现代分子生物学朱玉贤课后习题答案

现代分子生物学朱玉贤课后习题答案
现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考

题答案

1 染色体具有哪些作为遗传物质的特征?

1 分子结构相对稳定

2 能够自我复制,使亲子代之间保持连续性

3 能够指导蛋白质的合成,从而控制整个生命过程

4 能够产生可遗传的变异

2.什么是核小体?简述其形成过程。

由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。

核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。

核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp

3简述真核生物染色体的组成及组装过程

除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。

蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分

由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。

2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。

3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。

4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。

4. 简述DNA的一,二,三级结构的特征

DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构

DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构

DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构

5.原核生物DNA具有哪些不同于真核生物DNA的特征?

1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。

2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。

3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的

6简述DNA双螺旋结构及其在现代分子生物学发展中的意义

DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

盘绕所生成的双螺旋结构

右手螺旋----是由两条反向平行的多核苷酸链围绕同一中心轴构成的。多核苷酸的方向是由核苷酸间的磷酸二酯键的走向决定的一条由5’到3’另一条由3’到5’。两链上的碱基以氢键相连,嘌呤和嘧啶碱基对层叠与双螺旋内侧,顺着螺旋轴心从上向下看,可见碱基平面与纵轴平面垂直且螺旋的轴心方向穿过氢键的中点。核苷酸的磷酸集团与脱氧核糖在外侧,通过磷酸二酯键相连接而构成DNA分子的骨架。DNA转录时其链板间与有它转录所得的RNA链间形成A-DNA这对基因表达有重要意义

左手螺旋----是右手螺旋的一个补充。Z-DNA调控基因转录模型中,在邻近调控系统中,与调节区相邻的转录区被Z-DNA抑制,只有Z-DNA转变为B-DNA后,转录才得以活化,而在远距离调控系统中,Z-DNA可以通过改变负超螺旋水平,决定聚合酶能否与模板链相结合而调节转录起始活性

7 DNA复制通常采取哪些方式

1 线性DNA双链的复制将线性复制子转变为环状或多聚分子

在DNA末端形成发夹式结构使分子没有游离末端

在某种蛋白质的介入下,在真正的末端启动复制

2 环状DNA双链的复制Sita型

滚环型

D—环型

8.简述原核生物DNA的复制特点。

(1)复制的起始1,DNA双螺旋的解旋DNA在复制时,其双链首先解开,形成复制叉,这是一个有多种蛋白质和酶参与的复杂过程。

(2) DNA复制的引发RNA引物的合成前导链:DNA双链解开为单链后,由引发酶(RNA聚合酶,Primase)在5’ →3’DNA模板上合成一段RNA引物,再由DNA 聚合酶从RNA引物3’端开始合成新的DNA链。然后以此为起点,进入DNA复制的延伸。后随链:后随链的引发过程由引发体(Primosome)来完成。引发体由6种蛋白组成的引发前体(Preprimosome)和引发酶(Primase)组成。引发体催化生成滞后链的RNA引物短链,再由DNA聚合酶III 作用合成后续DNA,直至遇到下一个引物或冈崎片段为止。在滞后链上所合成的RNA引物非常短,一般只有3-5个核苷酸。而且,在同一种生物体细胞中这些引物都具有相似的序列。

(3)复制的延伸冈崎片段与半不连续复制在原核生物中,DNA 新生链的合成主要由DNA 聚合酶III所催化。当冈崎片段形成后,DNA聚合酶I 通过其5'→3'外切酶活性切除冈崎片段上的RNA引物,同时,利用后一个冈崎片段作为引物由5'→3'合成DNA。最后两个冈崎片段由DNA连接酶将其接起来,形成完整的DNA滞后链。

(4)复制的终止DNA复制的终止依赖与Tus蛋白(Terminus utilization substance,36kD)和DNA链上特殊的重复序列Ter(约22bp)。Tus-ter复合体将阻止DNA解链,等反方向的复制叉到达后停止复制,然后两条链解开。最后,释放子链DNA,依靠拓扑酶将超螺旋结构引入DNA分子。

9真核生物DNA的复制在哪些水平上受到调控

1细胞生活周期水平调控(限制点调控)即决定细胞停留在G1期还是进入S期

2染色体水平调控即决定不同染色体或同一染色体不同部位的复制子按一定顺序在S期起始复制

3复制子水平调控即决定复制的起始与否

10 细胞通过哪几种修复系统对DNA损伤进行修复

错配修复

切除修复

重组修复‘

DNA直接修复

SOS系统

11.什么是转座子?可分为哪些种类?

DNA的转座,或称移位,是由可移位因子介导的遗传物质重排现象。转座子(transposon,

Tn)是存在于染色体DNA上可自主复制和移位的基本单位。转座子分为两大类:插入序列(IS)和复合型转座子。1,插入序列插入序列是最简单的转座子,它不含有任何宿主基因。它们是细菌染色体或质粒DNA的正常组成部分。一个细菌细胞常带有少于10个序列。转座子常常被定为到特定的基因中,造成该基因突变。

2,复合型转座子复合型转座子是一类带有某些抗药性基因(或其他宿主基因)的转座子,其两翼往往是两个相同或高度同源的IS序列,表明IS序列插入到某个功能基因两端时就可能产生复合转座子。一旦形成复合转座子,IS 序列就不能再单独移动,因为它们的功能被修饰了,只能作为复合体移动。大部分情况下,这些转座子的转座能力是由IS序列决定和调节的。除了末端带有IS序列的复合转座子外,还存在一些没有IS序列的,体积庞大的转座子(5000bp以上)——TnA家族。

12请说说插入序列与复合型转座子之间异同

转座子是存在于染色体DNA上的可自主复制和位移的基本单位。最简单的转座子不含有任何宿主基因而被称为插入序列(IS),他们是细菌染色体或质粒DNA的正常组成部分。她常常被定位到特定的基团中,造成基因突变。、复合式转座子是一类带有某些抗药性基因的转座子,其两翼是相同的或高度同源的IS序列,且IS序列是不能单独移动的只能作为复合体移动而且IS序列也决定和调节转座子的转座能力。也是有没有IS序列的转座子Tna家族,其两翼带有38bp的倒置重复序列

第三章生物信息的传递(上)---从DNA到RNA

1,什么是编码链?什么是模版链?

答:与mRNA序列相同的那条DNA链称为编码链(或有意义链);另一条根据碱基互补原则指导mRNA合成DNA链称为模版链(或反义链)。

2,简述RNA转录的概念及其基本过程。

答:RNA转录:以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。基本过程:模版识别—转录开始—转录延伸—转录终止。

3,大肠杆菌的RNA聚合酶有哪些组成成分?各个亚基的作用如何?

答:大肠杆菌的RNA聚合酶由2个α亚基、一个β亚基、一个β’亚基和一个ω亚基组成的核心酶,加上一个σ亚基后则成为聚合酶全酶。α亚基肯能与核心酶的组装及启动子的识别有关,并参与RNA聚合酶和部分调节因子的相互作用;β亚基和β’亚基组成了聚合酶的催化中心,β亚基能与模版DNA、新生RNA链及核苷酸底物相结合。

4,什么是封闭复合物、开放复合物以及三元复合物?

答:模版的识别阶段,聚合酶与启动子可逆性结合形成封闭性复合物;封闭性复合物形成后,此时,DNA链仍然处于双链状态,伴随着DNA构象的重大变化,封闭性复合物转化为开放复合物;开放复合物与最初的两个NTP相结合并在这两个核苷酸之间形成磷酸二脂键后即转变成包括RNA聚合酶、DNA和新生RNA的三元复合物。

5,简述σ因子的作用。

答:1,σ因子的作用是负责模版链的选择和转录的起始,它是酶的别构效应物,使酶专一性识别模版上的启动子;2,σ

因子可以极大的提高RNA聚合酶对启动子区DNA序列的亲和力;3,σ因子还能使RNA聚合酶与模版DNA上非特异性位点结合常数降低。

6,什么是Pribnow box?它的保守序列是什么?

答:pribnow box是原核生物中中央大约位于转录起始位点上游10bp处的TATA区,所以又称作-10区。它的保守序列是TATAAT。

7,什么是上升突变?什么是下降突变?

答:上升突变:细菌中常见的启动自突变之一,突变导致Pribnow区共同序列的同一性增加;下降突变:细菌中常见的启动子突变之一,突变导致结构基因的转录水平大大降低,如Pribnow区从TATAAT变成AATAAT。

8,简述原核生物和真核生物mRNA的区别。

答:1,原核生物mRNA常以多顺反子的形式存在。真核生物mRNA一般以单顺反子的形式存在;2,原核生物mRNA 的转录与翻译一般是偶联的,真核生物转录的mRNA前体则需经转录后加工,加工为成熟的mRNA与蛋白质结合生成信息体后才开始工作;3,原核生物mRNA半寿期很短,一般为几分钟,最长只有数小时。真核生物mRNA的半寿期较长,如胚胎中的mRNA可达数日;4,原核与真核生物mRNA的结构特点也不同,原核生物的mRNA的5’端无帽子结构,3’端没有或只有较短的poly A结构。

9,大肠杆菌的终止子有哪两大类?请分别介绍一下它们的结构特点。

答:大肠杆菌的终止子可以分为不依赖于p因子和依赖于p因子两大类。不依赖于p因子的终止子结构特点:1,位于位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构。2,在终止位点前面有一端由4—8个A组成的序列,所以转录产物的3’端为寡聚U。依赖于p因子的终止子的结构特点:

10,真核生物的原始转录产物必须经过哪些加工才能成为成熟的mRNA,以用作蛋白质合成的模版。

答:1,装上5′端帽子;2,装上3′端多聚A尾巴;3,剪接:将mRNA前体上的居间顺序切除,再将被隔开的蛋白质编码区连接起来。剪接过程是由细胞核小分子RNA参与完成的,被切除的居间顺序形成套索形;4,修饰:mRNA分子内的某些部位常存在N6-甲基腺苷,它是由甲基化酶催化产生的,也是在转录后加工时修饰的。

11,简述Ⅰ、Ⅱ类内含子的剪接特点。

答:Ⅰ类内含子的剪接主要是转酯反应,即剪接反应实际上是发生了两次磷酸二脂键的转移。在I类内含子的切除体系中,

第一个转酯反应由一个游离的鸟苷或者鸟苷酸介导,鸟苷或鸟苷酸的3’—OH作为亲核基团攻击内含子5’端的磷酸二脂键,从上游切开RNA链。在第二个转酯反应中,上游外显子的自由3’—OH作为亲核基团攻击内含子3’位核苷酸上的磷酸二脂键,使内含子被完全切开,上下游两个外显子通过新的磷酸二脂键相连。

Ⅱ类内含子主要存在于真核生物的线粒体和叶绿体rRNA基因中,在Ⅱ类内含子切除体系中,转酯反应无需游离鸟苷或鸟苷酸,而是由内含子本身的靠近3’端的腺苷酸2’—OH作为亲核基团攻击内含子5’端的磷酸二脂键,从上游切开RNA链后形成套索结构。再由上游外显子的自由3’—OH作为亲核基团攻击内含子3’位核苷酸上的磷酸二脂键,使得内含子被完全切开,上下游两个内含子通过新的磷酸二脂键相连。

12,什么是RNA编辑?其生物学意义是什么?

答:RNA 编辑是指某些RNA特别是mRNA前体经过插入、删除或取代一些核苷酸残疾等操作,导致DNA所编码的遗传信息的改变,使得经过RNA编辑的mRNA序列发生了不同于模版的DAN的变化。生物学意义:1,校正作用,有些基因在突变的途中丢失的遗传信息可能通过RNA的编辑得以恢复;2,调控翻译,通过编辑可以构建或去除其实密码子和终止密码子,是基因表达调控的一种方式;3,扩充遗传信息,能使基因产物获得心得结构核功能,有利于生物的进化。13,核酶具有哪些结构特点?其生物学意义是什么?

答:核酶的结构特点:核酶的锤头结构特点是:三个茎区形成局部的双链结构;其中含13个保守的核苷酸,N代表任何核苷酸;生物学意义:1,核酶是继反转录现象之后对中心法则的有一个重要的修正,说明RNA既是遗传物质又是酶;2,核酶的发现为生命起源的研究提供了新思路—--也许曾经存在以RNA为基础的原始生命。

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

现代分子生物学试题

现代分子生物学试题 邯郸学院12生技 Chapter 3 生物信息的传递——从DNA到RNA 一、名词解释: 1、Transcription 2、Coding strand (Sense strand) 3、Intron 4、RNA editing 5、Messenger RNA (mRNA) 二、判断正误: 1、基因表达包括转录和翻译两个阶段 2、mRNA是以有义链为模板进行转录的 3、转录起始就是RNA链上第一个核苷酸键的产生 4、σ因子的作用是负责模板链的选择和转录的起始 5、聚合酶可以横跨40个碱基对,所以解旋的DNA区域也是40个碱基对 6、流产式起始是合成并释放2~9个核苷酸的短RNA转录物 7、启动子是有义链上结构基因5’端上游区的DNA序列 8、大肠杆菌基因中存在-10bp处的TTCACA区 9、-35区是指5’到3’方向-35区最后一个碱基离+1碱基为35个bp 10、真核基因几乎都是单顺反子 三、单选: 1、_______号帽子存在于所有帽子结构中 A、0号 B、1号 C、2号 D、以上全不是 2、在对启动子识别中起关键作用的是_______ A、α亚基 B、β亚基 C、σ因子 D、β’亚基 3、RNA聚合酶中提供催化部位的是_______ A、α+α B、α+β C、α+β’ D、β+β’ 4、_______是细胞内更新率极高不稳定的RNA A、mRNA B、rRNA C、tRNA D、snRNA 5、mRNA由细胞核进入细胞质所必需的形式是_______ A、5’端帽子 B、多聚腺苷酸尾 C、ρ因子 D、以上都不是 6、真核生物RNA聚合酶II所形成的转录起始复合物不包括_______ A、TBP B、TFIIA C、TFIIC D、TFIID 7、真核生物转录的所在空间是_______ A、细胞质 B、细胞核 C、核孔 D、线粒体 8、ρ因子本质上是一种_______ A、核苷酸 B、蛋白质 C、多糖类 D、碱基

现代分子生物学课后习题及答案(朱玉贤 第3版)

现代分子生物学课后习题及答案(共10章) 第一章绪论 1.你对现代分子生物学的含义和包括的研究范围是怎么理解的? 答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 2.分子生物学研究内容有哪些方面? 答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则(centraldogma)是其理论体系的核心。B.蛋白质的分子生物学蛋白质的分子生物学研究执行各种生命功能的主要大分子——蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.分子生物学发展前景如何? 答:21世纪是生命科学世纪,生物经济时代,分子生物学将取得突飞猛进的发展,结构基因组学、功能基因组学、蛋白质组学、生物信息学、信号跨膜转导成为新的热门领域,将在农业、工业、医药卫生领域带来新的变革。 4.人类基因组计划完成的社会意义和科学意义是什么? 答:社会意义:人类基因组计划与曼哈顿原子计划、阿波罗登月计划并称为人类科学史上的三大工程,具有重大科学意义、经济效益和社会效益。1)极大地促进生命科学领域一系列基础研究的发展,阐明基因的结构与功能关系、生命的起源和进化、细胞发育、生产、分化的分子机理,疾病发生的机理等,为人类自身疾病的诊断和治疗提供依据,为医药产业带来翻天覆地的变化;2)促进生命科学与信息科学、材料科学和与高新技术产业相结合,刺激相关学科与技术领域的发展,带动起一批新兴的高技术产业;3)基因组研究中发展起来的技术、数据库及生物学资源,还将推动对农业、畜牧业(转基因动、植物)、能源、环境等相关产业的发展,改变人类社会生产、生活和环境的面貌,把人类带入更佳的生存状态。 科学意义:1)确定人类基因组中约5万个编码基因的序列基因在基因组中的物理位置,研究基因的产物及其功能;2)了解转录和剪接调控元件的结构和位置,从整个基因组结构

现代分子生物学复习题

现代分子生物学复习题

现代分子生物学 一.填空题 1.DNA的物理图谱是DNA分子的限制性内切酶酶解片段的排列顺序。 2.核酶按底物可划分为自体催化、异体催化两种类型。 3.原核生物中有三种起始因子分别是IF-1、 IF-2 和IF-3 。 4.蛋白质的跨膜需要信号肽的引导,蛋白伴侣的作用是辅助肽链折叠成天然构象的蛋白质。 5.真核生物启动子中的元件通常可以分为两种:核心启动子元件和上游启动子元件。 6.分子生物学的研究内容主要包含结构分子生物学、基因表达与调控、DNA重组技术三部分。 7.证明DNA是遗传物质的两个关键性实验是肺炎球菌感染 小鼠、T2噬菌体感染大肠杆菌这两个实验中主要的论点证据是:生物体吸收的外源DNA改变了其遗传潜能。 8.hnRNA与mRNA之间的差别主要有两点: hnRNA在转变为mRNA的过程中经过剪接、 mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′ 东隅已逝 2 桑榆非晚!

末端多了一个多聚腺苷酸(polyA)尾巴。 9.蛋白质多亚基形式的优点是亚基对DNA的利用来说是一 种经济的方法、可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响、活性能够非常有效和迅速地被打开和被关闭。 10.质粒DNA具有三种不同的构型分别是: SC构型、 oc 构型、 L构型。在电泳中最前面的是SC构型。 11.哺乳类RNA聚合酶Ⅱ启动子中常见的元件TATA、GC、 CAAT所对应的反式作用蛋白因子分别是TFIID 、SP-1 和 CTF/NF1 。 12.与DNA结合的转录因子大多以二聚体形式起作用,转 录因子与DNA结合的功能域常见有以下几种螺旋-转角-螺旋、锌指模体、碱性-亮氨酸拉链模体。 13.转基因动物常用的方法有:逆转录病毒感染法、DNA 显微注射法、胚胎干细胞法。 14.RNA聚合酶Ⅱ的基本转录因子有、TFⅡ-A、TFⅡ-B、 TFII-D、TFⅡ-E他们的结合顺序是: D、A、B、E 。 其中TFII-D的功能是与TATA盒结合。 15.酵母DNA按摩尔计含有32.8%的T,则A为_32.8%_,G 为_17.2%_和C为_17.2%__。 16.操纵子包括_调控基因、调控蛋白结合位点和结构基因。 17.DNA合成仪合成DNA片段时,用的原料是模板DNA 东隅已逝 3 桑榆非晚!

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

考研普通生物学考研朱玉贤《现代分子生物学》考研真题

考研普通生物学考研朱玉贤《现代分子生物学》考研 真题 第一部分考研真题精选 一、选择题 1DNA模板链为5′-ATTCAG-3′,其转录产物是()。[浙江海洋大学2019研] A.5′-GACTTA-3′ B.5′-CUGAAU-3′ C.5′-UAAGUC-3′ D.5′-CTGAAT-3′ 【答案】B查看答案 【解析】在RNA转录过程中,RNA是按5′→3′方向合成的,以DNA双链中的反义链为模板,在RNA聚合酶催化下,以4种核苷三磷酸(NTPs)为原料,根据碱基配对原则(A-U、T-A、G-C)。因此答案选B。 2DNA的变性()。[扬州大学2019研] A.可以由低温产生 B.是磷酸二酯键的断裂 C.包括氢键的断裂 D.使DNA的吸光度降低 【答案】C查看答案 【解析】DNA的变性是指当DNA溶液温度接近沸点或者pH较高时,DNA 双链的氢键断裂,最后完全变成单链的过程。DNA的复性是指热变性的DNA经缓慢冷却,从单链恢复成双链的过程。A项,DNA的变性是由于高温引起的,故A

项错误;B项,DNA的变性是核酸双螺旋碱基对的氢键断裂,但不涉及其一级结构的改变,故B项错误;D项,当DNA溶液温度升高到接近水的沸点时(DNA变性),260nm的吸光度明显增加,这种现象称为增色效应,故D项错误。 3密码GGC的对应反密码子是()。[浙江海洋大学2019研] A.GCC B.CCG C.CCC D.CGC 【答案】B查看答案 【解析】根据碱基互补配对原则,G与C相互配对。因此答案选B。 4原核生物启动序列-10区的共有序列称为()。[扬州大学2019研] A.TATA盒 B.CAAT盒 C.Pribnow盒 D.GC盒 【答案】A查看答案 【解析】绝大部分启动子都存在两段共同序列:位于-10bp处的TATA区和-35bp处的TTGACA区。因此答案选A。 5.色氨酸生物合成操纵子为下列()方面的例子。[浙江海洋大学2019研] A.正调控可抑制操纵子 B.负调控可诱导操纵子 C.正调控可诱导操纵子

-朱玉贤分子生物学习题题库完整

第一章绪论练习题 请就你感兴趣的分子生物学发展史上的重大事件或重要人物或重要理论作以相关论述? 第二章染色体与DNA练习题1 一、【单选题】 1.生物遗传信息传递中心法则是【】 A.DNA→RNA→蛋白质 B.RNA→DNA→蛋白质 C.DNA→蛋白质→RNA D.RNA→蛋白质→DNA 2.关于DNA复制的叙述,下列哪项是错误的【】 A.为半保留复制 B.为不对称复制 C.为半不连续复制 D.新链合成的方向均为3'→5' 3.合成DNA的原料有【】 A.dAMP dGMP dCMP dTMP B.dADP dGDP dCDP dTDP C.dATP dGTP dCTP dTTP D.AMP UMP CMP GMP 4.DNA合成时碱基互补规律是【】 A.A-UC-G B.T-AC-G C.A-GC-U D.A-GC-T 5.关于DNA的复制错误的【】: A包括一个双螺旋中两条子链的合成 B遵循新的子链与其亲本链相配对的原则 C依赖于物种特异的遗传密码 D是碱基错配最主要的来源 6.一个复制子是:【】 A细胞分裂期间复制产物被分离之后的DNA片段 B复制的DNA片段和在此过程中所需的酶和蛋白 C任何自发复制的DNA序列(它与复制起始点相连) D任何给定的复制机制的产物(如:单环) E复制起点和复制叉之间的DNA片段 7.真核生物复制子有下列特征,它们:【】 A比原核生物复制子短得多,因为有末端序列的存在 B比原核生物复制子长得多,因为有较大的基因组 C通常是双向复制且能融合 D全部立即启动,以确保染色体在S期完成复制 E不是全部立即启动,在任何给定的时间只有大约15%是有活性的 8.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是:【】 A起始位点是包括多个短重复序列的独特DNA片段 B起始位点是形成稳定二级结构的回文序列 C多聚体DNA结合蛋白专一性识别这些短的重复序列 D起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开 E起始位点旁侧序列是G-C丰富的,能稳定起始复合物 9.下列关于DNA复制的说法是正确的有:【】 A按全保留机制进行 B接3’→5’方向进行 C需要4种dNMP的参与 D需要DNA连接酶的作用 E涉及RNA引物的形成 F需要DNA聚合酶Ⅰ 10.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸? 【】 A DNA聚合酶III B DNA聚合酶II C DNA聚合酶I D外切核酸酶MFl E DNA连接酶【参考答案】1.A2.D3.C4.B5.C6.C7.C8.D9.D10.C 二、【多项选择题】 1.DNA聚合酶I的作用有【】 A.3’-5’外切酶的活性 B.修复酶的功能 C.在细菌中5’-3’外切酶活性是必要的 D.外切酶活性,可以降解RNA/DNA杂交体中的RNA引物 E.5’-3’聚合酶活性 2.下列关于大肠杆菌DNA聚合酶I的叙述哪些是正确的?【】 A.该酶能从3’羟基端逐步水解单链DNA B.该酶在双螺旋区具有5’-3’外切酶活性 C.该酶在DNA中需要游离的3’-OH D.该酶在DNA中需要游离的5’-OH E.有校对功能 3.下列有关DNA聚合酶I的描述,哪些是正确的?【】 A.催化形成3’-5’-磷酸二酯键 B.有3’-5’核酸外切酶作用 C.有5‘-3’核酸外切酶作用 D.是原核细胞DNA复制时的主要合成酶 E.是多功能酶 4.有关DNA复制时的引物的说法下列正确的有【】 A.一般引物是RNA B.催化引物合成的酶称引发酶 C.哺乳动物的引物是DNA D.引物有游离的3‘-OH,成为合成DNA的起点 E.引物有游离的5‘-OH 5.DNA聚合酶I的作用是【】 A.修复DNA的损伤与变异 B.去除复制过程中的引物 C.填补合成DNA片段间的空隙 D.将DNA片段连接起来 E.合成RNA片段 6.下列关于DNA复制的叙述哪些是正确的? A.每条互补链的合成方向是5‘-3’ B.DNA聚合酶沿母链滑动方向从3‘-5’ C.两条链同时复制只有一个起点 D.真核细胞的每个染色体的复制合成原料是dNMP 7.下列有关DNA聚合酶作用的叙述哪些是正确的? A.酶I在DNA损伤的修复中发挥作用 B.酶II是DNA复制的主要酶 C.酶III是DNA复制的主要酶 D.酶IV在DNA复制时有切除引物的作用 E.酶I切除RNA引物 8.DNA聚合酶I具有的酶活性包括 A.5’-3’外切酶活性 B.3’-5’外切酶活性 C.5’-3’聚合酶活性 D.3’-5’聚合酶活性 E.切酶活性 9.下列有关大肠杆菌DNA复制的叙述哪些是正确的? A.双螺旋中一条链进行不连续合成 B.生成冈崎片断 C.需要RNA引物 D.单链结合蛋白可防止复制期间的螺旋解链 E.DNA聚合酶I是DNA复制最主要酶 10.DNA复制的特点是 A.半保留复制 B.半不连续 C.一般是定点开始,双向等速进行

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。2 2、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和 酶的结构与功能 3、基因:遗传信息的基本单位。编码蛋白质或RNA等具有特定功能产物的遗传信息 的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的 RNA病毒而言则是RNA序列)。 4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。 5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解 影响发育和整个生物体的特定序列表达谱。 6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。 7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输 8、蛋白质组:指的是由一个基因组表达的全部蛋白质 9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。 10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微 生物菌体。因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。 11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。 12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。 13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。 14、重叠基因:共有同一段DNA序列的两个或多个基因。 15、基因重叠:同一段核酸序列参与了不同基因编 码的现象。 16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。单 拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。 17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列 18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。其复性速度快于单拷贝顺序,但慢于高度重复顺序。 19、高度重复序列:基因组中有数千个到几百万个拷贝的DNA序列。这些重复序列 的长度为6~200碱基对。

关于分子生物学试题及答案

分子生物学试题(一) 一.填空题(,每题1分,共20分) 一.填空题(每题选一个最佳答案,每题1分,共20分) 1. DNA的物理图谱是DNA分子的()片段的排列顺序。 2. 核酶按底物可划分为()、()两种类型。 3.原核生物中有三种起始因子分别是()、()和()。 4.蛋白质的跨膜需要()的引导,蛋白伴侣的作用是()。5.真核生物启动子中的元件通常可以分为两种:()和()。6.分子生物学的研究内容主要包含()、()、()三部分。 7.证明DNA是遗传物质的两个关键性实验是()、()。 8.hnRNA与mRNA之间的差别主要有两点:()、()。 9.蛋白质多亚基形式的优点是()、()、()。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP-CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP-CRP的启动子S1对高水平合成进行调节。有G时转录从(S2 )开始,无G时转录从(S1 )开始。 12.DNA重组技术也称为(基因克隆)或(分子克隆)。最终目的是(把一个生物体中的遗传信息DNA转入另一个生物体)。典型的DNA重组实验通常包含以下几个步骤: ①提取供体生物的目的基因(或称外源基因),酶接连接到另一DNA分子上(克隆载体),形一个新的重组DNA分子。 ②将这个重组DNA分子转入受体细胞并在受体细胞中复制保存,这个过程称为转化。 ③对那些吸收了重组DNA的受体细胞进行筛选和鉴定。 ④对含有重组DNA的细胞进行大量培养,检测外援基因是否表达。 13、质粒的复制类型有两种:受到宿主细胞蛋白质合成的严格控制的称为(严紧型质粒),不受宿主细胞蛋白质合成的严格控制称为(松弛型质粒)。 14.PCR的反应体系要具有以下条件: a、被分离的目的基因两条链各一端序列相互补的 DNA引物(约20个碱基左右)。 b、具有热稳定性的酶如:TagDNA聚合酶。 c、dNTP d、作为模板的目的DNA序列 15.PCR的基本反应过程包括:(变性)、(退火)、(延伸)三个阶段。 16、转基因动物的基本过程通常包括: ①将克隆的外源基因导入到一个受精卵或胚胎干细胞的细胞核中; ②接种后的受精卵或胚胎干细胞移植到雌性的子宫;

现代分子生物学朱玉贤课后习题答案

现代分子生物学(第3版)朱玉坚第二章染色体与DNA课后思考 题答案 1 染色体具有哪些作为遗传物质的特征? 1 分子结构相对稳定 2 能够自我复制,使亲子代之间保持连续性 3 能够指导蛋白质的合成,从而控制整个生命过程 4 能够产生可遗传的变异 2.什么是核小体?简述其形成过程。 由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。每个核小体只有一个H1。所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。由许多核小体构成了连续的染色质DNA细丝。 核小体的形成是染色体中DNA压缩的第一阶段。在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。核小体只是DNA压缩的第一步。 核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp 3简述真核生物染色体的组成及组装过程 除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。 4.这种超螺线管进一步螺旋折叠,形成长2-10μm的染色单体,即染色质包装的四级结构。 4. 简述DNA的一,二,三级结构的特征 DNA一级结构:4种核苷酸的的连接及排列顺序,表示了该DNA分子的化学结构 DNA二级结构:指两条多核苷酸链反向平行盘绕所生成的双螺旋结构 DNA三级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构 5.原核生物DNA具有哪些不同于真核生物DNA的特征? 1, 结构简练原核DNA分子的绝大部分是用来编码蛋白质,只有非常小的一部分不转录,这与真核DNA的冗余现象不同。 2, 存在转录单元原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或几个特定部位,形成功能单元或转录单元,它们可被一起转录为含多个mRNA的分子,称为多顺反子mRNA。 3, 有重叠基因重叠基因,即同一段DNA能携带两种不同蛋白质信息。主要有以下几种情况①一个基因完全在另一个基因里面②部分重叠③两个基因只有一个碱基对是重叠的 6简述DNA双螺旋结构及其在现代分子生物学发展中的意义 DNA的双螺旋结构分为右手螺旋A-DNA B-DNA 左手螺旋Z-DNA DNA的二级结构是指两条都核苷酸链反向平行

分子生物学习题与答案

第0章绪论 一、名词解释 1.分子生物学 2.单克隆抗体 二、填空 1.分子生物学的研究内容主要包含()、()、()三部分。 三、是非题 1、20世纪60年代,Nirenberg建立了大肠杆菌无细胞蛋白合成体系。研究结果发现poly(U)指导了多聚苯丙氨酸的合成,poly(G)指导甘氨酸的合成。(×) 四、简答题 1. 分子生物学的概念是什么? 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 3. 分子生物学研究内容有哪些方面? 4. 分子生物学发展前景如何? 5. 人类基因组计划完成的社会意义和科学意义是什么? 6.简述分子生物学发展史中的三大理论发现和三大技术发明。 7. 简述分子生物学的发展历程。 8. 二十一世纪生物学的新热点及领域是什么? 9. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 答案: 一、名词解释 1.分子生物学:分子生物学就是研究生物大分子之间相互关系和作用的一门学科,而生物大分子主要是指基因和蛋白质两大类;分子生物学以遗传学、生物化学、细胞生物学等学科为基础,从分子水平上对生物体的多种生命现象进行研究。

2.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 二、填空 1.结构分子生物学,基因表达与调控,DNA重组技术 三、是非题 四、简答题 1. 分子生物学的概念是什么? 答案: 有人把它定义得很广:从分子的形式来研究生物现象的学科。但是这个定义使分子生物学难以和生物化学区分开来。另一个定义要严格一些,因此更加有用:从分子水平来研究基因结构和功能。从分子角度来解释基因的结构和活性是本书的主要内容。 2. 你对现代分子生物学的含义和包括的研究范围是怎么理解的? 分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。 3. 分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。由于50年代以来

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版) 一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活 的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸, 子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。 二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白 真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白

质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。 原核生物基因组的特点:1、结构简练,绝大部分用来编码蛋白质,只有很少一部分控制基因表达的序列不转录;2、存在转录单元,原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或者几个特定部位,形成功能单位或转录单元,可以被一起转录为含多个mRNA的分子;3、有重叠基因,所谓重叠基因就是同一段DNA携带两种或以上不同的蛋白质的编码信息。 DNA的结构 DNA又称脱氧核糖核酸,是deoxyribonucleic acid的简称。 L=T+W,L指环形DNA分子两条链间交叉的次数,只要不发生断裂,L是一个常量。T为双螺旋的盘绕数,W为超螺旋数。双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。 双螺旋碱基间距(nm)螺旋直径(nm)每轮碱基数螺旋方向 A-DNA0.26 2.611右 B-DNA0.34 2.010右 Z-DNA0.37 1.812左 DNA的复制 半保留复制:Semi-conservative replication;半不连续复制:Semi-discontinuous replication 把生物体的复制单位称为复制子,一个复制子只含一个复制起始点。 归纳起来,无论是原核生物还是真核生物,复制起点是固定的,表现为固定的序列,并识别参与复制起始的特殊蛋白质。复制叉移动的方向和速度虽是多种多样的,但以双向等速方式为主。 复制的几种主要方式 双链DNA的复制大都以半包六复制方式进行的,通过“眼”型、θ型、滚环型或D-环型等以复制叉的形式进行。 1、线性DNA双链进行双向复制时,由于已知的DNA聚合酶和RNA聚合酶都只能从5’ 到3’移动,所以,复制叉呈眼型; 2、环状双链DNA复制可分为θ型、滚环型和D-环形几种类型 Ⅰ、θ型,大肠杆菌染色体DNA是环状双链DNA,它的复制是典型的θ型复制,从一个起点开始,同时向两个方向进行复制,当两个复制叉相遇时,复制就停止 Ⅱ、滚环型,是单向复制的一种特殊方式,在噬菌体中很常见。DNA的合成由对正链原点的专一切割开始,所形成的自由5’端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,

最新现代分子生物学试题库

核酸结构与功能 一、填空题 1.病毒ΦX174及M13的遗传物质都是单链DNA 。 2.AIDS病毒的遗传物质是单链RNA。 3.X射线分析证明一个完整的DNA螺旋延伸长度为 3.4nm 。 4.氢键负责维持A-T间(或G-C间)的亲和力 5.天然存在的DNA分子形式为右手B型螺旋。 二、选择题(单选或多选) 1.证明DNA是遗传物质的两个关键性实验是:肺炎球菌在老鼠体内的毒性和T2噬菌体感染大肠杆菌。 这两个实验中主要的论点证据是(C )。 A.从被感染的生物体内重新分离得到DNA作为疾病的致病剂 B.DNA突变导致毒性丧失 C.生物体吸收的外源DNA(而并非蛋白质)改变了其遗传潜能 D.DNA是不能在生物体间转移的,因此它一定是一种非常保守的分子 E.真核心生物、原核生物、病毒的DNA能相互混合并彼此替代 2.1953年Watson和Crick提出( A )。 A.多核苷酸DNA链通过氢键连接成一个双螺旋 B.DNA的复制是半保留的,常常形成亲本-子代双螺旋杂合链 C.三个连续的核苷酸代表一个遗传密码 D.遗传物质通常是DNA而非RNA E.分离到回复突变体证明这一突变并非是一个缺失突变 3.DNA双螺旋的解链或变性打断了互补碱基间的氢键,并因此改变了它们的光吸收特性。以下哪些是对DNA的解链温度的正确描述?( CD ) A.哺乳动物DNA约为45℃,因此发烧时体温高于42℃是十分危险的 B.依赖于A-T含量,因为A-T含量越高则双链分开所需要的能量越少 C.是双链DNA中两条单链分开过程中温度变化范围的中间值 D.可通过碱基在260nm的特征吸收峰的改变来确定 E.就是单链发生断裂(磷酸二酯键断裂)时的温度 4.DNA的变性(ACE )。A.包括双螺旋的解链 B.可以由低温产生C.是可逆的D.是磷酸二酯键的断裂E.包括氢键的断裂 5.在类似RNA这样的单链核酸所表现出的“二级结构”中,发夹结构的形成(AD )。 A.基于各个片段间的互补,形成反向平行双螺旋 B.依赖于A-U含量,因为形成的氢键越少则发生碱基配对所需的能量也越少 C.仅仅当两配对区段中所有的碱基均互补时才会发生 D.同样包括有像G-U这样的不规则碱基配对 E.允许存在几个只有提供过量的自由能才能形成碱基对的碱基 6.DNA分子中的超螺旋(ACE )。

分子生物学课件重点整理__朱玉贤

1、错配修复(mismatch repair) ●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化 ●甲基化紧随在DNA复制之后进行(几秒种后至几分钟内) ●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基 2、碱基切除修复 excision repair 所有细胞中都带有不同类型、能识别受损核苷酸位点的糖苷水解酶,它能特意切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。一些碱基在自发或诱变下会发生脱酰胺,然后改变配对性质,造成氨基转换突变*腺嘌呤变为次黄嘌呤与胞嘧啶配对 *鸟嘌呤变为黄嘌呤与胞嘧啶配对 *胞嘧啶变为尿嘧啶与腺嘌呤配对 3、核苷酸切除修复 1)通过特异的核酸内切酶识别损伤部位 2)由酶的复合物在损伤的两边切除几个核苷酸 3) DNA 聚合酶以母链为模板复制合成新子链 4)DNA连接酶将切口补平 4 、DNA的直接修复 在DNA光解酶的作用下将环丁烷胸腺嘧啶二体和6-4光化物还原成为单体 甲基转移酶使O6-甲基鸟嘌呤脱甲基生成鸟嘌呤,防止G-T配对 SOS反应 (SOS response):是细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施。 *包括诱导DNA损伤修复、诱变效应、细胞分裂的抑制以及溶原性细菌释放噬菌体等。细胞癌变也与SOS反应有关。两个作用(1)DNA的修复;(2)产生变异 五、 DNA的转座 DNA的转座或叫移位(transposition):由可移位因子(transposable element) 介导的遗传物质重排现象。 转座子(transposon Tn):存在于染色体DNA上可自主复制和位移的基本单位。 已经发现“转座”这一命名并不十分准确,因为在转座过程中,可移位因子的一个拷贝常常留在原来位置上,在新位点上出现的仅仅是它的拷贝。因此,转座有别于同源

相关文档
最新文档