全等三角形辅助线中的角平分线--讲义--学生版

全等三角形辅助线中的角平分线--讲义--学生版
全等三角形辅助线中的角平分线--讲义--学生版

与角平分线相关的问题

角平分线的两个性质:

⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.

角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,

2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,

A

B

O

P P O

B

A A B

O

P

【例10】 如图,在ABC ?中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.

D

C B A

【例11】 如图所示,在ABC ?中,AD 是BAC ∠的平分线,M 是BC 的中点,ME AD ⊥且交AC 的延长线于E ,

1

2

CE CD =,求证2ACB B ∠=∠.

例题精讲

全等三角形中的角平

分线

E

M

D

C

B

A

【例12】 如图所示,在ABC ?中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD

的延长线于F ,求证()1

2

MF AC AB =-.

M

F

D C

B A

【巩固】如图所示,在ABC ?中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.

M

D C

B

A

【例13】 如图,ABC ?中,AB AC =,BD 、

CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.

H

G D A

B C E

【巩固】(北京市中考模拟题)如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作E AB CE 于⊥,并且

)(2

1

AD AB AE +=

,则ADC ABC ∠+∠等于多少?

E

D

C

B

A

【例14】 如图所示,在ABC ?中,90BAC ∠=?,AD BC ⊥于D ,BCA

∠的角平分线交AD 与F ,交AB 于E ,FG 平行于BC 交AB 于G .AE =4,AB =14,则BG =______.

G

F

E D

C

B A

【巩固】如图所示,在Rt 三角形ABC 中,090,C CH AB ∠=⊥于H ,AG 平分BAC ∠,交CH 于D ,交BC 于

G ,在BC 上取BE =CG ,连接ED ,证明:CDE ?是直角三角形.

H

E

G D

C

B

A

【巩固】⑴在ABC ?中,96A ∠=,延长BC 到D ,ABC ∠与ACD ∠ 的角平分线相交于点1A ,1A BC ∠与1

ACD ∠的角平分线交于2A ,…,依次类推4A BC ∠与4A CD ∠的角平分线交于5A ,求5A ∠大小.

A 2

A 1

A

B C D

A B C

D

E

F

G

⑵如右上图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF 交于G ,若140BDC ∠=,110BGC ∠=,求A ∠的度数.

【习题1】在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.

C E

D

B A

【习题2】如图,在ABC ?中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.

D

C B A

【习题3】(04年山东中考题)AD 是ABC ?的角平分线,BE AD ⊥交AD 的延长线于E ,EF AC ∥交AB 于

F .求证:AF FB =.

D

E

C

F

B

A

家庭作业

2017中学考试全等三角形专题(8种辅助线地作法)

全等三角形问题中常见的辅助线的作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

讲义 角平分线辅助线

人教版八年级上第十二章 全等三角形 12.7 角平分线辅助线添加方法 教师: 学生: 时间: 教学目标:学会解平面几何题常用辅助线作法——题中有角平线的时。 重难点:根据平面几何题中有角平分线时——采用相对应的辅助作法。 知识回顾与新知识准备 【回顾要点】 角平分线的性质: 1、 2、 3、 【新知识】 角平分线辅助线添加1:角分线上点向角两边作垂线构全等 【知识要点】 角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上 的点到两边距离相等的性质来证明问题。 【典型例题】 【例1】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD A B C D

1、如图,在四边形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180度,CE⊥AD于E,猜想AD、AE、AB之间的数量关系,并证明你的猜想, 2、如图,已知∠B=∠C=90。,DM平分∠ADC,AM平分∠DAB,探究线段BM与CM的关系,说明理由。 【例2】如图,△ABC中,AD是∠A的平分线,E、F分别为AB、AC上一点,且∠EDF+∠BAF=180°,求证:DE=DF. 举一反三:如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG. 角平分线辅助线添加方法2------截取构全等 E B A C D B C M A D

【知识要点】 截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD , 从而为我们证明线段、角相等创造了条件。 【典型例题】 【例1 方法2】如图,BD 是四边形ABCD 中∠ABC 的平分线,∠A +∠C =180°,求证:DA =CD 图1-1 O A B D E F C A B C D

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

一 遇角平分线常用辅助线

第一章 遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法: 一.点在平分线,可作垂两边 二.角边相等,可造全等 三.平分加平行,可得等腰形 四.平分加垂线 ,补得等腰现 例1.已知如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,CD=1.5,BD=2.5,求AC . 邦德点拨:过点D 作DE ⊥AB ,则DE=CD ,AE=AC , 再利用方程思想、勾股定理解AC . B E D C

练习1:已知如图,P 为△ABC 两外角∠DBC 和∠ECB 平分线的交点,求证:AP 平分∠BAC . 例2.已知如图,AB//CD ,BE 平分∠ABC ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD . 邦德点拨:在BC 上截取BF=BA ,问题转化为证CF=CD . 练习2.已知如图,AD 是△ABC 的内角平分线,P 是AD 上异 A B C E D P A P C B E D A F B

于点A的任意一点,,试比较PB-PC与AC-AB的大小,并说明理由.

例3.已知如图,在△ABC 中(AB AC ),D 、E 在BC 上,且DE=EC ,过D 作DF//BA 交AE 于点F ,DF=AC ,求证:AE 平分∠BAC . 邦德点拨:过C 点作AB 平行线交AE 延长线于点G , 则∠G=∠BAE ,接下只需证∠G=∠CAE . 练习3.已知如图,过△ABC 的边BC 的中点D 作∠BAC 的平分线AG 的平行线,交AB 、BC 及CA 的延长线于点E 、D 、F .求证:BE=CF . A E F B C D G F A E B C G D

遇角平分线常用辅助线

第一章遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法:一.点在平分线,可作垂两边 二.角边相等,可造全等 三.平分加平行,可得等腰形 四.平分加垂线,补得等腰现

练习1:已知如图,P为△ABC两外角∠DBC和∠ECB平分线的交点,求证:AP 平分∠BAC.

例3.已知如图,在△ABC中(AB≠AC),D、E在BC上,且DE=EC,过D作

例4.如图,ΔABC 中,过点A 分别作∠ABC, ∠ACB 的外角的平分线的垂线AD 、AE ,D 、E 为垂足.求证: (1)ED//BC ; (2)ED=2 1(AB+AC+BC ). 邦德点拨:延长AD 、AE 交直线BC 于F 、G , 可证得△BAF 、△CAG 为等腰三角形. 练习4.已知如图,等腰Rt △ABC 中,∠A=90°,AB=AC ,BD 平分∠ABC ,CE ⊥BD ,垂足为点E ,求证:BD=2CE . 【homework 】 1.已知如图,在△ABC 中,BD 、CD 分别平分∠ABC 和∠ACB ,DE//AB ,FD//AC .如 果BC=6,求△DEF 周长. 2.已知如图,四边形ABCD 中,∠B+∠D=180°,BC=CD .求证:AC 平分∠BAD . A D E C B A E D F G C B A D F E C B

B C A D

3.已知如图,∠BAD=∠CAD ,AB>AC ,CD ⊥AD 于点D ,H 是BC 中点,求证:DH=2 1(AB-AC). 4.如图,ABC ?中,AM 平分A ∠,BD 垂直于AM ,交AM 延长线于点D ,DE∥CA 交AB 于E .求证:AE=BE . 5.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD . A B H D C A E C M B D A E B D C

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

全等三角形之辅助线(习题及答案)

全等三角形之辅助线(习题) 例题示范 例1:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】1 读题标注:2梳理思路: 要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明. 观察图形,发现不存在全等的三角形. 结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE 在Rt △ACE 和Rt △ADE 中 AE AE AC AD =??=?(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等) 过程规划:1.描述辅助线:连接AE 2.准备条件:∠C =∠ADE =90°3.证明△ACE ≌△ADE 4.由全等性质得,CE = DE

巩固练习1.已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF . 2.已知:如图,∠C =∠F ,AB =DE ,DC = AF ,BC =EF .求证:AB ∥DE .过程规划: 过程规划:

3.已知:如图,AB∥CD,AD∥BC,E,F分别是AD,BC的 中点.求证:BE=DF. 4.已知:如图,在正方形ABCD中,AD=AB,∠DAB=∠B=90°, 点E,F分别在AB,BC上,且AE=BF,AF交DE于点G.求证:DE⊥AF.

角平分线辅助线专题练习

D A B C 角平分线专题 1、 轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等 造全等,也就是在角的两边上取相等的线段 构造全等三角形 基本结构:如图, 2、 角平分线的性质定理:注意两点(1)距离相等 (2)一对全等三角形 3、 定义:带来角相等。 4、 补充性质:如图,在△ABC 中,AD 平分∠BAC ,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC ,∠BAD=∠DAC,DA=DB 求证:DC ⊥AC

B 例题2:如图,在△ABC 中,∠A 等于60°,BE 平分∠ABC ,CD 平分∠ACB 求证:DH=EH 例题3:如图1,BC >AB ,BD 平分∠ABC ,且∠A+∠C=1800, 求证:AD=DC .: 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有 角平分线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC 上取BE=AB ,连结DE ,∵BD 平分 ∠ABC ,∴∠ABD=∠DBE ,又BD=BD ,∴△ABD ≌△EBD (SAS ), ∴∠A=∠DBE ,AD=DE ,又∠A+∠C=1800,∠DEB+∠DEC=1800,∴∠C=∠DEC ,DE=DC , 则AD=DC . 证法2:如图2,过A 作BD 的垂线分别交BC 、BD 于E 、F , 连结DE ,由BD 平分∠ABC ,易得△ABF ≌△EBF ,则AB=BE , BD 平分∠ABC ,BD=BD ,∴△ABD ≌△EBD (SAS ), ∴AD=ED ,∠BAD=∠DEB ,又∠BAD+∠C=1800, ∠BED+∠CED=1800,∴∠C=∠DEC ,则DE=DC ,∴AD=DC . 说明:证法1,2,都可以看作将△ABD 沿角平分线BD 折向BC 而构成 全等三角形的. 证法3:如图3,延长BA 至E ,使BE=BC ,连结DE , ∵BD 平分∠ABC ,∴∠CBD=∠DBE ,又BD=BD ,∴△CBD ≌△EBD (SAS ), ∴∠C=∠E ,CD=DE ,又∠BAD+∠C=1800,∠DAB+∠DAE=1800, ∴∠E=∠DAE ,DE=DA ,则AD=DC . 说明:证法3是△CBD 沿角平分线BD 折向BA 而构成全等三角形的. B A C D E 图1 B A C D E F 图2 B A C D E 图3

一遇角平分线常用辅助线

邦德点拨:过点 D 作 DEL AB 」DE=CD AE=AC 再利用方程思想、勾股定理解 AC. 练习1:已知如图,P ABC 两外角/ DBC 和/ ECB 平分线的交点,求证: ?角边相等,可造全等 在角的两边取相等线段,可得全等三角形. 如图,若 0P 为/ AOB 角平分线,可在 0B 上取OF=OE 则可用结论有:(1)证得△ 0卩瞪厶OPE 第一章 遇角平分线常用辅助线 【添法透析】 角相等时,添线段可构造线段相等、三角形全等或相似,常用有如下四大添法: ?点在平分线,可作垂两边 ?角边相等,可造全等 ?平分加平行,可得等腰形 四?平分加垂线,补得等腰现 ?点在平分线,可作垂两边 例1 ?已知如图, O 在厶 ABC 中,/ C=90 °,AD 平分/ CAB ,CD=1.5,BD=2.5,求 AC . AP 平 C . BA D A A B D E C C

(2) 证得PF=PE OF=OE (3)证得/ PFO=Z PEO / OPF=/ OPE 例2.已知如图,AB//CD , BE平分/ ABC, CE平分/ BCD,点E在AD上,求证:BC=AB+CD 邦德点拨:在BC上截取BF=BA问题转化为证CF=CD 练习2.已知如图,AD是厶ABC的内角平分线,P是AD上异于点与AC- AB的大小,并说明理由. 三?平分加平行,可得等腰形 1?过角平分线上一点,作角的一边平行线,可构造得等腰三角形或相 似; 则可用结论有:(1)证得△ OEF是等腰三角形; 1 (2)证得/ E=^ / AOB A B F C P A 的任意一点,E,试 如图,若OP为/ AOB平分线,过直线OB上一点E,作OP平行线交OA于点F,

全等三角形几种常见辅助线精典题型

全等三角形几种常见辅助线精典题型 一、截长补短 1、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. 2、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,求AB 的长。 4、已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE . N E B M A D D O E C B A M D C B A F D A

5、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 6、如图所示,ABC ?是边长为1的正三角形,BDC ?是顶角为120?的等腰三角形,以D 为顶点作一个60?的MDN ∠,点M 、N 分别在AB 、AC 上, 求AMN ?的周长. 7、如图所示,在ABC ?中,AB AC =,D 是底边BC 上的一点,E 是线段AD 上的一点,且2BED CED BAC ∠=∠=∠,求证2BD CD =. 8、 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE F A B C D E O O E D C B A N M D C B A E D B A E B A

全等三角形辅助线画法

五种辅助线助你证全等 在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 二、中线倍长 三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路. 例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是(). 分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x. ∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE中AB-BE<AE<AB+BE 即7-5<2x<7+5∴1<x<6

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 图1-1 B

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BC D ,C E 平分∠BCD ,点E 在AD 上,求证:BC =AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB -AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC 图1-2 D B C 图 1-4 A B C

三角形中做辅助线的技巧及典型例题

三 角 形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△ OED ≌△OFD ,从而为我们证明线段、角相等创造了条 件。 例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分 ∠BCD ,点E 在AD 上,求证:BC=AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,D A =D B ,求证D C ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B, AD 平 分∠BAC ,求证:AB-AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的 是截取法 图1-2 D B C 图1-4 A B C

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

三角形中的常用辅助线方法总结

三角形中的常用辅助线方法 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助 线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,

全等三角形几何证明-常用辅助线

几何证明-常用辅助线 (一)中线倍长法: 例1、求证:三角形一边上的中线小于其他两边和的一半 1 已知:如图,△ ABC 中,AD 是 BC 边上的中线,求证:AD < - (AB+AC) 2 1 分析:要证明AD < - (AB+AC),就是证明AB+AO2AD 也就是证明两条线段之和大于第三 2 条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构 成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2A 中, 出现了 2AD 即中线AD 应该加倍。 证明:延长 AD 至E,使DE=AD 连CE 则AE=2AD 在厶 ADBm EDC 中, AD= DE ZADB= ZEDC BD= DC ???△ ADB^A EDC(SAS) ??? AB=CE 又在厶ACE 中, AC+C 呂 AE 1 ??? AC+AB>2AD 即 AD < - (AB+AC) 2 小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即 中线倍长法。它可以 将分居中线两旁的两条边 AB AC 和两个角/ BAD 和/CAD 集中于同一个三角形中,以利于 问题的获解。 课题练习:ABC 中,AD 是 BAC 的平分线,且BD=CD 求证AB=AC N, 作BE! AD 的延长线于E 连接BE E 例3:A ABC 中, AB=5 AC=3求中线AD 的取值范围 例4:已知在△ ABC 中, AB=AC D 在AB 上, E 在AC 的延长线上,DE 交BC 于 F , 且 DF=EF 求证:BD=CE 课堂练习:已知在△ ABC 中,AD 是BC 边上的中线, AC 于 F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB AC , D E 上,且 DE=EC 过 D 作 DF //BA 交 AE 于点 F , DF=AC. 例2:中线一倍辅助线作法 作 CF 丄 AD 于 F , A ^式 1:延长 AD 到 E , / 使 DE=AD B ————(连接BE 方式2:间接倍长 延长MD 到 使 DN=M P 连接CD A C △ ABC 中 AD 是BC 边中线 D

角平分线辅助线专题练习

角平分线专题 1、轴对称性: 内容:角是一个轴对称图形,它的角平分线所在的直线是它的对称轴。 思路和方法:边角等造全等,也就是在角的两边上取相等的线段构造全等三角形基本结构:如图, 2、角平分线的性质定理:注意两点(1 )距离相等(2 )一对全等三角形 3、定义:带来角相等。 4、补充性质:如图,在△ ABC中,AD平分/ BAC,则有AB:AC=BD:DC 针对性例题: 例题1:如图,AB=2AC , / BAD玄DAC,DA=DB 求证:DCL AC

例题2:如图,在△ ABC中,/ A等于60°, BE平分/ ABC , CD平分/ ACB 求证: DH=EH B C 例题3:如图 1 , BC > AB, BD 平分/ ABC,且/ A+ / C=180°, 求证: AD=DC 思路一:利用“角平分线的对称性”来构造 因为角是轴对称图形,角平分线是其对称轴,因此,题中若有角平分 线,一般可以利用其对称性来构成全等三角形. 证法1:如图1,在BC上取BE=AB,连结DE , v BD平分 / ABC,?/ ABD= / DBE,又BD=BD , ?△ ABD ◎△ EBD (SAS), ???/ A= / DBE , AD=DE ,又/ A+ / C=1800, / DEB+ / DEC=1800,贝U AD=DC . 证法2:如图2,过A作BD的垂线分别交BC、BD于E、F, 连结DE,由BD 平分/ ABC,易得△ ABF ◎△ EBF,贝U AB=BE , BD 平分/ ABC , BD=BD , ABD ◎△ EBD ( SAS), ? AD=ED , / BAD= / DEB ,又/ BAD+ / C=1800, / BED+ / CED=1800, C=Z DEC,贝U DE=DC , ? AD=DC . 说明:证法1 , 2,都可以看作将△ ABD沿角平分线BD折向全等三角形的. 证法3: ?/ BD平分/ ???/ C=Z E , 图i C=Z DEC , DE=DC , BC而构成 如图3,延长BA至E,使BE=BC,连结DE, ABC ,???/ CBD= / DBE,又BD=BD ,.??△ CBD ◎△ EBD (SAS CD=DE,又/ BAD+ / C=180°,/ DAB+ / DAE=180 0, E :丄 E= / DAE , DE=DA ,贝U AD=DC . B图3 说明:证法3是厶CBD沿角平分线BD折向BA而构成全等三角形的.

几种证明全等三角形添加辅助线的方法

全等三角形复习课 适用学科数学适用年级初中二年级 适用区域通用课时时长(分 钟) 120 知识点全等三角形的性质和判定方法 教学目标熟练掌握全等三角形的性质和判定方法,并学会用应用 教学重点学会做辅助线证明三角形全等,常用的几种作辅助线的方法 教学难点通过学习全等三角形,提高学生观察能力和分析能力 教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

全等三角形中常见的辅助线练习题

全等三角形中的常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC,AD 就是BC 边上的中线,分别以AB 边、AC 边 为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC A B C D E F N 1 图12342 图A B C D E F M 1234A B C D E A C D E F 4 图A B C D N M P 5图1 2A B C D E 6 图O

六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图7:AB ∥CD,AD ∥BC 求证:AB=CD 。 七有与角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 图8 八、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D 。 九、取线段中点构造全等三有形。 例如:如图10:AB =DC,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D 7图1 234 D B A 110 图O 10 图D C B A M N

全等三角形辅助线归类

全等三角形辅助线归类-CAL-FENGHAI.-(YICAI)-Company One1

倍长中线(线段)造全等 前言:要求证的两条线段AC 、BF 不在两个全等 的三角形中,因此证AC=BF 困难,考虑能否通过辅助线把AC 、BF 转化到同一个三角形中,由AD 是中线,常采用中线倍长法,故延长AD 到G ,使DG=AD ,连BG ,再通过全等三角形和等线段代换即可证出。 1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BF A C E F 2、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF F E A B C 3、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. D C B A 4、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1

相关文档
最新文档