Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Reflectors

Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Reflectors
Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Reflectors

Phase Offset Calculation for Airborne InSAR DEM Generation Without Corner Re?ectors

Stefano Perna,Member,IEEE,Carmen Esposito,Paolo Berardino,Antonio Pauciullo,

Christian Wimmer,and Riccardo Lanari,Fellow,IEEE

Abstract—Digital elevation model(DEM)generation through interferometric processing of synthetic aperture radar(SAR)data requires the calculation of a constant phase offset present in the unwrapped interferograms.This operation is usually carried out by exploiting the external information provided by GPS mea-surements in correspondence of corner re?ectors(CRs)properly deployed over the illuminated area.This is,however,expensive in terms of cost and time.Moreover,deployment of CRs along with the corresponding in situ GPS measurements can be dif?cult(if not impossible)in unfriendly areas or in natural disaster scenarios. To circumvent these limitations,we address in this work the esti-mation of the required phase offset by exploiting a low-accuracy external DEM,without using CRs.More speci?cally,a two-step approach is proposed.The?rst step exploits the synthetic phase computed by means of the external DEM and represents a straightforward extension of the procedure that is usually applied in the presence of CRs.Subsequently,in order to re?ne the achieved solution,a second step is introduced.It is based on a least squares approach that properly exploits the difference between the available low-accuracy DEM and the interferometric DEM generated by means of the phase offset value roughly estimated through the?rst step.The presented approach is very easy to implement and allows us to achieve an accurate and fast estimate of the needed phase offset,even in the presence of an external DEM affected by a vertical bias and/or a planar shift.The algorithm per-formances improve in the presence of a large variation of the look angle,as it generally happens in airborne systems.On the other side,the effectiveness of the algorithm may be impaired by the pos-sible presence of artifacts in the unwrapped interferograms,such as those due to the residual motion errors typical of repeat-pass airborne SAR scenarios.Accordingly,the proposed solution is par-ticularly suitable for single-pass interferometric airborne SAR sys-tems,as demonstrated through the presented experimental results achieved on real data.

Index Terms—Synthethic aperture radar(SAR),SAR interfer-ometry(InSAR),airborne SAR,digital elevation model(DEM). Manuscript received March28,2014;revised July9,2014and September12,2014;accepted October13,2014.

S.Perna is with the Dipartimento di Ingegneria,Universitàdegli Studi di Napoli“Parthenope,”80143Napoli,Italy,and also with the IREA-CNR,80124 Napoli,Italy(e-mail:perna@uniparthenope.it).

C.Esposito is with the Dipartimento di Ingegneria,Universitàdegli Studi del Sannio,82100Benevento,Italy,and with the IREA-CNR,80124Napoli,Italy (e-mail:esposito.c@https://www.360docs.net/doc/2f8884621.html,r.it).

P.Berardino, A.Pauciullo,and https://www.360docs.net/doc/2f8884621.html,nari are with the IREA-CNR, 80124Napoli,Italy(e-mail:berardino.p@https://www.360docs.net/doc/2f8884621.html,r.it;pauciullo.a@https://www.360docs.net/doc/2f8884621.html,r.it; lanari.r@https://www.360docs.net/doc/2f8884621.html,r.it).

C.Wimmer is with the Bradar,12244-000S?o Josédos Campos,SP,Brazil (e-mail:of?ce@wimmer-christian.de).

Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/2f8884621.html,.

Digital Object Identi?er10.1109/TGRS.2014.2363937

I.I NTRODUCTION

S YNTHETIC aperture radar(SAR)interferometry(InSAR) allows the generation of the digital elevation model(DEM) of an area by exploiting the phase difference(interferogram) between SAR data pairs relevant to the same observed scene and received from slightly different view angles.Following the interferogram generation operation,the InSAR processing chain[1]–[3]requires the application of a phase unwrapping (PhU)procedure to retrieve the absolute phase signals from their(measured)modulo-2πrestricted components.The PhU procedure,however,provides the unwrapped interferogram up to a constant offset,which must be estimated.

Such an estimation procedure is commonly addressed by making use of a number of corner re?ectors(CRs)prop-erly deployed over the observed area,provided that accurate knowledge of their positions has been achieved[4].To this aim,once the CR positions are known,the corresponding topographic phases(which,in SAR jargon,are referred to as synthetic phases)are calculated.Evaluation of the required phase offset can be then carried out by solving an optimization problem whose objective function is the properly de?ned dis-tance between the CR synthetic phases and the corresponding unwrapped phases.A very ef?cient implementation of such an optimization is provided by the least squares(LS)solution, which leads to an estimate that,in the following,is referred to as phase-based estimate(PBE).

It is worth stressing that the use of CRs for the calculation of the needed phase offset requires,apart from the deployment of the CRs themselves over the illuminated scene,in situ dif-ferential GPS(brie?y DGPS)measurements of their positions. This may be expensive in terms of both cost and time.More-over,deployment of CRs,along with the corresponding in situ DGPS measurements,may be dif?cult(if not impossible)in unfriendly areas or in natural disaster scenarios.Accordingly, in several cases of practical interest,the CR-based algorithms for the evaluation of the required InSAR phase offset,although guaranteeing high performances[4],cannot be applied.

To circumvent these limitations,some alternative methods have been addressed in the literature[5]–[9].In particular,in [5],the redundancy offered by two different subbands of the entire range bandwidth of the InSAR data pair is exploited.The methods in[6]–[8]are instead based on the redundancy offered by different interferometric data pairs relevant to the same area. In particular,in[6],two interferometric acquisitions carried out on parallel tracks by opposite directions are exploited,whereas in[7]and[8],a proper combination of several multibaseline

0196-2892?2014IEEE.Personal use is permitted,but republication/redistribution requires IEEE permission.

See https://www.360docs.net/doc/2f8884621.html,/publications_standards/publications/rights/index.html for more information.

interferograms is performed.A different strategy is adopted in [9],where the geometric information provided by an accurate coregistration step based on cross-correlation maximization is exploited.As a matter of fact,all these methods do not take(or take just marginally,see[9])bene?t from possible information coming from available external DEMs.

We present in this work a solution that allows us to estimate the interferogram offset by effectively exploiting external low-accuracy DEMs characterized by signi?cant height errors and vertical biases.

To this regard,it is noted that an attractive application scenario of the proposed approach is represented by airborne interferometric systems,where we use a low-accuracy external DEM,such as an ASTER[10]or an SRTM[11]–[15]one, to correctly apply motion compensation procedures during the focusing step[16]–[19].

The presented approach consists of two processing steps. The?rst step extends the procedure usually exploited in the presence of CRs:it is based on the PBE algorithm,and it is applied to the synthetic phase computed by means of the ex-ternal DEM.

Subsequently,a second step is introduced in order to re?ne the achieved solution.This processing operation is based on a LS approach that properly exploits the difference between the external low-accuracy DEM and the InSAR DEM generated by means of the phase offset value roughly estimated through the ?rst step.

To this regard,in order to fully clarify the context of the proposed procedure,we perform a preliminary analysis that shows why the estimate provided by the?rst step needs to be re?ned through the second step.

The effectiveness of the proposed algorithm enhances in the presence of a large variation of the look angle,as it generally happens in airborne systems.On the other side,the perfor-mances of the algorithm may worsen when the unwrapped interferograms are affected by artifacts,such as those due to the so-called residual motion errors typical of repeat-pass airborne SAR data pairs.Accordingly,the proposed approach is par-ticularly suitable for single-pass well-calibrated interferometric airborne SAR systems.

The overall procedure is computationally ef?cient and very easy to implement.

It has been applied on real airborne single-pass InSAR data acquired on a test area where,for comparison purposes,a num-ber of CRs have been deployed,and the corresponding in situ DGPS measurements have been carried https://www.360docs.net/doc/2f8884621.html,parisons with these DGPS measurements demonstrate the effectiveness of the presented approach.

This paper is organized as follows.In Section II,we clarify the procedure context by brie?y recalling the PBE algorithm and discussing its performances.The proposed two-step approach is described in Section III.Section IV shows the experimental results.Section V is dedicated to some concluding remarks.

II.P HASE-B ASED E STIMATE(PBE)A LGORITHM

Let us consider a2-D unwrapped interferogram, e.g.,?uw(x,r),where x and r are the azimuth and range coordi-nates,respectively.As recalled above,the interferogram

?uw(x,r)is given but for a constant offset,e.g.,φo?.Accord-ingly,our problem consists in?nding the constant quantityφo?. Hereafter,any object providing external information on the topography(that is,either a CR of known position or a point of an available external DEM)will be referred to as ground control point(GCP).

Let us assume that K is the number of available GCPs,rang-ing from some units to tens in case we exploit CRs or millions in case we exploit an external DEM.The position of each GCP is assumed to be known,in a generic reference system, with a given degree of uncertainty.Also,the interferometric acquisition geometry is assumed to be known.Accordingly,the application of the backward geocoding procedure extensively discussed in[1],[2],and[20]allows calculating the SAR coordinates,e.g.,x GCP

k

(azimuth)and r GCP

k

(range),and the

so-called synthetic phase?GCP

k

of the generic k th GCP,k∈{1,...,K}.Accordingly,?GCP and?uw represent the vectors

collecting,respectively,the synthetic phases?GCP

k

and the

phases?uw

k

picked up from the unwrapped interferogram in correspondence of the available GCPs.

In principle,our problem consists in?nding the constant valueφo?such that

?uw?1φo?=?GCP(1) where1=[1,...,1]T.However,the presence of noise,which may affect both the vectors?uw and?GCP,renders(for values of K>1)unsolvable the overdetermined problem in (1).Accordingly,in the cases of practical interest,the following optimization problem is addressed:

o?

=arg min

ξ∈R

dist(?uw?1ξ,?GCP)(2)

where dist(·)represents the properly de?ned distance between vectors?uw?1ξand?GCP,whereas the symbol∧stands for estimator.By considering the Euclidean distance,the optimiza-tion problem in(2)can be addressed via the LS approach[21], which leads to

o?PBE

=(1T1)?11T(?uw??GCP)=

1

K

K

k=1

?uw k??GCP

k

.

(3) It is noted that the subscript PBE in(3)stands for phase-based estimate to emphasize that the objective function of the corresponding optimization is a phase.

It is worth stressing that the PBE in(3)represents the mean of the vector?uw??GCP.Obviously,its computation is very easy and fast even for values of K on the order of millions,as it happens when we want to exploit an external DEM and we deal with a large SAR data set.

In order to assess the performances of the PBE in(3),we have evaluated the estimation error

ε=?φo?

PBE

?φo?(4) as a function of K.To this aim,we have simulated a typical airborne SAR acquisition geometry(main parameters are col-lected in Table I)with a height of ambiguity[2]equal to159m

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs 2715

TABLE I

S IMULATED SAR S

YSTEM

at midrange.Within the simulated illuminated area,we have considered a variable number of GCPs,that is,we have set different values for K in (3).The positions of the GCPs have been randomly set.Moreover,for the sake of simplicity,in the

expression (3)we have supposed only the terms ?GCP k

to be affected by noise,thus considering ?uw

not noisy.Obviously,the unavoidable presence of noise in the unwrapped interfer-ograms (due to possible atmospheric artifacts,PhU errors [1],[2],and,in the case of airborne systems,the so-called residual motion errors [22])generally impairs the performances of the PBE.Accordingly,the following analysis provides,in practical cases,upper bounds for the accuracy of the PBE.

In order to render ?GCP noisy,we have added to the actual topographic height of the GCPs a uniformly

distributed random variable on the interval [μ?√3σ,μ+√3σ].In particular,the stat-istical expectation μaccounts for the possible presence of a ver-tical bias of the topographic information provided by the GCPs.Moreover,the vertical inaccuracy around such a (possibly)biased height is accounted for by the standard deviation σ.We have then set different values for the parameters μand σ,simulating two different scenarios:we have ?rst considered σon the order of some centimeters,as it happens when using accurate DGPS measurements on CRs;subsequently,we have set σon the order of some meters,as it may happen when using an external DEM with a relatively poor accuracy.

As a ?rst example,we have set μ=0m and considered two values for σ:σ=1cm and σ=5cm.In Fig.1(a),the standard deviation (evaluated over 1000trials)of εis plotted versus the number of exploited GCPs.As expected,the higher the accuracy of the topographic information provided by the GCPs,the less the number of GCPs necessary to achieve a desired estimation accuracy.In particular,it can be seen that,for the considered geometry,even for σ=5cm,a number of GCPs greater than 7allows calculating the desired phase offset with an uncertainty less than 0.05?.To this regard,we recall that the error εin (4)induces the following topographic error in the ?nal InSAR DEM [1]:

z (x,r,?φo?PBE

)?z (x,r,φo?)≈β(x,r )ε(5)

where,as said,x and r are the azimuth and range SAR

coordinates,respectively.Moreover,z (x,r,?φo?PBE

)is the

to-Fig.1.Relevant to the PBE.(a)Standard deviation (evaluated over 1000

trials)of the estimation error εin (4)versus the number of exploited GCPs.(b)Height error variation from near to far range induced by the estimation error εin Fig.1(a).The external topographic information provided by the GCPs is characterized by a bias μ=0m and standard deviation σ∈{1,5}cm.Simulated SAR system parameters are collected in Table I.

pographic height,in SAR grid,of the InSAR DEM obtained starting from ?uw (x,r )and using,within the InSAR process-ing chain [1],[2],the phase offset factor ?φo?PBE

.Instead,z (x,r,φo?)is the topographic height of the InSAR DEM that we would obtain by using the correct phase offset φo?.Finally,the coef?cient β(·)in (5)can be obtained by consid-ering the ?rst-order Taylor expansion of z (x,r,·)around φo?[1],[2],i.e.,

β(x,r )=?

λr sin ?(x,r )2aπb ⊥(x,r )

(6)

being ?(·)the look angle and b ⊥(·)the so-called orthogonal

baseline [1](which depends,in turn,on ?);moreover,the coef-?cient a depends on the considered interferometric con?gura-tion (a =1for bistatic systems,whereas a =2for monostatic ones).It is worth noting that the error in (5)varies from near to far range (particularly in airborne con?gurations where the variability of both ?(·)and b ⊥(·)within the range swath is signi?cant).For the InSAR DEM relevant to the simulated system of Table I we have thus evaluated,by means of (5),the height error variation from near to far range induced by the estimation error εreported in Fig.1(a).Results are plotted in Fig.1(b)and show that,as expected,the PBE in (3)guarantees good performances for values of K on the order of a few units,

2716IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY

2015

Fig.2.As in Fig.1,but for σ∈{1,5,10,15}

m.

Fig.3.As in Fig.2,but for μ=7m.

provided that the accuracy of the topographic information given by the GCPs is on the order of some centimeters,as it happens when we exploit CRs whose position is measured with DGPS in situ campaigns.Similar results,not reported here for brevity,have been achieved also with SAR systems and con?gurations other than those considered in Table I.

Turning to the case of our interest,which consists in the exploitation of a low-accuracy external DEM,we have impaired the so-called relative vertical accuracy [11]of the GCPs by increasing the standard deviation of the added noise term.More speci?cally,we have set four values of σranging from 1to 15m;the expectation μhas been instead retained equal to 0m (as in Fig.1).Corresponding results are collected in Fig.2.As expected,a number of GCPs signi?cantly larger than that observed in Fig.1are now needed to achieve acceptable esti-mation accuracy.Notwithstanding,even for σ=15m,which overestimates the typical relative vertical accuracy of the easily available worldwide ASTER [10]or SRTM [11]DEMs,a number of GCPs on the order of 10000(well below the number of pixels of typical airborne SAR data)are suf?cient to estimate the desired phase offset with an uncertainty less than 0.5?.This leads,in the simulated interferometric system,to a ?nal InSAR DEM with a height error variation from near to far range less than 35cm.

Unfortunately,the accuracy of the PBE signi?cantly worsens when the topographic information provided by the GCPs is affected by a vertical bias.This is clearly shown in the plots of Fig.3,which have been obtained by setting μ=7m and retaining the same values of σconsidered in Fig.2.From the curves in Fig.3it turns out that the solution of the PBE asymptotically converges to a completely wrong estimate of the needed phase offset.In particular,the error εis always larger than 18?:this leads to a ?nal InSAR DEM with 11m of height error variation from near to far range.Accordingly,we can draw the conclusion that the evaluation of the PBE using an external DEM is not appropriate when the latter is affected by a vertical bias of some meters.

To this regard,it is worth stressing that the presence of vertical biases is quite common in easily accessible DEMs.For instance,the absolute and relative vertical accuracy require-ments of SRTM are 16m (90%)and 6m (90%),respectively [11].This means that,within a 225×225Km 2area [11],the SRTM height errors may have a variation of ±6m (90%)super-imposed to a bias whose absolute value,in principle,may reach up to 10m.Note that the presence of vertical biases affecting the SRTM DEM has been con?rmed by validation campaigns [11]–[15].For instance,in a study focused on Costa Rica [14],it is shown that the vertical bias of the SRTM C-band DEM is on the order of 4.5m in “bare Earth”regions and increases in vegetated areas.Moreover,in [11]it is shown that,in the scale of 225km,the height error of the SRTM X-band DEM relevant to the South of Australia ocean may reach a vertical bias on the

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs2717 order of10m.Accordingly,the valueμ=7m considered in

the examples of Fig.3represents a realistic one.

III.S LOPE-T OPOGRAPHY-B ASED

E STIMATE(ST OP BE)A LGORITHM

In order to circumvent the problems related to the presence

of a vertical bias affecting the available external DEM,a proper

procedure consisting of two main steps is now proposed.

The?rst step straightforwardly carries out the PBE by ex-

ploiting a low-accuracy external DEM.

The second step is aimed at estimating and correcting the

PBE error,i.e.,εin(4),resulting from the?rst step.To this

aim,we will exploit the available DEM.However,differently

from the?rst step,we perform an optimization operation whose

objective function is a topographic height;moreover,a mathe-

matical model capable of accounting for the presence of both

the residual errorεin(4)and the relative bias between the

external DEM and the one that we are going to generate is

adopted.More details are now in order.

Let z GCP(x,r)be the topographic height provided by the

available low-accuracy https://www.360docs.net/doc/2f8884621.html,e of(5)allows expressing

the difference between the InSAR DEM obtained by using the

roughly estimated phase offset?φo?

PBE and the external DEM

as follows:

z(x,r,?φo?

PBE

)?z GCP(x,r)=β(x,r)ε+Θ(x,r)(7) whereβ(x,r)is de?ned in(6),whereas

Θ(x,r)≈z(x,r,φo?)?z GCP(x,r).(8)

The difference in(7)is given by two contributions.The?rst term is proportional to the PBE error,through the coef?cient β(x,r)in(6),which varies over the illuminated scene and depends on the acquisition geometry.The second term,see(8), accounts for the different vertical accuracy of the external DEM and the InSAR DEM that we would generate by using the correct phase offsetφo?.

In order to estimate the residual errorεin(7),it is convenient to rewrite(7)in a more manageable form.To this aim,let us collect all the K terms of the left-hand side of(7)within the vectorΔ,which can be thus expressed as

Δ=βε+Θ(9)

beingΘandβthe vectors collecting all the valuesβ(x,r) andΘ(x,r)in(7).The estimate of the residual errorεcan be obtained from the vectorΔby means of a LS approach.To this regard,it is worth noting that,according to(8),the noise term Θin(9)is a nonzero-mean vector,which can be conveniently rewritten as follows:

Θ=1ν+Θ0(10)

whereνis the mean ofΘ,andΘ0is a zero-mean vector.It is noted thatνrepresents the relative bias between the DEM

that Fig.4.Pictorial view of the vectorΔin(9)along with the?tting line(white line)estimated through the STopBE.

we are going to generate and the external DEM.1Use of(10)in (9)leads to

Δ=βε+1ν+Θ0.(11)

From(11),it turns out that the residual errorεand the relative biasνcan be jointly estimated by solving the following opti-mization problem:

(?ε,?ν)=arg min dist(βξ1+1ξ2,Δ)

(ξ1,ξ2)∈R2.(12)

By considering the Euclidean distance,the optimization prob-lem in(12)can be addressed(as in Section II)via the LS approach[21],which now leads to

?εSTopBE

=(H T H)?1H TΔ(13) where the K×2matrix H is given by

H=[β1].(14)

It is noted that the subscript STopBE in(13)stands for slope-topography-based estimate to emphasize that the estimate in (13)provides the line?tting of the vectorΔ[which contains the topographic difference in(7)]and that the needed parameter ?εSTopBE represents the angular coef?cient(i.e.,the slope)of such a?tting line,depicted in the pictorial plot in Fig.4. Hereafter in this paper,for the sake of simplicity,the whole joint estimate in(13)is referred to as STopBE.

Some further considerations are now in order.

First,it is noted that the?tting line in Fig.4very marginally depends on possible“ramp”errors of the external DEM corre-lated to topographic slopes present in the observed area.Indeed, adjacent samples of the experimental data depicted in Fig.4are adjacent samples of the vectorΔsorted according to increasing values of the coef?cientβ(·)in(6).Accordingly,they are typ-ically not adjacent pixels of the original SAR image,and thus, they are not expected to show,at least in general,high topo-graphic correlation.In other words,the“ramp”errors of the ex-ternal DEM are typicallyβindependent,particularly when the generation processes of our InSAR DEM and the external DEM are independent of each other,as it happens in the airborne case when the external DEM is the worldwide ASTER[10]or SRTM[11]one.Of course,this does not hold when the external

1When only the external DEM is affected by a vertical biasμ(as assumed in Section II),we haveν=?μ.

2718IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY 2015

ill-calibrated DEM has been generated with the same acquisi-tion geometry of our InSAR DEM,because in this particular case,the “ramp”errors of the external DEM are likely to become βdependent.This means that in the airborne case,if we ?y by carrying out adjacent and overlapping acquisitions (as it commonly happens to cover areas wider than the range swath),we cannot think to generate an arbitrarily ill-calibrated DEM (by using an arbitrary phase offset)for the ?rst strip and then successfully apply the STopBE in (13)for the adjacent and overlapping strips by exploiting the ?rst ill-calibrated DEM.Second,it is worth noting that the higher the variance of the vector β,the more accurate the STopBE in (13).To show this,we observe that the estimation error involved in (13)is given by the projection of the noise Θ0in (11)onto the sub-space spanned by the columns of the system matrix H in (14)see [21].It can be easily shown [21]that such a projection is inversely proportional to the determinant of the matrix H T H ,which,in our case,is given by

det(H T H )=K 2??1K K k =1

β2k ? 1K

K

k =1

βk 2??

(15)and it is thus proportional to the variance of the vector β,being

K 2the corresponding proportionality constant.This implies ?rst of all that (not surprisingly)the higher the number K of available GCPs,the less the estimation error involved in (13).More important,the higher the variance of β(·)in (6),the less the estimation error involved in (13).For the latter reason,the STopBE in (13)turns out to be particularly suitable for airborne (rather than satellite)acquisitions,which are characterized by higher variations of the look angle ?and,thus,of the parameter β(·)in (6).

Regarding the use of airborne SAR systems,it must be re-called on the other hand that the presence of the so-called resid-ual motion errors [22],which typically affect the interferograms obtained with repeat-pass acquisitions or with ill-calibrated single-pass systems [4],may impair the performances of the STopBE in (13).Indeed,such residual phase errors,when converted to height,introduce azimuth-dependent [22]vertical errors possibly superimposed to a vertical bias [4].The latter effect renders the parameter ?νestimated in (13)dependent not only on the vertical bias affecting the external DEM but also on the vertical bias of the DEM that we are going to generate.More important,the former effect increases the variance of the noise term Θin (10)[i.e.,the variance of Θ0in (10)and (11)],thus involving a lower matching between the linear model adopted in (12)and the experimental data Δ,with a corresponding impair-ment of the overall estimate carried out by the STopBE in (13).According to the above considerations,the proposed STopBE turns out to be particularly suitable for single-pass airborne data pairs acquired by well-calibrated systems.

Turning to the calculation of the parameter β(x,r ),which depends on the topography of the observed scene (through ?and b ⊥),we stress that it can be accurately carried out by exploiting the available external DEM,even when this has a low accuracy.Indeed,starting from (6),it can be easily shown that topographic errors are reduced approximately by a factor λ/(2aπb ⊥)when they are “transferred”to β

.

Fig.5.Flow diagram of the processing chain of the proposed two-step algorithm.

It is remarked that the STopBE in (13)can be easily rear-ranged in order to account also for the application of proper weights depending,for instance,on the interferometric coher-ence of the available data.In this case,(13)is replaced by the weighted LS (WLS)solution,i.e.,

?εSTopBE

?ν = H T WH

?1H T WΔ(16)where the K ×K matrix W is given by

W =M T M

(17)

and

M =diag (m 1,...,m k ,...,m K )

(18)being m k the aforementioned weights.As a matter of fact,the

expression in (17)simpli?es as W =M when m k ∈{0,1},that is,when the performed weighting carries out just a masking operation.

The processing chain of the presented two-step approach is shown in the ?ow diagram in Fig.5,and it is summarized in the following.

The ?rst step requires:

?calculation of the synthetic phase relevant to the external

DEM,i.e.,calculation of the terms ?GCP k

in (3);?calculation of the PBE ?φo?PBE

in (3);whereas the second step requires:

?calculation of the term z (x,r,?φo?PBE

)in (7)via a phase-to-height conversion step [1]that uses the phase offset ?φo?PBE

estimated through the ?rst step;

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs2719?calculation of the vectorΔin(13)collecting the differ-

ence between z(x,r,?φo?

PBE )and the external DEM;

?calculation of the parameterβ(·)in(6)and,in turn,of the matrix H in(14);

?application of the STopBE in(13)and(14)(or(16)–(18) in the weighted case)in order to?nd?εSTopBE;?calculation of the re?ned InSAR DEM by exploiting both the estimates carried out at the?rst and second steps,i.e., calculation of z(x,r,?φo?

PBE

??εSTopBE).

Note that the proposed two-step approach is very simple to implement.Indeed,in the airborne case,the synthetic phase ?GCP as well as the parameterβ(·)can be straightforwardly obtained by terms that are usually needed to implement motion compensation procedures[16]–[19].Accordingly,in addition to the processing procedures usually needed by the standard processing chain leading from the acquired SAR data to the generation of the?nal DEM,the?rst step of the overall algo-rithm just involves the computation of the arithmetical mean in(3),whereas the second step just requires?nding the LS estimate in(13)and(14)(or(16)–(18)in the weighted case). Some?nal considerations are now in order.

At?rst sight,one could argue that the?rst step of the pro-cedure is unnecessary since the second step can be applied,in principle,by exploiting an InSAR DEM obtained with a generic

phase offset,e.g.,φstart,other than?φo?

PBE .However,it must be

noted that it is preferable to deal with a value ofφstart as close as possible toφo?.Indeed,the smaller the quantity|φstart?φo?|,the more accurate the approximation involved in(5) and thus in(8).This involves higher matching between the linear model adopted in(12)and the experimental dataΔ, thus rendering more accurate the estimate carried out by(13) and(14)(or(16)–(18)in the weighted case).Accordingly,the PBE at the?rst step plays an important role,since it repre-sents a starting value forφstart not signi?cantly far from the neededφo?.

Moreover,in order to further improve the performances of the STopBE in(13)and(14),we can iteratively apply the second step of our procedure,thus taking advantage from the in-creased matching,obtained at each iteration,between the linear model adopted in(11)and the updated experimental data. Iterative application of the second step can be easily imple-mented following the?ow diagram reported in Fig.6,where the threshold T must be properly set according to the desired DEM accuracy,the subscript i indicates the iteration number,

and the initialization value for?φo?

i is?φo?

1

=?φo?

PBE

.With

reference to the symbols used in the diagram in Fig.5,it is noted

that in Fig.6,?εSTopBE

1=?εSTopBE,andΔ1=Δ.Clearly,

if the iterative procedure in Fig.6stops at the?rst iteration, the solution coincides with the PBE,whereas if it stops at the second iteration,the solution coincides with the cascade of the PBE and STopBE shown in Fig.5.

IV.R ESULTS

The presented algorithm has been tested on real data ac-quired by the airborne OrbiSAR system[23],which operates at X-band and P-band.In particular,the results reported in this section are relevant to a single-pass interferometric data pair acquired at X-band over the city of S?o Josédos Campos,

SP,Fig.6.Flow diagram of the iterative application of the second step of the proposed algorithm sketched in Fig.5.

TABLE II

O RBI SAR X-B AND S YSTEM AND M ISSION P

ARAMETERS Brazil.The main parameters of the used X-band iterferometric system are listed in Table II along with the mission parameters. It is remarked that exploitation of a single-pass system has limited the impact of the residual motion errors[22].To this regard,it is stressed that the OrbiSAR system exploits a modern embedded GPS/Inertial Navigation System(INS)equipment [23].In addition,an accurate system calibration consisting in the precise measurement of the antennas’phase centers and the corresponding lever arms(i.e.,the distances between the antennas’phase centers and the measurement center of the INS) has been carried out(along the lines shown in[4]).This allowed very precise measurement of the?ight parameters for accurate application of the motion compensation procedure[16],[17], thus further reducing the residual motion errors affecting the obtained single-pass interferograms.

The external DEM exploited in the following examples is the C-band SRTM,whose absolute and relative vertical accuracy requirements are16m(90%)and6m(90%),respectively [11].Moreover,as shown in[11]–[15]and already observed in Section II,the aforementioned accuracy requirements for the SRTM DEM are compatible with the presence of vertical biases on the order of some meters.

2720IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY

2015

Fig.7.Amplitude multilook image of the observed scene.White squares have been superimposed in correspondence of the CRs deployed over the area.Moreover,a range cut of the SRTM DEM height in correspondence of the white line is shown at the bottom of the

?gure.

Fig.8.Left column shows (a)Mask 1,(c)Mask 2,and (e)Mask 3applied in the experiments of Section IV.Right column shows (b)Mask 1,(d)Mask 2,and (f)Mask 3superimposed to the original multilook amplitude SAR image shown at the top of Fig.7.

The SRTM DEM has been used also during the focusing step to perform accurate motion compensation [16]–[18].

Eight CRs have been deployed over the range direction within the illuminated area,and DGPS measurements of their positions have been carried out.It is stressed that such CRs and DGPS measurements have been used just for comparison purposes,since they are not exploited by our method.In par-ticular,they have been used ?rst of all to obtain,by means of the PBE,a benchmark solution for the required phase offset and for the corresponding InSAR DEM.Moreover,CRs and DGPS measurements have been used also to directly evaluate the accuracy of the obtained InSAR DEMs.

Fig.7shows the multilook amplitude image of the illumi-nated area:the eight CRs are highlighted with white squares.The observed scene is quite heterogeneous since it includes a mountainous area,a ?at rural region,and an urban zone.Therefore,the observed topographic pro?le is quite variable,as it can be seen in the plot shown at bottom of the ?gure,which presents a cut of the SRTM DEM topography in correspondence of the white line highlighted in the SAR image.

The presented algorithm has been applied to multilook in-terferograms of 512range ×1981azimuth pixels,obtained following a 16range ×64azimuth pixel averaging window.Interpolation and subsequent regridding of the SRTM DEM height into the SAR grid has thus led to about 1million of GCPs.As detailed in the following,some areas of the illuminated scene have been however masked,thus leading to a reduction of the used GCPs.

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs 2721

TABLE III

E XPERIMENTAL R

ESULTS

In the following examples,the second step of the algorithm has been iteratively applied along the scheme of Fig.6,setting the threshold T equal to 0.03?.

As a ?rst example,we show the results obtained by masking the pixels of the unwrapped interferograms with a coherence value less than 0.4.The achieved mask,referred to as Mask 1,is shown in Fig.8.In this case,the whole procedure stopped just at the second iteration,and the estimated phase offset (given in this case by ?φo?2=?φo?PBE

??εSTopBE 1,see Fig.6)turned out to be equal to ?45.09?,which differs by 2.56?from the benchmark solution obtained by using the CRs (see Table III,which summarizes the overall experimental results).Fig.9(a)shows the vector Δobtained just after the ?rst step,along with the ?tting line (white line)estimated via the STopBE at the ?rst iteration.Fig.10(a)shows (stars)the difference between the ?nal InSAR DEM (obtained along the scheme of

2722IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY

2015

Fig.9.Top plots are relevant to the use of the original SRTM DEM:(a)the vectorΔ,(b)the vectorΔ2,along with the corresponding?tting lines(white lines) estimated via the STopBE at the corresponding iterations of the procedure in Fig.6.Bottom plots are relevant to the use of the SRTM DEM modi?ed with an additional vertical bias of15m:(c)the vectorΔ,(d)the vectorΔ3,along with the corresponding?tting lines(white lines)estimated via the STopBE at the corresponding iterations of the procedure in Fig.6.

Fig.6),sampled in correspondence of the eight CRs,and the

DGPS measurements.The standard deviation of this difference

(reported in Table III)is equal to25cm.To better appreciate

the effectiveness of the proposed algorithm,in Fig.10(a)the

difference between the benchmark InSAR DEM(obtained by

exploiting the CRs)and the DGPS measurements is also plotted

(crosses):its standard deviation is equal to18cm(see again

Table III)and thus just slightly better than that achieved by

estimating the phase offset with our approach.In any case,as

expected,Fig.10(a)shows that due to the residual difference

(2.56?)between the phase offset estimated with our algorithm

and the benchmark phase offset,the difference between the two

corresponding InSAR DEMs increases over range,see(5)and

(6)(it is recalled that the eight CRs are deployed over the range

direction).In particular,the measured height difference ranges

from30cm(in correspondence of the CR at near range,for

whichβ=6.23m/rad)to80cm(in correspondence of the CR

at far range,for whichβ=17.75m/rad).

Turning to the estimate?νin(16),as expected,it remains

practically constant at both iterations.In particular,it is equal

to?5.8m;this means that a relative bias exists between the

?nal InSAR DEM that we have generated and the external

DEM.The presence of this relative vertical bias can be seen

in Fig.9(b),which shows the vectorΔ2along with the?tting

line estimated through the STopBE at the second iteration.

It is worth stressing that in agreement with the analysis in

Section II,this relative bias has rendered inaccurate the PBE

at the?rst step,as con?rmed by the fact that in this case

?εSTopBE

1=34.49?,that is,the STopBE has signi?cantly mod-

i?ed the estimate?φo?

PBE obtained through the?rst step.On

the other side,it is worth remarking that the application of the PBE at the?rst step was not unnecessary.Indeed,due to the exploitation of the(even rough)estimate provided by the PBE,the whole procedure stopped just at the second iteration.

Differently,by initializing the iterative procedure in Fig.6

with a starting phase offset?φo?

1

=φstart different from?φo?

PBE and signi?cantly far from the neededφo?,additional iterations

would have been needed to reach the?nal estimate,with an

overall increase of the corresponding computational effort.To

better clarify this point,we have evaluated the performances

of the STopBE and,more generally,of the overall iterative

procedure in Fig.6for starting values?φo?

1

=φstart other than ?φ

o?PBE

.More speci?cally,Fig.11(a)shows(continuous line)

the estimation error|?φo?

2

?φo?|as a function ofφstart?φo?,where?φo?

2

=φstart??εSTopBE1is the estimate obtained by applying once the STopBE,whereasφo?is the bench-mark solution obtained by using the CRs.As expected(see Section III),the higher the value|φstart?φo?|,the worse the estimate carried out by applying once the STopBE.Fig.11(a) shows also(dotted line)the estimation error(still as a function ofφstart?φo?)of the estimate?φo?obtained by applying the iterative(and automatic)algorithm in Fig.6,where,as observed above,we have set the threshold T equal to0.03?.Finally, Fig.11(b)shows the number of iterations needed to achieve the estimate?φo?plotted in Fig.11(a).The plots in Fig.11show that the?nal estimate?φo?achieved with the iterative scheme in Fig.6is not in?uenced by the initial value of the phase offset?φo?

1

=φstart;however,this initial value has an impact

on the number of iterations needed by the algorithm to achieve

such a?nal estimate.To this regard,as observed in Section III,

the PBE at the?rst step generally provides a starting value for

φstart not dramatically far from the neededφo?(in the plots of

Fig.11,the value?φo?

PBE

?φo?is highlighted with black points on the x-axes),and thus allows reducing the computational effort of the whole algorithm(one iteration of the PBE comes practically at zero cost,differently from an additional

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs

2723

Fig.10.Differences (stars)between the InSAR DEMs obtained with the proposed algorithm and the DGPS measurements.First line (a),(b),and (c):the used external DEM is SRTM.Second line (d),(e),and (f):the used DEM is SRTM with an additional vertical bias of 15m.Third line (g),(h),and (i):the used DEM is SRTM with an additional range shift of about 180m.First column (a),(d),and (g):it has been used Mask 1.Second column (b),(e),and (h):it has been used Mask 2.Third column (c),(f),and (i):it has been used Mask 3.In all the cases,the difference (crosses)between the benchmark InSAR DEM,obtained evaluating the PBE with the DGPS measurements on CRs,and the DGPS measurements themselves is overplotted.Standard deviations of the plotted differences are reported in Table III.

iteration of the STopBE,as better clari?ed in the following),without in?uencing,however,the accuracy of the ?nal result.To further investigate the in?uence of the vertical bias of the external DEM on the performances of the proposed algorithm,as a second example we have removed from the SRTM DEM the vertical bias estimated above.Then,we have used this

modi?ed SRTM DEM to evaluate the PBE,obtaining ?φo?PBE

=?43.15?,which differs only by 0.62?

from the benchmark solution.Therefore,as expected,in the absence of a relative vertical bias between the external DEM and the ?nal one,the sole PBE represents a satisfactory estimate of the required phase offset.This is better quanti?ed in Table III,which reports the standard deviation of the difference between the DGPS measurements on the CRs and the InSAR DEM generated

by using the so-estimated ?φo?PBE

:in this case,the sole PBE allows achieving practically the same result (actually,slightly better)as that obtained in the ?rst experiment (that is,without removing from the external DEM the 5.8m bias)with the whole two-step procedure.This con?rms the validity of the numerical analysis performed in Section II,which demonstrates that the second step of the overall algorithm is mandatory only in the presence of a relative vertical bias between the InSAR DEM that we are going to generate and the available external DEM.To this regard,in order to further test the robustness of the overall procedure with respect to vertical biases of the external DEM,as a third example we have further increased by an amount of ?15m the above estimated relative vertical bias between our InSAR DEM and the SRTM DEM.Then,we have applied the proposed algorithm by using the so-modi?ed SRTM DEM.The corresponding vector Δ,along with the correspond-ing estimated ?tting line (white line),is shown in Fig.9(c).The span of this ?tting line is now about 40m [against the about 10m in Fig.9(a)],thus con?rming that increasing the relative vertical bias between the external DEM and our InSAR DEM impairs the PBE.In this case,three iterations of the second step were necessary,and the estimated phase offset (given in

this case by ?φo?3=?φo?PBE

??εSTopBE 1??εSTopBE 2)turned out to be equal to ?45.03?,which differs from the benchmark solution by 2.5?.In Fig.9(d)the vector Δ3along with the corresponding ?tting line (white line)estimated through the STopBE at the last iteration is plotted.The difference between the InSAR DEM generated in this case and the DGPS measure-ments on CRs is reported in Fig.10(d):the standard deviation of this difference (reported,as usual,in Table III)is 25cm.Accordingly,even further increasing the relative bias between the external DEM and our InSAR DEM,the performances achieved with the presented algorithm remain practically the same.

One additional consideration particularly relevant is now addressed.

The resolution of the exploited external DEM (90m)is almost two orders of magnitude worse than that of the ?nal

2724IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY

2015

Fig.11.Relevant to the iterative procedure in Fig.6.(a)The estimation error

|?φo?

2?φo?|(continuous line)and the estimation error|?φo??φo?|(dotted

line)as functions ofφstart?φo?,whereφstart is the initializing value of the

algorithm(denoted as?φo?

1

in Fig.6),φo?is the benchmark solution obtained by using the CRs,?φo?is the estimate obtained by iteratively and automatically

applying the algorithm,?φo?

2=φstart??εSTopBE

1

is the estimate obtained

by stopping the procedure at the second iteration.(b)Number of iterations needed to achieve the estimate?φo?plotted in Fig.11(a).The plots are relevant to the experiment carried out by exploiting the original SRTM DEM,Mask1, and a threshold T=0.03?.The black points on the x-axes indicate the value ?φ

o?PBE?φo?and show that,in this case,the PBE at the?rst step allowed the iterative procedure to stop just at the second iteration.

InSAR DEM that we have generated.Accordingly,a signi?-cant planar misalignment between the topographic information provided by these two DEMs may occur.This,in general,may increase the effect of the additive noise termΘ0in(11),thus rendering worse the matching between the linear model adopted in(12)and the experimental dataΔand,in turn,less accurate the STopBE in(13)and(14)(or(16)–(18)in the weighted case). As a matter of fact,this effect is more critical in those areas where the topography is steeper;accordingly,masking these areas could allow improving the performances of the second step,also because these areas are more likely to be affected by unwrapping errors.To investigate this point,we have set two different thresholds for the SRTM slopes,thus generating two different masks(shown in Fig.8),hereafter named Mask2and Mask3,both including the Mask1de?ned before.The?rst and third experiments described above have been then repeated by exploiting these two masks(instead of Mask1):the difference between the obtained InSAR DEMs and the DGPS measure-ments on the CRs is plotted in Figs.10(b)and(c),(e)and(f), whereas the corresponding standard deviations are reported in Table III along with the corresponding estimated values of the needed phase offset.As expected,masking the areas where the topography is steeper allows improving the performances of the algorithm:in particular,in the two considered cases,we have achieved practically the same accuracy as that obtained with the PBE carried out on the CRs.

To better show the advantages related to the use of such a topography-based masking,we have further investigated the robustness of the STopBE with respect to planar misalignments between the external DEM and our InSAR DEM.To this aim,we have applied to the original SRTM DEM a shift of 6arcsec in the north direction,which corresponds to about two pixels(180m)of the original SRTM grid.This represents a signi?cant misalignment between our?nal InSAR DEM and the external SRTM DEM.Then,we have applied our algorithm by exploiting this modi?ed SRTM DEM and all the three masks de?ned above:the differences between the obtained InSAR DEMs and the DGPS measurements on the CRs are plotted in Fig.10(g)–(i),whereas the corresponding standard deviations are reported in Table III(as usual,along with the corresponding estimated values of the needed phase offset). Also in this case the results obtained with Mask2and Mask3 are better than those achieved with Mask1.More important, also in the presence of a severe planar misalignment between the external SRTM DEM and our InSAR DEM,the accuracy of the estimate carried out by our algorithm is practically the same as the benchmark phase offset obtained by using the DGPS measurements on CRs.

Few information on the computational performances of the proposed algorithm are?nally provided.

Since the PBE just involves the computation of the mean in(3),we focused on the second step of the presented pro-cedure only.For all the experiments discussed in this sec-tion,computation of the STopBE in(16)–(18)took at worst a few milliseconds by using a3.4-GHz Intel i5CPU with 16-GB RAM.Accordingly,the computational effort of the overall procedure is mainly due to the iterative implementation of the phase-to-height conversion step in Fig.6.However,such a phase-to-height conversion step must be carried out at worst two or three times because,as shown above,two or three iterations of the second step are enough to reach a satisfactory accuracy in the computation of the needed phase offset.

V.C ONCLUSION

A new solution to estimate the phase offset present in the unwrapped SAR interferograms has been addressed in this work.Our approach exploits a low-accuracy external DEM and allows us to avoid the use of CRs along with the corresponding in situ DGPS measurements of their positions.

To fully clarify the context of the proposed approach,a preliminary analysis has been performed on simulated data.In particular,we have shown that the straightforward implemen-tation to an external DEM of the same solution exploited for CRs,referred to as the PBE approach,may lead to dramatically inaccurate results.More speci?cally,it has been shown that the PBE is not appropriate when the external DEM is affected by a nonnegligible vertical bias,as it may happen with commonly available DEMs.

Based on this analysis,a two-step procedure has been de-veloped.The?rst step carries out the PBE by exploiting the aforementioned external DEM,thus providing a rough estimate of the needed phase offset.The second step compensates for the residual error occurred at the?rst step and is based on a LS approach.In particular,it carries out an estimate,named STopBE,which is able to account for the presence of a relative bias between the external and the computed InSAR DEM. Iterative application of this second step can be applied to improve the accuracy of the obtained estimate.

PERNA et al.:PHASE OFFSET CALCULATION FOR AIRBORNE INSAR DEM GENERATION WITHOUT CRs2725

The effectiveness of the presented algorithm enhances in the presence of a large variation of the look angle;on the other side,it may worsen when the unwrapped interferograms are corrupted by artifacts.Accordingly,the presented approach is particularly appropriate for single-pass well-calibrated airborne systems,which guarantee a large variation of the look angle by allowing,at the same time,the generation of interfero-grams only marginally affected by the so-called residual motion errors,which may be instead critical in repeat-pass airborne InSAR scenarios.

Accordingly,the proposed procedure has been applied to a single-pass InSAR data set acquired by the OrbiSAR X-band airborne system.Moreover,we have exploited a SRTM DEM whose vertical accuracy and resolution are about one and two orders of magnitude worse than those achieved through the OrbiSAR system.

The presented results demonstrate the effectiveness of the algorithm.

In particular,it has been shown that the overall procedure is robust with respect to both severe vertical biases(on the order of20m)and signi?cant horizontal shifts(on the order of 180m)that may affect the external https://www.360docs.net/doc/2f8884621.html,parisons with DGPS measurements carried out on CRs,properly deployed on the illuminated scene,have been included to get an estimate of the method accuracy.These results have also been used to show that the proposed method guarantees almost the same accuracy achievable by exploiting accurate DGPS measurements on CRs. Our algorithm is very easy to implement;moreover,it is computationally ef?cient,because it just involves two or three iterations in order to compute the InSAR DEM.

It is?nally worth remarking that the presented procedure can be pro?tably used for the generation of airborne InSAR DEMs of wide and even unfriendly areas,by drastically reducing cost,time,and logistic limitations imposed by the use of CRs. Accordingly,our procedure represents a useful and appealing tool that can be exploited in different scenarios,not necessarily limited to the scienti?c context,such as the massive generation of DEMs of wide regions or the fast generation of DEMs in case of emergency scenarios.

R EFERENCES

[1]G.Franceschetti and https://www.360docs.net/doc/2f8884621.html,nari,Synthetic Aperture Radar Processing.

New York,NY,USA:CRC Press,1999.

[2]R.Bamler and P.Hartl,“Synthetic aperture radar interferometry,”Inv.

Prob.,vol.14,no.4,pp.R1–R54,1998.

[3]H.A.Zebker and R.M.Goldstein,“Topographic mapping from interfer-

ometric synthetic aperture radar observations,”J.Geophys.Res.,vol.91, no.85,pp.4993–4999,Apr.1986.

[4]C.Wimmer,R.Siegmund,M.Schwabisch,and J.Moreira,“Generation

of high precision DEMs of the Wadden Sea with airborne interferometric SAR,”IEEE Trans.Geosci.Remote Sens.,vol.38,no.5,pp.2234–2245, Sep.2000.

[5]S.N.Madsen and H.A.Zebker,“Automated absolute phase retrieval in

across-track interferometry,”in IGARSS,1992,pp.1582–1584.

[6]J.C.Mura,M.Pinheiro,R.Rosa,and J.Moreira,“A phase-offset estima-

tion method for InSAR DEM generation based on phase-offset functions,”

Remote Sens.,vol.4,no.3,pp.745–761,Mar.2012.

[7]G.Gatti,S.Tebaldini,M.Mariotti D’Alessandro,and F.Rocca,“ALGAE:

A fast algebraic estimation of interferogram phase offsets in space-varying

geometries,”IEEE Trans.Geosci.Remote Sens,vol.49,no.6,pp.2343–2353,Jun.2011.

[8]G.Ferraioli,G.Ferraiuolo,and V.Pascazio,“Phase-offset estimation

in multichannel SAR interferometry,”IEEE Geosci.Remote Sens.Lett., vol.5,no.3,pp.458–462,Jul.2008.

[9]C.Rossi,F.R.Gonzalez,T.Fritz,N.Yague-Martinez,and M.Eineder,

“TanDEM-X calibrated Raw DEM generation,”ISPRS J.Photogramm.

Remote Sens.,vol.73,pp.12–20,Sep.2012.

[10]H.Fujisada,G.B.Bailey,G.G.Kelly,S.Hara,and M.J.Abrams,

“ASTER DEM performance,”IEEE Trans.Geosci.Remote Sens.,vol.43, no.12,pp.2707–2714,Dec.2005.

[11]B.Rabus,M.Eineder,A.Roth,and R.Bamler,“The shuttle radar to-

pography mission—A new class of digital elevation models acquired by spaceborne radar,”ISPRS J.Photogramm.Remote Sens.,vol.57,no.4, pp.241–262,Feb.2003.

[12]K.J.Bhang,F.W.Schwartz,and A.Braun,“Veri?cation of the ver-

tical error in C-Band SRTM DEM using ICESat and landsat-7,Otter Tail County,MN,”IEEE Trans.Geosci.Remote Sens.,vol.45,no.1, pp.36–44,Jan.2007.

[13]Y.Gorokhovich and A.V oustianiouk,“Accuracy assessment of the pro-

cessed SRTM-based elevation data by CGIAR using?eld data from USA and Thailand and its relation to the terrain characteristics,”Remote Sens.

Environ.,vol.104,no.4,pp.409–415,Oct.2006.

[14]M.Hofton,R.Dubayah,J.B.Blair,and D.Rabine,“Validation of SRTM

elevations over vegetated and non-vegetated terrain using medium foot-print lidar,”Photogramm.Eng.Remote Sens.,vol.72,no.3,pp.279–285, 2006.

[15]C.G.Brown,Jr,K.Sarabandi,and L.E.Pierce,“Validation of the shuttle

radar topography mission height data,”IEEE Trans.Geosci.Remote Sens., vol.43,no.8,pp.1707–1715,Aug.2005.

[16]G.Fornaro,“Trajectory deviations in airborne SAR:Analysis and com-

pensation,”IEEE Trans.Aerosp.Electron.Syst.,vol.35,no.3,pp.997–1009,Jul.1999.

[17]A.Moreira and Y.Huang,“Airborne SAR Processing of highly squinted

data using a chirp scaling approach with integrated motion compensa-tion,”IEEE Trans.Geosci.Remote Sens.,vol.32,no.5,pp.1029–1040, Sep.1994.

[18]P.Prats,K.A.C.de Macedo,A.Reigber,R.Scheiber,and J.J.Mallorqui,

“Comparison of topography-and aperture-dependent motion compensa-tion algorithms for airborne SAR,”IEEE Geosci.Remote Sens.Lett., vol.4,no.3,pp.349–353,Jul.2007.

[19]S.Perna,V.Zamparelli,A.Pauciullo,and G.Fornaro,“Azimuth-to-

frequency mapping in airborne SAR Data corrupted by uncompensated motion errors,”IEEE Geosci.Remote Sens.Lett.,vol.10,no.6,pp.1493–1497,Nov.2013.

[20]E.Sansosti,“A simple and exact solution for the interferometric and stereo

SAR geolocation problem,”IEEE Trans.Geosci.Remote Sens.,vol.42, no.8,pp.1625–1634,Aug.2004.

[21]S.M.Kay,Fundamentals of Statistical Signal Processing—Estimation

Theory.Englewood Cliffs,NJ,USA:Prentice-Hall,1993.

[22]G.Fornaro,G.Franceschetti,and S.Perna,“Motion compensation errors:

Effects on the accuracy of airborne SAR images,”IEEE Trans.Aerosp.

Electron.Syst.,vol.41,no.4,pp.1338–1352,Oct.2005.

[23]S.Perna,C.Wimmer,J.Moreira,and G.Fornaro,“X-Band airborne

differential interferometry:Results of the OrbiSAR campaign over the Perugia area,”IEEE Trans.Geosci.Remote Sens.,vol.46,no.2,pp.489–503,Feb.

2008.

Stefano Perna(S’03–M’07)received the Laurea

degree(summa cum laude)in telecommunication

engineering and the Ph.D.degree in electronic and

telecommunication engineering from the Università

degli Studi di Napoli Federico II,Naples,Italy,in

2001and2006,respectively.

From2001to2002,he was with Wise S.p.A.,

Naples.In2003,2005,and2006,he received grants

from the Italian National Research Council(CNR)

to be spent at the Istituto per il Rilevamento Elet-

tromagnetico dell’Ambiente(IREA),Naples,for re-search in the?eld of remote sensing.Since2003,he has been collaborating with Orbisat Remote Sensing,Brazil,for interferometric processing of air-borne synthetic aperture radar(SAR)data.Since2006,he has been with the Dipartimento per le Tecnologie,Universitàdegli Studi di Napoli“Parthenope,”Naples,where he is currently a Researcher in electromagnetics.He is also an Adjunct Researcher with the IREA-CNR.His main research interests are in the ?elds of microwave remote sensing and electromagnetics,speci?cally airborne SAR data modeling and processing,airborne differential SAR interferometry, modeling of electromagnetic scattering from natural surfaces,and synthesis of antenna arrays.

2726IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.53,NO.5,MAY

2015

Carmen Esposito received the Master’s degree (summa cum laude)in telecommunication engi-neering from the Universitàdegli Studi di Napoli “Parthenope”,Naples,Italy,in2012.She is currently working toward the Ph.D.degree at the Universitàdegli Studi del Sannio,Benevento,Italy.

Since2011,she has been with the Istituto per il Ril-evamento Elettromagnetico dell’Ambiente(IREA), an Institute of the Italian National Research Council (CNR),Naples,where she is currently a scholarship holder.Her main research interests include airborne

synthetic aperture radar(SAR)data processing and

interferometry.

Paolo Berardino was born in Avellino,Italy,in

1971.He received the Laurea degree in nautical

sciences from the Naval Institute University,Naples,

Italy,in1998.

In1999,he joined the Istituto per il Rilevamento

Elettromagnetico dell’Ambiente(IREA),an Institute

of the Italian National Research Council(CNR),

Naples,where he is a Researcher.He is interested in

the development of algorithm geocoding of synthetic

aperture radar(SAR)images and studies of surface

deformation by using differential SAR interferome-try.He has collaborated in the development of a new approach for the analysis of the temporal evolution of the deformation of the Earth’s surface based on the combination of differential interferograms(SBAS technique).Over the years,he has actively participated in the upgrading of technical SBAS(high resolution,geometric registration,data integration ERS/Envisat,GIS integra-tion).He has participated in several studies on volcanic areas,seismogenic, landslide areas,and urban areas using the technique SBAS and collaborating with different national and international scienti?c institutions.He is working on the acquisition and processing of SAR data plane with particular attention to aspects of motion compensation errors and realization of interferometric

products(Digital Surface

Map).

Antonio Pauciullo was born in Cercola,Italy,on October10,1969.He received the Dr.Eng.degree (with honors)and the Ph.D.degree in informa-tion engineering from the Universitàdegli Studi di Napoli Federico II,Naples,Italy,in1998and2003, respectively.

Since2001,he has been with the Istituto per il Ril-evamento Elettromagnetico dell’Ambiente(IREA) of the Italian National Research Council(CNR), Naples,where he is a Researcher.Since2004,he has been an Adjunct Professor of digital signal process-

ing with the University of Cassino,Cassino,Italy.His current research interests include statistical signal processing with emphasis on synthetic aperture radar

processing.

Christian Wimmer was born in Ergoldsbach,

Germany,on September21,1966.He received the

Ph.D.degree(magna cum laude)in semiconduc-

tor physics from the University of Regensburg,

Regensburg,Germany,in1997.

From1997to2001,he was with the SAR Pro-

cessing Group,Aero-Sensing Radarsysteme GmbH,

Oberpfaffenhofen,Germany.Since2001,he has

been collaborating with Bradar(former Orbisat),

Brazil.Since2006,he has been collaborating with

the remote sensing group of the Istituto per il Rile-vamento Elettromagnetico dell’Ambiente(IREA),Naples,Italy,in the?eld of airborne differential synthetic aperture radar(SAR)interferometry.His main research interests include airborne SAR data modeling and processing with preference for P-band repeat-pass interferometry and X-band high-accuracy digital elevation model

generation.

Riccardo Lanari(M’91–SM’01–F’13)received the

Laurea degree(summa cum laude)in electronic en-

gineering from the Universitàdegli Studi di Napoli

Federico II,Naples,Italy,in1989.

In the same year,he joined IRECE and after IREA,

both Research Institutes of the Italian Council of

Research(CNR).He was a Visiting Scientist with

different foreign research institutes,including the

Institute of Space and Astronautical Science,Japan

(1993);the German Aerospace Research Establish-

ment(DLR),Germany(1991and1994);and the Jet Propulsion Laboratory,California(1997,2004,and2008).He was an Adjunct Professor of electrical communication with the University of Sannio, Benevento,Italy,from2000to2003and a main lecturer with the Institute of Geomatics,Barcelona,Spain,from2000to2008.Moreover,he has recently achieved the National Scienti?c Habilitation as a Full Professor of telecom-munications(December2013)and of geophysics(February2014).He has lectured in several national and foreign universities and research centers.Since November2011,he has been the Director of the IREA-CNR.On his topics of interest,he is the holder of two patents and has authored or coauthored the book Synthetic Aperture Radar Processing(1999,CRC Press)and more than 80international journal papers,which currently have more than5000citations (source:Google Scholar).His main research activities are in the microwave remote sensing?eld,particularly for what attains the development of synthetic aperture radar(SAR)and SAR interferometry(InSAR)digital data processing methods.

https://www.360docs.net/doc/2f8884621.html,nari received from the National Aeronautics and Space Administration a recognition(1999)and a group award(2001)for his activities related to the Shuttle Radar Topography Mission project based on the InSAR experiments carried out in2000,within a mission of the Space Shuttle Endeavour.He served as a Chairman and/or a Scienti?c Program Committee Member for many international conferences.He is also a Distinguished Speaker of the IEEE Geoscience and Remote Sensing Society.

excel 中INDEX和MATCH函数嵌套应用

INDEX和MATCH函数嵌套应用 主讲老师:简单老师 第一部分:INDEX和MATCH函数用法介绍 第一,MATCH函数用法介绍 MATCH函数也是一个查找函数。MATCH 函数会返回匹配值的位置而不是匹配值本身。在使用时,MATCH函数在众多的数字中只查找第一次出现的,后来出现的它返回的也是第一次出现的位置。 MATCH函数语法:MATCH(查找值,查找区域,查找模式) 可以通过下图来认识MATCH函数的用法: =MATCH(41,B2:B5,0),得到结果为4,返回数据区域B2:B5 中41 的位置。 =MATCH(39,B2:B5,1),得到结果为2,由于此处无正确匹配,所以返回数据区域B2: B5 中(38) 的位置。注:匹配的查找值,MATCH 函数会查找小于或等于(39)的最大值。 =MATCH(40,B2:B5,-1),得到结果为#N/A,由于数据区域B2:B5 不是按降序排列,所以返回错误值。 第二,INDEX函数用法介绍 INDEX函数的功能就是返回指定单元格区域或数组常量。如果同时使用参数行号和列号,函数INDEX返回行号和列号交叉处的单元格中的值。

INDEX函数语法:INDEX(单元格区域,行号,列号) 可以通过下图来认识INDEX函数的用法: =INDEX(A1:C6,2,3),意思就是返回A1:C6中行号是2 列号是3 ,即第二行与第三列的交叉处,也就是C2单元格的值,为84。 第二部分:INDEX和MATCH函数应用案例介绍 下图工作表所示的是一个产品的型号和规格的价格明细表。通过这个表的数据,进行一些对应的查询操作。

第一,单击B5单元格下拉按钮,选择型号,然后在B6单元格完成型号所在行号的查询。如下图所示: 随意选择一个型号,比如A0110,然后在B6单元格输入公式:=MATCH($B$5,$D$4: $D$12,0),得到结果1。 公式解释:用MATCH函数查找B5单元格这个型号在D4:D12区域中对应的位置。其中的0参数可以省略不写。MATCH函数中0代表精确查找,1是模糊查找。 第二,单击B9单元格下拉按钮,选择规格,然后在B10单元格完成规格所在列号的查询。如下图所示: 随意选择一个规格,比如101,然后在B10单元格输入公式:=MATCH(B9,E3:G3,0),得到结果1。 第三,查询B6和B10单元格所对应的价格。 价格的查询,可以使用index函数完成,输入公式:=INDEX(E4:G12,B6,B10)可以得到结果为78。嵌套上面的match函数,可以将公式改为:=INDEX(E4:G12,MATCH(B5,D4: D12,0),MATCH(B9,E3:G3,0))。大家可以变化C3中的型号来看看结果是否正确。 通过下面工作表的源数据,利用index函数实现行列汇总查询。

OFFSET函数大全

首先,认识一下OFFSET函数。 从下图说明来认识一下excel中OFFSET函数的用法。 在C7单元格,输入公式:=SUM(OFFSET(C2,1,2,3,1)),得到结果为18。这个公式是什么意思呢?就是计算C2单元格靠下1 行并靠右2 列的3 行 1 列的区域的和。 可以在公式编辑栏,选中OFFSET(C2,1,2,3,1) 部分,按F9键抹黑,得到运算结果为:{3;8;7},此时公式变为:=SUM({3;8;7})。从上图可以得知,就是利用OFFSET 函数来得到一个新的区域,然后使用SUM函数求出这个新区域的和。 下面,介绍OFFSET函数的用法。 Offset函数主要应用在单元格区域的定位和统计方面,一般做数据透视表定义名称都需要用到Offset函数。Offset函数属于查找与引用类的函数。 OFFSET函数以指定的引用为参照系,通过给定偏移量得到新的引用。返回的引用可以为一个单元格或单元格区域,并可以指定返回的行数或列数。 OFFSET函数的语法是:OFFSET(reference,rows,cols,height,width),按照中文的说法即是:OFFSET(引用区域,行数,列数,[高度],[宽度]) 其中的参数意义如下: Reference:作为偏移量参照系的引用区域。Reference必须为对单元格或相连单元格区域的引用;否则,函数OFFSET 返回错误值#VALUE!。 Rows:相对于偏移量参照系的左上角单元格,上(下)偏移的行数。如果使用 5 作为参数Rows,则说明目标引用区域的左上角单元格比reference 低5 行。行数可为正数(代表在起始引用的下方)或负数(代表在起始引用的上方)。 Cols:相对于偏移量参照系的左上角单元格,左(右)偏移的列数。如果使用 5 作为参数Cols,则说明目标引用区域的左上角的单元格比reference 靠右 5 列。列数可为正数(代表在起始引用的右边)或负数(代表在起始引用的左边)。 Height:高度,即所要返回的引用区域的行数。Height 必须为正数。 Width:宽度,即所要返回的引用区域的列数。Width 必须为正数。 学习使用OFFSET函数需要注意以下几点: 第一,如果行数和列数偏移量超出工作表边缘,函数OFFSET 返回错误值 #REF!。

Excel中index和match函数的应用实例

Excel中index和match函数的应用实例 原文出处https://www.360docs.net/doc/2f8884621.html,/50281/400990 查询函数一直是Excel中常被用到的一种函数,本篇来介绍一下index与match在实际工作中的应用实例。先看一下这个Excel工作簿。要求:将“用户分析”工作表中机房名称列中输入函数,向下拖动使其自动选择对应“号段检索”工作表中备注的机房名称。

其中故障号码为“号段检索”表中起始、结束号段中的码号。因此这里需要利用index 与match函数来完成检索号段归属机房查询工作。 想到了index与match函数了吧,可以先回顾一下。 -------------------------------------INDEX------------------------------------ index函数的意义:返回指定行列交叉处引用的单元格。 公式:=index(reference,row_num,column_num,area_num) reference指的是要检索的范围; row_num指的是指定返回的行序号,如超出指定检索范围,返回错误值#REF!; column_num指的是指定返回的列序号,如超出指定检索范围,返回错误值#REF!; area_num指的是返回该区域中行和列的交叉域。可省略,默认1。如小于1时返回错误值#VALUE! -------------------------------------MATCH------------------------------------ match函数的意义:返回指定方式下查找指定查找值(可以是数字、文本或逻辑值)在查找范围1行或1列的位置。 公式:=match(lookup_value,lookup_array,match_type) lookup_value指指定查找值; lookup_array指的是1行或1列的被查找连续单元格区域。 match_type指的是查找方式,1或省略指查找小于或等于lookup_value的最大值,lookup_array必须为升序排列,否则无法得到正确结果。 0指查找等于lookup_value的第一个数值,如果不是第一个数值则返回#N/A -1指查找大于或等于lookup_value的最小值,lookup_array必须为降序,否则无法得到正确结果。 ------------------------------------------------------------------------------- 那么在这里是用match函数来定位“用户分析”表中故障号码在“号段检索”起始号段或结束号段的所在行序号。 如下图:=MATCH(用户分析!K2,号段检索!B:B,1)。但是为什么检索出来的行号会是错误值呢?

第六章 相关函数的估计

6. 相关函数的估计(循环相关) 6.1. 相关函数与协方差函数 6.1.1. 自相关函数和自协方差函数 1、 自相关和自协方差函数的定义 相关函数是随机信号的二阶统计特征,它表示随机信号不同时刻取值的关联程度。 设随机信号)(t x 在时刻j i t t ,的取值是j i x x ,,则自相关函数的定义为 j i j i j i j i N n n j n i N j i j i x dx dx t t x x f x x x x N x x E t t R ??∑= ===∞ →),;,(1lim ] [),(1 ) ()( 式中,上角标“(n )”是样本的序号。 自协方差函数的定义与自相关函数的定义相似,只是先要减掉样本的均值函数再求乘积的数学期望。亦即: j i j i j i x j x i N n x n j x n i N x j x i j i x dx dx t t x x f m x m x m x m x N m x m x E t t C j i j i j i ??∑--= --=--==∞ →),;,())(() )((1lim )] )([(),(1 ) ()( 当过程平稳时,);,(),;,(τj i j i j i x x f t t x x f =。这时自相关函数和自协方差函数只是i j t t -=τ的函数,与j i t t ,的具体取值无关,因此可以记作)(τx R 和)(τx C 。 对于平稳且各态历经的随机信号,又可以取单一样本从时间意义上来求这些统计特性: 时间自相关函数为:

? + - ∞ →+=22 )()(1lim )(T T T x dt t x t x T R ττ 时间自协方差函数为: ? + - ∞ →-+-=22 ])(][)([1lim )(T T x x T x dt m t x m t x T C ττ 在信号处理过程中,有时会人为地引入复数信号。此时相应的定义变成 ][),(* j i j i x x x E t t R = )]()[(),(* j i x j x i j i x m x m x E t t C --= 式中,上角标*代表取共轭。 2、 自相关和自协方差函数的性质 自相关和自协方差函数的主要性质如下: (1) 对称性 当)(t x 时实函数时,)(τx R 和)(τx C 是实偶函数。即 ) ()(), ()()()(),()(* * ττττττττx x x x x x x x C C R R C C R R =-=-== 当)(t x 时复值函数时,)(τx R 和)(τx C 具有共轭对称性。即 )()(), ()(* * ττττx x x x C C R R =-=- (2) 极限值 )(, )()0(,)0(2=∞=∞==x x x x x x x C m R C D R σ (3) 不等式 当0≠τ时, )()0(), ()0(ττx x x x C C R R ≥≥ 因此, )0()()(x x x R R ττρ=

Excel中常用函数及其使用方法简介

目录 一、IF函数——————————————————————————————————2 二、ASC函数—————————————————————————————————4 三、SEARCH函数——————————————————————————————4 四、CONCATENATE函数———————————————————————————4 五、EXACT函数———————————————————————————————5 六、find函数—————————————————————————————————5 七、PROPER函数——————————————————————————————7 八、LEFT函数————————————————————————————————7 九、LOWER函数———————————————————————————————7 十、MID函数————————————————————————————————8 十一、REPT函数———————————————————————————————8 十二、Replace函数——————————————————————————————9 十三、Right函数———————————————————————————————10 十四、UPPER函数——————————————————————————————10 十五、SUBSTITUTE函数———————————————————————————10 十六、VALUE函数——————————————————————————————12 十七、WIDECHAR函数———————————————————————————12 十八、AND函数———————————————————————————————12 十九、NOT函数———————————————————————————————13 二十、OR函数————————————————————————————————13 二十一、COUNT函数—————————————————————————————14 二十二、MAX函数——————————————————————————————15 二十三、MIN函数——————————————————————————————15 二十四、SUMIF函数—————————————————————————————16 二十五、OFFSET函数————————————————————————————17 二十六、ROW函数——————————————————————————————20 二十七、INDEX 函数————————————————————————————21 二十八、LARGE函数—————————————————————————————22 二十九、ADDRESS函数————————————————————————————23 三十、Choose函数——————————————————————————————24 三十一、HLOOKUP函数———————————————————————————24 三十二、VLOOKUP函数———————————————————————————26 三十三、LOOKUP函数————————————————————————————29 三十四、MATCH函数————————————————————————————29 三十五、HYPERLINK函数——————————————————————————30 三十六、ROUND函数————————————————————————————31 三十七、TREND函数—————————————————————————————32

match函数的使用方法 match函数的实例.doc

match函数的使用方法 match函数的实例我相信许多人对Excel表应该很熟悉吧,那么你们知道“match”函数的用法吗?下面是我为大家整理的“match函数的使用方法及实例”,欢迎参阅。想要了解更多关于函数实用方法的内容,实用资料栏目。 match函数的使用方法 match函数的实例 match函数的使用方法: MATCH函数是EXCEL主要的查找函数之一,该函数通常有以下几方面用途: (1)确定列表中某个值的位置; (2)对某个输入值进行检验,确定这个值是否存在某个列表中; (3)判断某列表中是否存在重复数据; (4)定位某一列表中最后一个非空单元格的位置。 查找文本值时,函数 MATCH 不区分大小写字母。 match函数的含义:返回目标值在查找区域中的位置。 match函数的语法格式: =match(lookup_value, lookup_array, match_type) =Match(目标值,查找区域,0/1/-1) 方法详解: 1.MATCH函数语法解析及基础用法 MATCH用于返回要查找的数据在区域中的相对位置。下面介绍她的语法和参数用法。 语法 MATCH(lookup_value,lookup_array, [match_type]) 用通俗易懂的方式可以表示为

MATCH(要查找的数据, 查找区域, 查找方式) MATCH 函数语法具有下列参数: 第一参数:要在lookup_array中匹配的值。例如,如果要在电话簿中查找某人的电话号码,则应该将姓名作为查找值,但实际上需要的是电话号码。 第一参数可以为值(数字、文本或逻辑值)或对数字、文本或逻辑值的单元格引用。 第二参数:要搜索的单元格区域。 第三参数:可选。数字 -1、0 或 1。match_type参数指定 Excel 如何将lookup_value与lookup_array中的值匹配。此参数的默认值为1。 下表介绍该函数如何根据 match_type参数的设置查找值。 对于非高级用户可以略过这部分直接看后面的示例,因为99%的情况下,第三参数只用0就足以应付日常工作需求啦! 2.MATCH函数根据模糊条件查找 上一节中咱们学习了MATCH函数最基础的用法(按条件完全匹配查询),但在工作中很多时候会遇到查询条件并不那么明确,只能根据部分已知条件模糊查询。 MATCH函数查找特殊符号的方法 上一节教程中,我们学习了MATCH函数按照模糊条件查询的方法,但其只适用于普通字符的字符串,当要查找的数据包含一些特殊字符(比如星号*问号?波浪符~)时,原公式结果就会出错了。 3. MATCH函数提取最后一个文本数据的行号 之前几节的学习中,我们掌握了MATCH的基本查找方法,根据模糊条件查找的方法以及查找内容包含特殊符号的处理方法。

用OFFSET函数定义一个动态区域

用OFFSET函数定义一个动态区域 我们可以给一个单元格或区域定义一个名称,以便在公式中引用。如果区域不是固定的而是一个动态的范围,我们也可以给它定义名称,以后在公式中引用的就是一个动态区域。例如我们可以在A列中定义一个动态区域,是从A1单元格开始的动态连续区域,其包含的行数不固定,操作步骤如下: 1.单击菜单“插入→名称→定义”,打开“定义名称”对话框。 2.在“在当前工作簿中的名称”下的文本框中输入要定义的名称,如“数据A”,在“引用位置”下的文本框中输入 “=OFFSET(Sheet1!$A$1,0,0,COUNTA(Sheet1!$A:$A),1)”,单击“确定”。

公式说明:用OFFSET()函数定义一个动态区域,其参数分别是 Sheet1!$A$1:为作为参照系的引用单元格,是Sheet1表中的A1单元格; 第一个0:偏移的行数; 第二个0:偏移的列数; COUNTA(Sheet1!$A:$A):区域高度,即区域中包含的行数,用COUNTA()函数计算A列中非空单元格个数,由这个公式可以看出,如果A列中有多个数据且不连续,将会返回错误结果; 最后一个参数1:区域宽度,即区域中包含的列数;

动态数据展示的实现 在工作表Sheet1中的单元格A1、A2、A3中分别输入“月份”、“销售额”、“销售汇总”,及相应的月份和销售额数据,请按以下步骤完成余下操作。 编辑推荐阅读 ● Excel函数应用之数学和三角函数 ● Excel函数应用之函数简介 1.单击主选单“插入/名称/定义”命令,弹出“定义名称”对话框,在“在当前工作簿中的名称”文本框中输入“Month”,在“引用位置”文本框中输入公式: “=offset($A$2,0,0,count($A:$A),1)”,单击“添加”按钮;重复上述步骤,在“在当前工作簿中的名称”文本框中输入“Sales”,在“引用位置”文本框中输入公式: “=offset($B$2,0,0,count($B:$B),1)”,单击“确定”按钮。 2.在C2单元格输入公式“=SUM(Sales)”,本文充分利用了“名称”的作用。 3.鼠标单击A2,再单击工具栏中的“图表向导”按钮,在“图表向导—4步骤之1—图表类型”对话框中,选择“XY散点图”的第二个图表子类型,单击“下一步”按钮。 4.在“图表向导—4步骤之2—图表源数据”对话框中,单击“系列”标签,修改“X值(X):”文本框里的内容为“=Sheet1!Month”,修改“Y值(Y):”文本框里的内容为 “=Sheet1!Sales”。单击“完成”按钮。 5.单击图表,清除图表的“网格线”、“绘图区背景格式”,至此完成。 现在,不管你怎样修改区域A3、B3以下两列的数据,添加/删除,销售汇总和图表都将随着你输入的数据集的变化而动态变化(注:不能删除A2、B2单元格中的数据)。 几点说明 对步骤1中所使用的函数,主要有两个:OFFSET函数和COUNT函数,就是这两个函数的配合实现了动态数据的展示。 COUNT函数的参数是一个单元格区域引用。此时,它只统计引用中的数字,引用的空单元格将被忽略。利用函数 COUNT 可以计算单元格区域引用中数字项的个数,作为OFFSET函数的相对偏移量参数使用。 OFFSET函数实现动态区域的扩展。此函数的功能是以指定的引用为参照系,通过给定偏移量得到新的引用。返回的引用可以为一个单元格或单元格区域,并可以指定返回的行数或列数。 OFFSET函数的语法是:OFFSET(reference,rows,cols,height,width),这里参数“Reference”代表作为偏移量参照系的引用区域,Reference 必须是对单元格或相连单元格区域的引用。否则,函数 OFFSET 返回错误值 #VALUE!。参数“Rows”表示相对于偏移量

MATCH 函数

MATCH 函数 全部显示本文介绍Microsoft Office Excel 中MATCH 函数的 公式语法和用法。 说明 MATCH 函数可在单元格区域中搜索指定项,然后返回该项在单元格区域中的相对位置。例如,如果单元格区域A1:A3 包含值5、25 和38,则以下公式: =MATCH(25,A1:A3,0) 会返回数字2,因为值25 是单元格区域中的第二项。如果需要获得单元格区域中某个项目的位置而不是项目本身,则应该使用MATCH 函数而不是某个LOOKUP 函数。例如,可以使用MATCH 函数为INDEX 函数的row_num 参数提供值。 语法 MATCH(lookup_value, lookup_array, [match_type]) MATCH 函数语法具有以下参数:

?lookup_value必需。需要在lookup_array 中查找的值。例如,如果要在电话簿中查找某人的电话号码,则应该将姓名作为查找值,但实际上需要的是电话号码。 lookup_value 参数可以为值(数字、文本或逻辑 值)或对数字、文本或逻辑值的单元格引用。 ?lookup_array必需。要搜索的单元格区域。 ?match_type可选。数字-1、0 或1。match_type 参数指定Excel 如何在lookup_array 中查找 lookup_value 的值。此参数的默认值为1。 下表介绍该函数如何根据match_type 参数的设 置查找值。 MATCH_TYPE 行为 1 或被省略MATCH 函数会查找小于或等于 lookup_value 的最大值。lookup_array 参 数中的值必须按升序排列,例如:...-2, -1, 0, 1, 2, ..., A-Z, FALSE, TRUE。 0 MATCH 函数会查找等于lookup_value 的第一个值。lookup_array 参数中的值可

常用函数公式及用法

电子表格常用函数公式及用法 1、求和公式: =SUM(A2:A50) ——对A2到A50这一区域进行求和; 2、平均数公式: =AVERAGE(A2:A56) ——对A2到A56这一区域求平均数; 3、最高分: =MAX(A2:A56) ——求A2到A56区域(55名学生)的最高分;4、最低分: =MIN(A2:A56) ——求A2到A56区域(55名学生)的最低分; 5、等级: =IF(A2>=90,"优",IF(A2>=80,"良",IF(A2>=60,"及格","不及格"))) 6、男女人数统计: =COUNTIF(D1:D15,"男") ——统计男生人数 =COUNTIF(D1:D15,"女") ——统计女生人数 7、分数段人数统计: 方法一: 求A2到A56区域100分人数:=COUNTIF(A2:A56,"100") 求A2到A56区域60分以下的人数;=COUNTIF(A2:A56,"<60") 求A2到A56区域大于等于90分的人数;=COUNTIF(A2:A56,">=90") 求A2到A56区域大于等于80分而小于90分的人数; =COUNTIF(A1:A29,">=80")-COUNTIF(A1:A29," =90")

求A2到A56区域大于等于60分而小于80分的人数; =COUNTIF(A1:A29,">=80")-COUNTIF(A1:A29," =90") 方法二: (1)=COUNTIF(A2:A56,"100") ——求A2到A56区域100分的人数;假设把结果存放于A57单元格; (2)=COUNTIF(A2:A56,">=95")-A57 ——求A2到A56区域大于等于95而小于100分的人数;假设把结果存放于A58单元格;(3)=COUNTIF(A2:A56,">=90")-SUM(A57:A58) ——求A2到A56区域大于等于90而小于95分的人数;假设把结果存放于A59单元格; (4)=COUNTIF(A2:A56,">=85")-SUM(A57:A59) ——求A2到A56区域大于等于85而小于90分的人数; …… 8、求A2到A56区域优秀率:=(COUNTIF(A2:A56,">=90"))/55*100 9、求A2到A56区域及格率:=(COUNTIF(A2:A56,">=60"))/55*100 10、排名公式: =RANK(A2,A$2:A$56) ——对55名学生的成绩进行排名; 11、标准差:=STDEV(A2:A56) ——求A2到A56区域(55人)的成绩波动情况(数值越小,说明该班学生间的成绩差异较小,反之,说明该班存在两极分化); 12、条件求和:=SUMIF(B2:B56,"男",K2:K56) ——假设B列存放学生的性别,K列存放学生的分数,则此函数返回的结果表示求该班

VB第六章习题答案(上海立信会计学院)

上海立信会计学院 班级:学号: 姓名:指导教师: 专业: 习题六p150 -、简述子过程与函数过程的共同点和不同之处。 答:相同之处:都是功能相对独立的一种子程序结构,它们有各自的过程头、变量声明和过程体,在程序的设计过程中可以提高效率。 不同之处: (1)声明的关键字不同。子过程为Sub,而函数过程为 Funct ion。 (2)了过程无值就无类型说明,函数过程有值因此有类型的说明 (3)函数的过程名称同时是结果变量,因此在函数过程体 内至少要对函数的过程名赋值一次数据,而子过程内不能赋 值。

(4)调用的方式不同,子过程是一条独立的语句,可以用 Cal I子过程名或省略Call直接以子过程名调用;函数的过 程不是一条独立的语句,是一个函数值,必须参与表达式运算。(5)通常,函数过程可以被子过程代替,只需要在调用的 过程中改变一下过程调用的形式,并在子过程的形参表中增加一个地址传递的形参来传递结果。 二、什么是形参,实参?什么是值引用?地址引用?地址应用 对实参有什么限制? 答:形参:在定义过程时的一种假设的参数,只代表该过程的参数的个数、类型,它的名字不重要,没有任何的值, 只表示在过程体内将进行的一种操作。 实参:在调用子过程时提供过程形参的初始值,或通过过程体处理后的结果。 值引用:系统将实际参数的值传到形参之后,实参与形参断开联系,过程中对于形参的修改不会影响到实际参数的变化。 地址引用:实参与形参共同使用一个存储单元,在过程中对形参进行修改,则对应的实际参数也同时变化。

在地址引用时,实参只能是变量,不能是常量或表达式。

三、指出下面过程语句说明中的错误: Sub f1 (n%) as Integer Function f1%(f1%) Sub fl (ByVa I n% 0) Sub fl(X(i) as Integer) 答:(1) Sub子过程名没有返回值,因此就没有数据的类型 (2)函数名与形参名称相同 (3)形参n为数组,不允许声明为By Vai值传递 (4)形参x(i)不允许为数组元素 四、已知有如下求两个平方数和的fsum子过程: Publ ic Sub fsum (sum%, ByVaI a%, ByVaI b%) sum =a*a+b*b End Sub 在事件过程中若有如下变量声明: Pr ivate Sub Commandl Cl ick()

Excel中三个查找引用函数的用法(十分有用)

在Excel中,我们经常会需要从某些工作表中查询有关的数据复制到另一个工作表中。比如我们需要把学生几次考试成绩从不同的工作表中汇总到一个新的工作表中,而这几个工作表中的参考人数及排列顺序是不完全相同的,并不能直接复制粘贴。此时,如果使用Excel的VLOOKUP、INDEX或者OFFSET函数就可以使这个问题变得非常简单。我们以Excel 2007为例。 图1 假定各成绩工作表如图 1所示。B列为,需要汇总的项目“总分”及“名次”位于H列和I列(即从B列开始的第7列和第8列)。而汇总表则如图2所示,A列为列,C、D两列分别为要汇总过来的第一次考试成绩的总分和名次。其它各次成绩依次向后排列。

图2 一、 VLOOKUP函数 我们可以在“综合”工作表的C3单元格输入公式“=VLOOKUP($B3,第1次!$B$1:$I$92,7,FALSE)”,回车后就可以将第一位同学第一次考试的总分汇总过来了。 把C3单元格公式复制到D3单元格,并将公式中第三个参数“7”改成“8”,回车后,就可以得到该同学第一次考试名次。 选中C3:D3这两个单元格,向下拖动填充句柄到最后就可以得到全部同学的总分及名次了。是不是很简单呀?如图3所示。

VLOOKUP函数的用法是这样的:VLOOKUP(参数1,参数2,参数3,参数4)。“参数1”是“要查找谁?”本例中B3单元格,那就是要查找B3单元格中显示的人名。“参数2”是“在哪里查找?”本例中“第1次!$B$1:$I$92”就是告诉Excel在“第1次”工作表的B1:I92单元格区域进行查找。“参数3”是“找第几列的数据?”本例中的“7”就是指从“第1次”工作表的B列开始起,第7列的数据,即H列。本例中“参数4”即“FALSE”是指查询方式为只查询精确匹配值。 该公式先在“第1次”工作表的B!:I92单元格区域的第一列(即B1:B92单元格区域)查找B3单元格数据,找到后,返回该数据所在行从B列起第7列(H列)的数据。所以,将参数3改成“8”以后,则可以返回I列的数据。 由此可以看出,使用VLOOKUP函数时,参数1的数据必须在参数2区域的第一列中。否则是不可以查找的。 二、INDEX函数 某些情况下,VLOOKUP函数可能会无用武之地,如图4所示。“综合”工作表中,列放到了A 列,而B列要求返回该同学所在的班级。但我们看前面的工作表就知道了,“班级”列是位于“”列前面的。所以,此时我们不可能使用VLOOKUP函数来查找该同学的班级。而INDEX函数就正可以一试身手。

VB第六章习题答案(上海立信会计学院)

上海立信会计学院 班级:学号:姓名:指导教师: 系部:专业: 习题六p150 一、简述子过程与函数过程的共同点和不同之处。 答:相同之处:都是功能相对独立的一种子程序结构,它们有各自的过程头、变量声明和过程体,在程序的设计过程中可以提高效率。 不同之处: (1)声明的关键字不同。子过程为Sub,而函数过程为Function。 (2)了过程无值就无类型说明,函数过程有值因此有类型的说明 (3)函数的过程名称同时是结果变量,因此在函数过程体内至少要对函数的过程名赋值一次数据,而子过程内不能赋值。 (4)调用的方式不同,子过程是一条独立的语句,可以用Call子过程名或省略Call直接以子过程名调用;函数的过程不是一条独立的语句,是一个函数值,必须参与表达式运算。 (5)通常,函数过程可以被子过程代替,只需要在调用的过程中改变一下过程调用的形式,并在子过程的形参表中增加一个地址传递的形参来传递结果。 二、什么是形参,实参?什么是值引用?地址引用?地址应用对实参有什么限制? 答:形参:在定义过程时的一种假设的参数,只代表该过程的参数的个数、类型,它的名字不重要,没有任何的值,只表示在过程体内将进行的一种操作。 实参:在调用子过程时提供过程形参的初始值,或通过过程体处理后的结果。 值引用:系统将实际参数的值传到形参之后,实参与形参断开联系,过程中对于形参的修改不会影响到实际参数的变化。 地址引用:实参与形参共同使用一个存储单元,在过程中对形参进行修改,则对应的实际参数也同时变化。 在地址引用时,实参只能是变量,不能是常量或表达式。 三、指出下面过程语句说明中的错误:

(1)Sub f1(n%) as Integer (2)Function f1%(f1%) (3)Sub f1(ByVal n%()) (4)Sub f1(x(i) as Integer) 答:(1)Sub子过程名没有返回值,因此就没有数据的类型 (2)函数名与形参名称相同 (3)形参n为数组,不允许声明为ByVal值传递 (4)形参x(i)不允许为数组元素 四、已知有如下求两个平方数和的fsum子过程: Public Sub fsum(sum%, ByVal a%, ByVal b%) sum = a * a + b * b End Sub 在事件过程中若有如下变量声明: Private Sub Command1_Click() Dim a%, b%, c! a = 10: b = 20 则指出如下过程调用语句的错误所在: (1)fusum 3, 4, 5 (2)fsum c, a, b (3)fsum a + b, a, b (4)Call fsum(Sqr(c), Sqr(a), Sqr(b)) (5)Call fsum c,a,b 答:(1)furm子过程的第一个形参是地址传递,因此对应的实参3不能是常量 (2)furm的第一个形参是整型而且是地址传递,对应的实参c是单精度,数据类型不匹配(3)furm的第一个形参是地址传递,因此对应的实参a+b不应当是表达式 (4)furm的第一个形参是地址传递,因此对应的实参Sqr(c)不应当是表达式 (5)用Call语句调用furm子过程时,必须用圆括号来描述实参 六、要使变量在某事件过程中保留值,有哪几种变量声明的方法? 答:声明为static或者全局变量 七、为了使某变量在所有的窗体中都能使用,应在何处声明该变量? 答:应在窗体\模块的通用声明段用Public关键字声明为全局变量。

显示满足条件的所有数据--vlookup,match

显示满足条件的所有数据—VLookup函数、IF函数、Row函数、Small函数、Index函数、Match函数、IFERROR函数、表结构的组合使用 2009年03月20日, 1:26 下午 (4人投票, 平均: 5.00 out of 5) 一个简单的示例:查找Excel工作表中的重复数据 记得一位网友曾问:要求找出Excel工作表中的重复数据并显示在工作表相应的单元格中。我给出了一个数组公式供参考,但不是太符合要求,因为这个数组公式虽然找出了重复数据,但是如果将数组公式向下复制时超出了出现重复数据的数量,会在相应单元格中显示错误。不久,这位朋友获得了更好的一个公式。这个公式非常好,完美地解决了这类问题,因此,我将其转贴于此,供有兴趣的朋友参考。 先看看下图: 在列A和列B中存在一系列数据(表中只是示例,可能还有更多的数据),要求找出某人(即列A中的姓名)所对应的所有培训记录(即列B中的数据)。也就是说,在单元格E1中输入某人的姓名后,下面会自动显示这个人所有的培训记录。 我们知道,Excel的LOOKUP系列函数能够很方便地实现查找,但是对于查找后返回一系列的结果,这类函数无能为力,因此只能联合其它函数来实现。 这里,在方法一中使用了INDEX函数、SMALL函数、IF函数和ROW函数,在方法二中还使用了Excel 2007中新增的IFERROR函数。 方法一: ?选择单元格E3; ?输入公式: =INDEX(B:B,SMALL(IF($A$2:$A$25=$E$1,ROW($A$2:$A$25),65536),ROW( 1:1))) & “” 然后同时按下Ctrl+Shift+Enter键,即输入数组公式。

第六章函数-选择题

第六章函数 二、选择题 1.C语言程序由函数组成。正确的说法是____B______。 A)主函数写在必须写在其他函数之前,函数内可以嵌套定义函数 B)主函数可以写在其他函数之后,函数内不可以嵌套定义函数 C)主函数必须写在其他函数之前,函数内不可以嵌套定义函数 D)主函数必须在写其他函数之后,函数内可以嵌套定义函数 2.一个C语言程序的基本组成单位是_____C_____。 A)主程序B)子程序C)函数D)过程 3.以下说法正确的是____ C ______。 A)C语言程序总是从第一个定义的函数开始执行 B)C语言程序中,被调用的函数必须在main()函数中定义 C)C语言程序总是从主函数main()开始执行。 D)C程序中的main()函数必须放在程序的开始处 4.已知函数fun类型为void,则void的含义是____ A ______。 A)执行函数fun后,函数没有返回值B)执行函数fun后,可以返回任意类型的值 C)执行函数fun后,函数不再返回D)以上三个答案都是错误的 5.下列对C语言函数的描述中,正确的是____ A ______。 A)在C语言中,调用函数时只能将实参的值传递给形参,形参的值不能传递给实参B)函数必须有返回值 C)C语言函数既可以嵌套定义又可以递归调用 D)C程序中有调用关系的所有函数都必须放在同一源程序文件中 6.以下叙述中错误的是_____ B _____。 A)函数形参是存储类型为自动类型的局部变量 B)外部变量的缺省存储类别是自动的。 C)在调用函数时,实参和对应形参在类型上只需赋值兼容 D)函数中的自动变量可以赋初值,每调用一次赋一次初值 7.C语言中的函数____D______。 A)不可以嵌套调用B)可以嵌套调用,但不能递归调用 C)可以嵌套定义D)嵌套调用和递归调用均可 8.C语言中函数返回值类型由____D_____决定。 A)调用该函数的主调函数类型B)函数参数类型 C)return语句中的表达式类型D)定义函数时指定的函数类型 9.C语言规定,调用一个函数,实参与形参之间的数据传递方式是___D_____。 A)由实参传给形参,并由形参传回来给实参B)按地址传递 C)由用户指定方式传递D)按值传递 10.下列叙述错误的是____C______。 A)形参是局部变量 B)复合语句中定义的变量只在该复合语句中有效 C)主函数中定义的变量在整个程序中都有效 D)其他函数中定义的变量在主函数中不能使用 11.若函数类型和return语句中的表达式类型不一致,则____B______。

第六章一次函数

§6.1 函数 教学目标: 1、初步掌握函数概念,能判断两个变量间的关系是否可看做函数。 2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。 3、会对一个具体实例进行概括抽象成为数学问题。 教学重点 1、掌握函数概念。 2、判断两个变量之间的关系是否可看做函数。 3、能把实际问题抽象概括为函数问题。 教学难点 1、理解函数的概念。 2、能把实际问题抽象概括为函数问题。教学过程 一、导入新课 你坐过摩天轮?你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢? 摩天轮上一点的高度h与旋转时间t之间有一定的关系,请看图6—1进行填表。 当t为0时,h约为3米, 当t为1分时,h约为11米, 当t为2分时,h约为37米, 当t为3分时,h约为45米, 当t为4分时,h约为37米, 当t为5分时,h约为11米.…… 二、讲授新课 做一做 1、按如图所示画圆圈,并填写下表。 层数n 1 2 3 4 5 … 圆圈总 1 3 6 10 15 … 数 随着层数的增加,物体的总算是如何变化?

2、在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米, 一般地有经验公式S =300 2 V ,其中V 表示刹车前汽车的速度(单位: 千米/时)。 (1)计算当V 分别为50,60,100时,相应的滑行距离S 是多少? (2)给定一个V 值,你能求出相应的S 值吗? 议一议 在上面我们共研究了三个问题,下面大家探讨一下,在这三个问题中的共同点是什么?相异点又是什么呢? 函数的概念 一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。 三、随堂练习 课本随堂练习 第1、2题。 四、小结 1、初步掌握函数概念,能判断两个变量间的关系是否可看做函数。 2、在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。 3、函数的三种表达形式。 五、作业 课本习题6.1 第1题。

第六章函数导学案

函数 教学目标: 【知识目标】1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。 2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。 3、会对一个具体实例进行概括抽象成为数学问题。 【能力目标】1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。 2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。 教学过程设计: 一、创设问题情境,导入新课 下图像车轮状的物体是什么 图6-1,每过6分钟摩天轮就转一圈,而且图中反映了给定的时间t 与所对应的高度h 之间的关系。下面根据图6-1进行填表: 对于给定的时间t ,相应的高度h 确定吗 这个问题中的变量有几个 ,分别是什么 二、新课学习 1、 做一做 (1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的 t/分 0 1 2 3 4 5 …… h/米 ……

填写下表: 层数n 1 2 3 4 5 … 物体总数y … (2)在平整的路面上,某型号汽车紧急刹车后仍将滑 行S 米,一般地有经验公式300 2 V S ,其中V 表示刹车前汽 车的速度(单位:千米/时) ①计算当V 为50,60,100时,相应的滑行距离S 是多少 ②给定一个V 值,你能求出相应的S 值吗 结论: 1. 上面三个问题。每个问题都研究了 个变量。 2. 函数的概念 一般地,在某个变化过程中,有两个变量 和 ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的 ,其中x 是 ,y 是 。 三、随堂练习 书100页 随堂练习 习题 四、本课小结 1、 初步掌握函数的概念,能判断两个变量间的关系是否可看作函数。 2、 在一个函数关系式中,能识别自变量与因变量,给定自变量的值,相应地会求出函数的值。 3、 函数的三种表达式: (1) 图象;(2)表格;(3)关系式。 五探究活动 为了加强公民的节水意识,某市制定了如下用水收费标准: 每户每月的用水不超过10吨时,水价为每吨元;超过10吨时,超过的部分按每吨元收费,该市某户居民5月份用水x 吨(x >10),应交水费y 元,请用方程的知识来求有关x 和y 的关系式,并判断其中一个变量是否为另一个变量的函数

相关文档
最新文档