(dd/t); end [fin1,cod]=sort(-ftk); fin=abs(fin1); %f(cod(1)) if f(cod(1))=RR); % cod newpop(i,:)=pop(cod(cod2(end)),:); end %单亲繁殖

遗传算法简介及代码详解

遗传算法简述及代码详解 声明:本文内容整理自网络,认为原作者同意转载,如有冒犯请联系我。 遗传算法基本内容 遗传算法为群体优化算法,也就是从多个初始解开始进行优化,每个解称为一个染色体,各染色体之间通过竞争、合作、单独变异,不断进化。 遗传学与遗传算法中的基础术语比较 染色体:又可以叫做基因型个体(individuals) 群体/种群(population):一定数量的个体组成,及一定数量的染色体组成,群体中个体的数 量叫做群体大小。 初始群体:若干染色体的集合,即解的规模,如30,50等,认为是随机选取的数据集合。适应度(fitness):各个个体对环境的适应程度 优化时先要将实际问题转换到遗传空间,就是把实际问题的解用染色体表示,称为编码,反过程为解码/译码,因为优化后要进行评价(此时得到的解是否较之前解优越),所以要返回问题空间,故要进行解码。SGA采用二进制编码,染色体就是二进制位串,每一位可称为一个基因;如果直接生成二进制初始种群,则不必有编码过程,但要求解码时将染色体解码到问题可行域内。 遗传算法的准备工作: 1) 数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2) 确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。非常重要的过程。 遗传算法基本过程为: 1) 编码,创建初始群体 2) 群体中个体适应度计算 3) 评估适应度 4) 根据适应度选择个体 5) 被选择个体进行交叉繁殖 6) 在繁殖的过程中引入变异机制 7) 繁殖出新的群体,回到第二步

遗传算法与模拟退火算法比较

一、遗传算法与模拟退火算法比较 分析模拟退火算法的基本原理可以看出,模拟退火算法是通过温度的不断下降渐进产生出最优解的过程,是一个列马尔科夫链序列,在一定温度下不断重复Metropolis过程,目标函数值满足Boltzmann概率分布。在温度下降足够慢的条件下,Boltzmann分布收敛于全局最小状态的均匀分布,从而保证模拟退火算法以概率为1收敛到全局最优。另外,不难看出,模拟退火算法还存在计算结构简单、通用性好以及鲁棒性强等优点。但是,模拟退火算法存在如下缺陷: 1. 尽管温度参数下降缓慢时理论上可以保证算法以概率为1地收敛到最优值,但是需要的时间过长加之误差积累与时间长度的限制,难以保证计算结果为最优; 2.如果降温过程加快,很可能得不到全局最优解,因此,温度的控制是一个需要解决的问题; 3.在每一种温度下什么时候系统达到平衡状态,即需要多少次Metropolis过程不易把握,从而影响模拟退火算法的最终结果。 与模拟退火算法相比较,遗传算法具有如下典型特征: 这两种算法的相同点是都采用进化控制优化的过程。主要不同点是模拟退火是采用单个个体进行进化,遗传算法是采用种群进行进化。模拟退火一般新解优于当前解才接受新解,并且还需要通过温度参数进行选择,并通过变异操作产生新个体。而遗传算法新解是通过选择操作进行选择个体,并通过交叉和变异产生新个体。具体说来,遗传算法具有如下特点: (1)与自然界相似,遗传算法对求解问题的本身一无所知,对搜索空间没有任何要求(如函数可导、光滑性、连通性等),只以决策编码变量作为运算对象并对算法所产生的染色体进行 评价,可用于求解无数值概念或很难有数值概念的优化问题,应用范围广泛; (2)搜索过程不直接作用到变量上,直接对参数集进行编码操作,操作对象可以是集合、序列、矩阵、树、图、链和表等; (3)搜索过程是一组解迭代到另一组解,采用同时处理群体中多个个体的方法,因此,算法具有并行特性;

遗传算法和模拟退火法在解决tsp问题上的对比分析

遗传算法和模拟退火法在解决TSP 问题上的 对比研究 邓朝丞 摘要:TSP 问题是组合优化领域的经典问题之一,旨在求出遍历若干个城市的最短路径。针对在用各种算法解决TSP 问题的不同点,本文分析比较了运用遗传算法,模拟退火法处理TSP 问题的优缺点,得出解决TSP 问题的最适宜算法。 关键词:TSP 问题,遗传算法,模拟退火法 1 引言: TSP 问题也称为巡回旅行商问题,是一个相当古老的优化问题,最早可以追溯到1759年Euler 提出的骑士旅行问题【1】。TSP 问题是一个典型的容易描述但是难以处理的NP 完全问题,是运筹学有代表性的组合优化问题,可简单描述为 有n 个城市.一位销售商从某个城市出发,不重复地走完其余n-1个城市并回到原出发点,在所有可能的路径中求出路径长度最短的一条。其实际模型在印刷电路板的钻孔路线方案、连锁店的货物配送、网络布线等优化问题中有着广泛的应用【2】。同时TSP 问题也是诸多领域内出现的多种复杂问题的集中概括和简化形式.所以,有效地解决TSP 问题在计算理论和实际应用上都有很高的价值。目前求解TSP 问题的主要方法有遗传算法,模拟退火算法,本文将该两种算法在解决TSP 问题时所存在的不同,通过实验对比,分析这两种算法在求解组合优化上的优劣性 ,同时提出改进的建议。 2.遗传算法简介 遗传算法(GA)是一种基于自然群体遗传演化机制的算法,它模拟自然界生物进化过程,采用人工进化的方式对目标空间进行随机化搜索。它将问题域中的可能解看作是群体的个体,并将个体编码成符号串形式(即染色体),模拟生物进化过程,对群体反复进行交叉、变异、选择等操作,根据预定的适应度函数对每个个体进行评价,依据优胜劣汰的进化规则,不断得到更优的群体,同时搜索优化群体中的最优个体,求得满足要求的最优解。 GA 采用一定的编码技术构造染色体(个体),而基因是组成染色体的单元,可以表示为一个二进制位,一个整数或一个字符等。染色体表示待求解问题的一个可能解,由若干个基因组成,是GA 操作的基本对象。而一定数量的个体组成了种群,表示GA 的搜索空间。在GA 的执行过程中,每一代有许多不同的种群个体同时存在。根据这些个体对环境的适应能力来决定下一代的个体,适应性强的有更多的机会被选择保留下来。适应性强弱是通过适应度函数)(x f 的值来判别的,适应度函数)(x f 的构成与目标函数有密切关系,往往是目标函数的变种【3】。 3 用遗传算法求解TSP 用遗传算法解Tsp 问题,采用十进制编码,基因定义为一个城市,染色体定义为到各城市顺序的一种组合,适应度为一条旅行路径对应的距离,路径越短的染色体适应度越高。例如,取N=10,城市代号为1,2,3,4,5,6,7,8,9,10,则种群中的染色体:2 8 4 10

企业战略混合遗传模拟退火算法解决多机调度问题

企业战略混合遗传模拟退火算法解决多机调度问题 Ting Bao was revised on January 6, 20021

★★★文档资源★★★ 摘要:将模拟退火引入遗传算法,构造混合遗传模拟退火算法。通过对具体多机调度问题的求解,表明混合遗传模拟退火算法的效率要优于单一的遗传算法和模拟退火算法。 关键词:多机调度;遗传算法;模拟退火算法;混合遗传模拟退火算法 作业调度问题是生产管理与控制的一个基本问题。按照加工设备数量和加工作业的流动方式,一般可分为单机调度、并行机调度、Flowshop调度、可重入式调度和Jobshop调度等多种类型。作业调度中的许多问题,不仅具有随机性、约束复杂、规模大及多目标冲突等特点,而且许多都属于NP完全问题,即使在单机情形也是如此。因此,如何寻求有效可行的调度求解方案,一直是生产管理与控制研究的热点和难点。 一、多机调度问题的数学模型 二、算法分析 自Davis首次将遗传算法(Genetic Algorithms,GA)引入到调度问题的研究中以来,进化算法(包括遗传算法)在制造生产零件和生产调度研究领域获得了广泛的应用,并取得了较好的优化效果。遗传算法用于求解某些并行多机调度问题也有不少的研究成果。遗传算法的优点是:不受搜索空间的****性假设的约束,不必要求诸如连续性、导数存在和单峰的假设,并且具有内在的并行性,收敛速度快,能够解决非常困难的寻优问题。当然,传统的遗传算法也有许多缺点,其中最为严重的是“过早收敛”问题。所谓“过早收敛”是指在搜索的初期,由于优良个体急剧增加使种群失去多样性,从而造成程序陷入局部,达不到全局最优解的现象。遗传算法的另一个缺陷是“GA欺骗”问题,即在GA的搜索过程中,有可能搜索到最优解然后又发散出去的现象。另外,遗传算法还有参数选择未能定量和不能精确定位最优解等缺陷。 模拟退火算法(Simulated Annealing,SA)又称为模拟冷却法、统计冷却法、Monte-Carlo退火法、随机松弛法和概率爬山法等。模拟退火算法是一种新的统计优化方法,其思想最早是由N.Metropolis等人借鉴统计力学中物质退火方法而提出的。1983年Kirkpatrick等人开展了一些富有成效的工作,成功地将该思想引入组合优化理论。模拟退火算法源于对固体退火过程的模拟,采用Meteropolis接受准则,并用一组称为冷却进度表的参数控制算法进程,使算法在多项式时间里给出一个近似最优解。模拟退火算法的主要优点之一就是能以一定的概率接收目标函数值不太好的状态。即算法不但往好的方向走也可向差的方向走;这使得算法即便落入局部最优的陷阱中,理论上经过足够长的时间后也可跳出来从而收敛到全局最优解。模拟退火算法的主要缺点是解的质量与求解时间长短之间的矛盾。为得到一个好的近似最优解,需要进行反复迭代运算,当问题的规模不可避免地增大时,缺乏可行的解决途径。

模拟退火算法与遗传算法性能比较

模拟退火算法与遗传算法性能比较 摘要:模拟退火算法与遗传算法是两种非常重要的多目标优化算法。其原理简单,对优化目标函数解析性没有要求,因此在工程问题中被广泛应用。本文介绍了这两种优化算法的原理,并分析了两种算法的性能并讨论了应用过程中的关键问题,对两种算法的合理选取及改进具有参考价值。 关键字:模拟退火,遗传算法,优化 1.前言 对于多目标优化问题,传统的做法是全局搜索,即“穷举法”。这种通过搜索整个解空间的方法虽然能获得全局最优解,但运算量非常大,当优化空间的维度非常高时,该方法在计算上不可行。通过利用目标函数的解析性质以及借助实际问题的约束条件能部分降低搜索空间,但任不能解决高维问题优化。面对复杂问题,求得最优解是很困难的,在有限时间内求得满意解是可能的。获取高维优化问题满意解的常用方法是迭代运算,但通常迭代运算容易陷入局部最优陷阱,造成“死循环”。模拟退火算法及遗传算法是两种原理简单的启发式智能搜索算法,均具有逃离局部陷阱的能力,是工程应用中快速获取满意解的常用算法,对其性能比较对于正确使用这两种智能优化算法具有重要意义。 2.算法介绍 2.1.模拟退火算法 模拟退火算法是一种随机搜索算法,Kirkpatrick[1]于1983年首次将该算法应用于多目标优化。该算法模拟冶金上的退火过程而得名,其基本思想是:对当前合理解增加扰动产生新解,评价新解对目标函数的改进情况,若小于零,则接受新解为新的当前解,否则以概率接受新解为新的当前解。新的当前解将将继续优化,直到没有显著改进为止。 模拟退火算法使用过程中以下细节影响其全局搜索性能。初始温度T选择越高,则搜索到全局最优解的可能性也越大,但计算复杂度也显著增大。反之,能节省时间,但易于陷入局部最优。依据解的质量变化概率选择温度下降策略能增强算法性能。每次温度降低迭代次数及算法的终止可由给定迭代次数内获得更优解的概率而确定。 2.1.遗传算法 遗传算法最早由Holland等[2]提出,该算法模拟遗传变异与自然选择机制,是一种通过交换机制,重组基因串的概率搜索算法,其基本思想是:分析解空间大小及精度要求,确定合理解唯一编码形式。合理解转化成的编码即为染色体,随机选取的多个初始染色体构成初始种群。会依据评价函数计算种群中每个个体

遗传算法综述

随着经济社会的迅猛发展, 人类科学研究与生产活动的广度与深度都大大拓展了,其中涌现出的大量具有各种非线性、不确定、不能精确解析以及建模机理复杂的新课题对信息与控制科学提出了前所未有的挑战。正是在这种背景下, 各种智能信息处理算法如雨后春笋般涌现出来。作为智能信息处理算法中的重要一员, 遗传算法近年来以其独特而卓越的性能引起了人们的广泛关注。 对于以往难以解决的函数优化问题,复杂的多目标规划问题,工农业生产中的配管、配线问题,以及机器学习,图象识别,人工神经网络的权系数调整,模糊规则的优化和网络构造等诸多问题,GA遗传算法以其出色的表现,已成为人们最常用也最有效的方法之一。虽然GA在许多优化问题中都有成功的应用,但其本身也存在一些不足,主要有:局部搜索能力弱、存在早熟成熟现象、收敛于局部最优解、随机漫游或振荡等现象,从而影响算法的收敛性能,降低了遗传算法的可信度。如何改善遗传算法的搜索能力和提高算法的收敛速度,使其更好地解决实际问题,是各国学者一直努力探索的一个主要课题。纵观成百上千的对遗传算法进行改进研究文献,其主要改进措施多集中在以下几个方面: 1.对遗传算法本身缺点的改进 1.1对遗传算法本身单一缺点的改进 种群人们主要关心的是种群中个体分布的多样性,这决定着运行遗传算法的效率,与种群相关的因素有种群个数,种群大小及初始种群三方面。

种群个数采用多个子种群并行搜索思想,有效避免了欺骗问题,提高了算法成功的概率。典型应用就是小生境技术,种群由M个子种群组成,每个子种群独立进化,种群间通过种群迁移∕移民等机制完成个体信息的交换。借鉴子种群并行的思想,发展出了思维进化计算,文献【】和量子衍生遗传算法或量子衍生进化计算,文献【】【】。 种群大小大致有固定种群和动态种群两种。 初始种群对于初始种群的生成主要是改变了以往单靠随机生成的缺点,引进了解空间格点化法或数论中均匀设计法,使产生的点集能均匀地分布于解空间。当然采用随机与均匀混合生成的初始种群,可以包含更丰富的解空间模式。文献【】,给出了用点的低序列差均匀生成初始种群的方法。(当然这些方法 编码经典的标准遗传算法( SGA )中,Holland运用模式定理分析编码机制时,建议采用二进制编码,其优点是简易稳定,但二进制编码具有不能直接反映问题的固有结构,解码复杂,精度不高,个体长度太长,占用计算机内存多和空间效率不高的缺点。它早已不能适应人们处理问题多样化的事实。 针对上述缺陷, 人们采用Gray编码和动态编码等方法成功地减少了编码的尺寸和复杂度,提高了局部搜索性能和速度。文献【】,给出了采用了性别编码,检测仿真表明其性能优于二进制和格雷码;采用染色体隐式解码算法,使得解码速度提高了6~50倍[9];采用实数或浮点数的矩阵形式或复数形式的编码方法,实现了无需解码可直

数学建模案例新型遗传模拟退火算法求解物流配送路径问题

第24卷2004年6月 计算机应用 ComuterAlicationsppp Vol.24 June,2004 文章编号:()1001-9081200406Z-0261-03 新型遗传模拟退火算法求解物流配送路径问题 阎庆,鲍远律 (中国科学技术大学自动化系,安徽合肥2)30027 摘要:文中提出了将遗传算法和模拟退火算法结合,并加入了记忆装置。根据这种想法设计了一种有记忆功能的遗传模拟退火算法,并进行了试验计算。结果表明:用这种有记忆功能的遗传模拟退火算法求解物流配送路径优化问题,可以在一定程度上解决一些问题,从而得到较高质量的解。 关键词:物流配送;遗传模拟退火算法;遗传算法;模拟退火算法;路径优化中图分类号:TP301.6 文献标识码:A 1 引言 物流配送是现代化物流管理中的一个重要环节。它是指按用户的定货要求,在配送中心进行分货、配货,并将配好的存在许多货物及时送交收货人的活动。在物流配送业务中,优化决策的问题。本文只讨论物流配送路径优化问题。物流配送路径优化问题最早是在1959年由Dantmiamser首g和R [] 先提出的,即所谓的车辆路径问题VRP1。它也是目前在物 的车辆数: k m=[a+1q]Σgi/ i []表示取整,约束m为所需车辆数,a为参数,0

流系统中较受关注的一个方面。它是指在客户需求位置已知确定车辆在各个客户间的行程路线,使得运输路线的情况下, 最短或运输成本最低。VRP问题已经被证明是一个NP-很难得到全局最hard问题。也就是说当问题的规模较大时,算法的计算时间优解或满意解。而且随着问题规模的增大, 将以指数速度增加。因此研究的重点就转移到各种启发式算常用的有法上。求解物流配送路径优化问题的方法有很多, 旅行商法、动态规划法、节约法、扫描法、分区配送法、方案评价法等。而遗传算法的出现为求解物流配送路径优化问题提 2] 供了新的工具。遗传算法[作为一种非数值并行算法,其思 { { 点i的货动任务由s车完成1,否则0, k k m isjij 得到的数学模型如下所示:minZ= k i=0j=0s=1 ΣΣΣcx ()1()2()3()4()5 i=0m Σgy k iis …,2,m*q s=1, 想起源于生物遗传学适者生存的自然规律。它对优化对象既也不要求可微,尤其适合求解N不要求连续,P-hard问题。到目前为止,已经有很多人都曾利用遗传算法求解物流配送路径优化问题并取得了一些研究成果。 s=1 is=Σy { …,1 i=1,2,k m i=0

模拟退火算法基本原理介绍

模拟退火算法 一、模拟退火算法概念 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 二、模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。 终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。 模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

遗传算法

遗传算法的基本理论 一、起源: 早在20世纪50年代和60年代,就有少数人几个计算机科学家独立地进行了所谓的“人工进化系统”研究,其出发点是进化的思想可以发展成为许多工程问题的优化工具。早期的研究形成了遗传算法的雏形,如大多数系统都遵循“适者生存”的仿自然法则,有些系统采用了基于群体(population)的设计方案,并且加入了自然选择与变异操作,还有一些系统对生物染色体编码进行了抽象处理,应用二进制编码。由于缺乏一种通用的编码方案,人们只能依赖变异而非交叉来产生新的基因结构,早期的算法收敛甚微。20世纪60年代中期,美国Michigan大学的John Holland在A.S.Fraser和H.J.Bremermann等人工作的基础上提出了位串编码技术。这种编码既适用于变异操作,又适用于交叉(即杂交)操作。并且强调将交叉作为主要的遗传操作。随后,Holland将该算法用于自然和人工系统的自适应行为的研究中,并于1975年出版了其开创性著作“Adaption in Natural and Artificial System”。以后,Holland等人将该算法加以推广,应用到优化及机器学习等问题中,并正式定名为遗传算法。遗传算法的通用编码技术和简单有效的遗传操作作为其广泛、成功地应用奠定了基础。Holland早期有关遗传算法的许多概念一直沿用至今,可见Holland对遗传算法的贡献之大。他认为遗传算法本质上是适应算法,应用最多的是系统最优化的研究。 二、发展: 年份贡献者内容 1962Holland程序漫游元胞计算机自适应系统框架 1968Holland模式定理的建立 1971Hollstein具有交配和选择规则的二维函数优化 1972Bosworth、Foo、Zeigler提出具有复杂变异、类似于遗传算法的基因操作1972Frantz位置非线性和倒位操作研究 1973Holland遗传算法中试验的最优配置和双臂强盗问题 1973Martin类似遗传真法的概率算法理论 1975De Jong用于5个测试函数的研究基本遗传算法基准参数 1975Holland 出版了开创性著作《Adaptation in Natural and Artificial System》 1981Bethke应用Walsh函数分析模式 1981Brindle研究遗传算法中的选择和支配问题 1983Pettit、Swigger遗传算法应用于非稳定问题的粗略研究1983Wetzel用遗传算法解决旅行商问题(TSP) 1984Mauldin基本遗传算法小用启发知识维持遗传多样性1985Baker试验基于排序的选择方法 1985Booker建议采用部分匹配计分、分享操作和交配限制法1985Goldberg、Lingle TSP问题个采用部分匹配交叉 1985Grefenstette、Fitzpattrick对含噪声的函数进行测试 1985Schaffer多种群遗传算法解决多目标优化问题1986Goldberg最优种群大小估计 1986Grefenstette元级遗传算法控制的遗传算法 1987Baker选择中随机误差的减少方法 1987Goldberg复制和交叉时最小欺骗问题(MDP) 1987Goldberg、Richardson借助分享函数的小生境和物种归纳法

相关文档
最新文档