燃气轮机运行手册-中英文-提交07-27.

燃气轮机运行手册-中英文-提交07-27.
燃气轮机运行手册-中英文-提交07-27.

CSPC南海石化项目

CSPC NANHAI PETROCHEMICALS PROJECT

GTG 运行手册

GTG Operation Manual

运行手册:OM-8130-8160-0003

Operation Manual OM-8130-8160-0003

山东电力基本建设总公司

SEPCO Electric Power Construction Corporation

修改记录

目录

CONTENT

1定义说明

Definition (5)

2BB燃料系统

BB Fuel system (6)

2.1 系统投入条件

Conditions for Putting System in Service (6)

2.2 系统设备规范

System Equipment Specification (6)

2.3 系统介绍和控制描述

Description of System and Control (7)

2.4 系统阀门检查卡

Check Card for System and Valve (8)

2.5 系统投入前检查

Checks Before Putting System in Service (14)

2.6 系统投入

System In Service (14)

2.7 参考图纸

Reference Drawings (16)

3燃机运行

Operation for GT (16)

3.1 燃气轮机概述

Outline of Gas Turbine (16)

3.2 技术规范

Technical Specification (16)

3.3 燃气轮机热力工作过程

Thermodynamic Process in GT Operation (17)

3.4 辅助系统设备规范

Auxiliary System Equipment (17)

3.5 系统介绍

System Introduction (21)

3.6 热工保护及连锁

Instrumented Protection and Interlocks (32)

3.7 燃气轮机启动阀门操作卡

Valve Check Sheet for GT Starting Up (34)

3.8 燃气轮机的启动

GT Start Up (37)

3.9 燃气轮机的停止

GT Shut Off (55)

3.10 机组正常运行和日常维护

Routine Operation/Maintenance of GT Set (58)

3.11 日常操作

Routine Operation (60)

3.12 运行中抄表内容

Reading Record During Operation (72)

4 HSE (73)

2 BB燃料部分

BB fuel mannual

2.1 系统投入条件:

Conditions for Putting System in Service

FLARE COLLECTION 投入运行.

Put Flare Collection in service

中压蒸汽可以供给本系统用汽.

Provide MP steam to this system

低压蒸汽可以供给本系统用汽.

Provide LP steam to this system

中压蒸汽凝结水收集系统投入运行.

Put MP steam condensate collection in operation

低压蒸汽凝结水收集系统投入运行.

Put LP steam condensate collection in operation

仪用空气系统运行正常.

Make sure instrument air system in normal operation

GT控制油系统运行正常.

Make sure GT control oil system in normal operation

GT压力油系统运行正常。

Make sure GT pressure oil system in normal operation

2.2 系统设备规范:

Specification of System and Equipment

2.3 系统介绍和控制描述:

Description of System and Control

GE 燃气轮机可以靠燃烧BB燃气或者LGO液化燃气驱动发电机。燃气轮机在BB燃气运行时通常需要保持基本载荷。LGO液化燃气作为备用燃料,是在燃机启动,停机和BB燃气中断时使用的。

The GE Gas Turbine burns BB fuel gas or LGO liquid fuel to drive an electric generator. The gas turbine is normally run base loaded on BB gas. LGO liquid fuel is provided as a backup fuel for use during startup, shutdown and interruptions of the BB fuel gas supply.

液化BB燃气(丁烷-丁烯)是从BB燃气存储区运送到汽电单元,然后供给蒸发器,E-8161.蒸发器内的液位由液位控制器对入口管线内的流量控制阀进行调控来维持液位。

Liquid BB fuel (butane-butenes) is received from the BB storage sphere to the Steam and Power Unit. The liquid BB gas fuel is sent to vaporizer E- 8161.

Level in the vaporizer is maintained by a level controller, which modulates the flow control valve in the inlet line.

LP蒸汽用于对蒸发器E-8161内的BB燃料进行蒸发处理。从蒸发器出来的饱和BB燃气供给LOP以及BB燃气过热器E-8162,在这里用中压蒸汽对燃气进行过热处理,使之达到165°C,然后为GTG所用。过热处理后的BB燃气要首先通过分液器(knockout drum)V-8161和燃气过滤器S-8161A/B,然后再进入燃气轮机的燃油控制阀。如果分液器因为液位高而发出警报信号,那么疏水管线上的手控球阀可以打开,让系统压力推动液体通向火炬管线。BB燃气的分液器通过电信号追踪对进入火炬管线内的燃料作最低流量限制。

LP steam is used to vaporize the BB in vaporizer E-8161. Saturated BB gas from the vaporizer is provided to LOP and to the BB gas superheater E-8162, where MP steam superheats it to 165°C for use by the GTG. The superheated BB gas passes through knockout drum V-8161 and fuel gas filters S-8161A/B and enters the fuel control valve of the gas turbine. When high level is alarmed on the knock out drum, a manual ball valve in the drain line is opened allowing the system pressure to push the liquid to the flare. The BB gas KO drum is electric traced to minimize the fuel sent to flare.

进入蒸发器的LP蒸汽流量是通过控制回路PICA-006加以调控的,调控的方法是在对控制阀进行调节时保持过热BB燃气管线与燃气轮机燃料箱之间保持恒定的供气压力。

The LP steam flow to the vaporizer is controlled by control loop PICA-006, which maintains a constant supply pressure on the superheated BB gas piping to the gas turbine fuel skid by modulating control valve。

进入过热器的MP蒸汽流量是通过控制回路TICA-003调控的,该调控器在对控制阀FCV-050进行调控的同时保持了过热BB燃气管线进入燃气轮机燃油箱之间的管线上保持恒定的温度。为了使MP蒸汽流量能够适应过热器情况而随之变化,使用了一个前馈功能件FY-050来对过热的BB燃气流量进行测量,以便为温度控制器TICA-003提供一个前馈信号。

The MP steam flow to the superheater is controlled by control loop TICA-003, which maintains a constant supply temperature on the superheated BB gas piping to the gas turbine fuel skid by modulating control valve FCV-050. Feed forward function FY-050 uses superheated BB gas flow measurement FIA-049 as the feed forward signal to temperature controller TICA-003 output to vary the MP steam flow to the superheater.

如果蒸发器出口测得的系统压力接近很高的设定值,那么PICSA-007就会开启PCV-007以限制压力过大。如果出现压力急剧增高的情况(往往燃气轮机就因此而跳闸),那么压力开关PICSA-007 H则通过逻辑功能KS-100全面打开放空阀PCV-007,然后将PICSA-007释放到压力控制方式状态。

If the system pressure measured at the outlet of the vaporizer reaches a high set point, PICSA-007 will open PCV-007 to limit the over pressure condition. If pressure increases rapidly as may be the case on gas turbine trip, pressure switch PICSA-007 H through logic function KS-100 will fully open the vent valve PCV-007 and then release PICSA-007 to pressure control mode.

2.4 系统阀门检查卡:

Checklist for System and Valve:

2.5 系统投入前检查:

Checks Prior to Putting System in Operation

2.5.1 检查系统中所有的压力、温度、压差等表计投入正常。

Check all gauges or meter associated with pressure, temperature and differential pressure for their function.

2.5.2 检查E-8161的油位计投入正常。

Check E-8161 Oil Level Meter for its performance.

2.5.3检查V-8115的油位计投入正常 check oil level metre of V-8115 in normal

condition.

2.5.4将V-8115的电半热装置送电energize the electric trace for V-8115。

2.5.5 检查系统中所有的过滤器可以正常运行。

Ensure all the filters in GT unit are in normal function.

2.6 系统投入:

Putting System in Service

2.6.1 对E-8161的低压进汽管道暖管:

Warm LP feed steam line to E-8161.

2.6.2检查SP-81761的前手截门(2个)、后手截门开启,SP-81761的旁路门关闭。

Check manual valves (2) upstream of SP-81761, open its downstream manual valve, and close bypass valve of SP-81761.

2.6.3稍开低压蒸汽至E-8161的手截门暖管,暖管结束,全开该手截门。

Slightly open manual valve from LP steam to E-8161 for line warming purpose. After warming finishes, fully open the manual valve.

2.6.4 对E-8162的中压进汽管道暖管:

Warm MP feed-steam line to E-8161.

2.6.5检查SP-81732的前手截门(2个)、后手截门开启,SP-81732的旁路门关闭。

Check manual valves(2) upstream of SP-81732, open its downstream manual valve, and close bypass valve of SP-81732.

2.6.6稍开中压蒸汽至E-8162的手截门暖管,暖管结束,全开该手截门。

Slightly open manual valve from MP steam to E-8162 for line warming purpose. After warming finishes, fully open the manual valve.

2.6.7 试验本系统所有的热工报警信号正常。

Test to make sure normal performance of all instrumented/control signals in this system.

2.6.8 手动开启816UZV-001。

Manually open 816UZV-001

2.6.9 缓慢开启汽电单元外来的BB燃料总门,至全开。

Slightly open BB fuel main valve until fully opened.

2.6.10 手动稍开816LCV-003,注意监视E-8161的液位。当油位为800mm时,手动开

启816UZV-002,手动稍开816PCV-006并注意监视E-8161的出口温度和压力,

应该控制在114-123℃之间,压力控制在20-25巴之间,开启816UZV-004,稍

开816FCV-050,注意监视E-8162的出口油温度和压力,应该控制E-8162的出

口油温度在165℃以下,816LCV-003、816PCV-006、816FCV-050都是在手动状

态缓慢调节。注意监视V-8161的液位。

Manually open 816LCV-003 at the same time while keeping watch on E-8161 liquid level. When liquid level rises to 800mm, manually open

816UZV-002 and slightly open 816PCV-006 at the same time while

keeping watch on temperature and pressure at outlet of E-8161 so as

to limit oil temperature between 114-123 ℃, pressure between 20-

25bar. Open 816UZV-004, slightly open 816FCV-050 at the same time

while keeping watch on temperature and pressure at E-8162 outlet. It

is required to limit outlet oil temperature in E-8162 below 165℃.

For 816LCV-003、816PCV-006、816FCV-050, slowly manual control is

required. Keep watch on level in V-8161.

2.6.11 当E-8161的液位和出口油温度在正常范围内时,将816LCV-003、816PCV-006

投入自动模式。When the level in E-8161 and outlet temperature is

within normal range, set 816LCV-003、816PCV-006 to Auto mode.

2.6.12 E-8162的出口燃气温度在正常范围内时,将816FCV-050投入自动模式。

When fuel gas temperature at outlet of E-8162, set 816FCV-050 to Auto mode.

2.6.13 对系统进行全面检查,没有异常发现时,就可以进行燃气轮机的燃料切换工作

无论怎样切换,都需要有足够的备用燃料。

燃气轮机运行典型故障分析及其处理

燃气轮机运行故障及典型事故的处理 1 燃气轮机事故的概念及处理原则 111 事故概念 燃气轮机事故指直接威胁到机组安全运行或设备发生损坏的各种异常状态。凡正常运行工况遭到破坏,机组被迫降低出力或停运等严重故障,甚至造成设备损坏、人身伤害的统称为事故。造成设备事故的原因是多方面的,有设计制造方面的原因,也有安装检修、运行维护甚至人为方面的原因。 112 故障、事故的处理原则 当燃气轮机运行过程中发生异常或故障时,处理时应掌握以下原 则:(1) 根据异常和故障的设备反映出来的现象及参数进行综合分析和判断,迅速确定故障原因,必要时立即解列机组,防止故障蔓延、扩大。(2) 在事故处理中,必须首先消除危及人身安全及设备损坏的危险因素,充分评估事故可能的对人身安全和设备损害的后果,及时、果断的进行处理。(3) 在处理事故时牢固树立保设备的观念。要认识到如果设备严重损坏以至长期不能投入运行对电力系统造成的影响更大。所以在紧急情况下应果断的按照规程进行处理,必要时停机检查。 (4) 在事故发生后,运行各岗人员要服从值班长的统一指挥,各施其责,加强联系和配合,尽可能将事故控制在最小的损坏程度。(5) 当设备故障原因无法判断时,应及时汇报寻求技术支持,并按最严重的后果估计予以处理。(6) 事故处理后,应如实将事故发生的地点、时 间及事故前设备运行状态、参数和事故处理过程进行详细记录和总

结。 2 燃气轮机的运行故障、典型事故及处理 211 燃机在启动过程“热挂” “热挂”现象:当燃机启动点火后,在升速过程中透平排气温度升高达到温控线时燃机由速度控制转入温度控制,这抑制了燃油量的增加速率而影响燃机升速,延长燃机启动时间,严重时燃机一直维持在温控状态使燃机无法升速,处于“热挂”状态。随后燃机转速下降致使启动失败,只能停机检查。 “热挂”的原因及处理办法有: (1) 启动系统的问题。①启动柴油机出力不足;②液力变扭器故障。液力变扭器主要由一个离心泵叶轮、一个透平轮和一个带有固定叶片的导向角组成。在启动过程中通过液体将启动柴油机的力矩传送给燃机主轴。液力变扭器的故障可通过比较柴油机加速时燃机0 转速到14HM 的启动时间来判断;③启动离合器主从动爪形状变化,使燃机还没超过自持转速,爪式离合器就提前脱离(柴油机进入冷机后停机) ,这时燃机升速很慢。而燃油参考值是以0105 %FRS/ S 的速度上升的,由于燃机升速慢而喷油量增速率不变使燃油相对过量,使排气温度T4 升高而进入温控,导致燃机的启动失败。(2) 压气机进气滤网堵塞、压气机流道脏,压缩效率下降。进气滤网堵塞会引起空气量不足;压气机流道脏会使压气机性能下降。必须定期更换进气滤网并对压气机进行清洗,及时更换堵塞的滤网和清除压气机流道上的积垢及油污。(3) 燃机控制系统故障。当燃油系统或控制系统异常时,有可能引起燃油

汽轮机中英文词汇(精.选)

调节保安系统governing and protection system 油系统oil system 辅机系统auxiliary system 安装要求requirement for installation 技术规范specification 辅助设备auxiliary equipment 安装数据data on installation 工况图condition curves 凝汽式汽轮机condensing steam turbine 转子部分rotary part 主轴main shaft 联轴器coupling 主油泵main oil pump 叶轮叶片bladed wheels 盘车齿轮turning gear 静子部分stationary part 汽缸casing 喷嘴组nozzle blocks 隔板diaphragm 挡板damper 汽封gland 轴承bearing 轴承座bearing housing 油动机servomotor 调节汽阀steam governing valve 公用底盘common chassis 单缸结构single casing structure 前汽缸inlet casing 后汽缸exhaust casing 垂直中分面vertical splits 主汽门main stop valve 调节汽阀蒸汽室steam chamber of steam governing valve 新蒸汽live steam 碳素钢welding carbon steel 铸钢steel casting 排汽室exhaust chamber 凝汽器condenser 排气接管exhaust adapter 膨胀节expansion loop 汽轮机本体steam turbine proper 猫爪lugs 沿轴向的axially 推力thrusting force 底脚法兰foot flanges 滑销系统sliding key system 纵销longitudinal keys 横销cross keys 立销vertical keys 润滑油槽oil grooves 润滑油lubricating oil 地脚螺栓anchor bolts 压紧螺栓hold-down bolts 调节级control stage 汽缸筒体casing barrel word.

燃气轮机进气蒸发冷却系统

燃气轮机进气蒸发冷却系统 发表时间:2016-10-08T15:24:19.737Z 来源:《电力设备》2016年第13期作者:马良熊少军 [导读] 燃气蒸汽联合循环电站的出力具有很强的进气温度特性,即随着环境温度升高。 (青岛华丰伟业电力科技工程有限公司山东青岛 266100) 摘要:介绍西门子SGT6-5000F燃气轮机进气系统配套的介质式蒸发冷却器系统工艺、工作流程、运行情况,并对其经济性进行了初步分析。 关键词:蒸发冷却器气耗率 1 引言 燃气蒸汽联合循环电站的出力具有很强的进气温度特性,即随着环境温度升高,燃气轮机的压气机单位吸气量的耗功增大,而且燃气轮机进气密度下降,做功工质的质量流量较少,故燃气轮机出力几乎按比例呈较大幅度下降,循环效率在一定温度范围内呈下降趋势。为改善燃气轮机的出力,对燃气轮机实施进气冷却是最快捷而有效的措施。 蒸发式冷却作为压气机进气冷却的方式之一,与其它冷却方式相比(如机械压缩式制冷,吸收式制冷等)具有适用范围广(甚至包括在沿海等高湿度地区),系统简单,投资少等独特优点。目前在实际中应用的蒸发式冷却器具有两种形式:一为雾化式蒸发冷却器;另一为介质式蒸发冷却器。前者将水高细度雾化后喷入空气流中,依靠细微的水滴颗粒对空气进行加湿冷却。后者是使空气通过含水的多孔介质来对其加湿冷却。 本文以西门子SGT6-5000F燃气轮机进气系统配套的介质式蒸发冷却器为例,介绍了系统设备、工作流程、运行情况,从燃气轮机角度对其经济性进行了初步分析,以供参考。 2 介质式蒸发冷却系统设备及工作流程 主要设备为蒸发冷却泵,布水器,湿帘,除水器,水箱及调节阀和滤网。 其工作流程为冷却水经调节阀分三路送至湿帘顶部的布水器后均匀撒在填料表面,由于重力作用冷却水自上而下洒下。空气经粗滤,精滤过滤后,除去杂质后,再经过蒸发冷却装置,与填料中自上而下的冷却水进行热交换,部分水因吸收空气湿热汽化蒸发后变成水蒸气,未蒸发的水流回水箱。空气温度降低,同时因为融进部分水蒸气而使相对湿度增加。空气和水蒸气的混合物流向下游的除雾器,其中部分水雾和小水滴在除雾器上凝结成小水滴,在重力作用下落入水箱,降低了进气的携水率,减少了压气机因进气空气水量增加而导致的负荷消耗,同时空气中的微小尘埃也随水滴落入水箱,起到水除尘的左右,避免其对压气机的腐蚀。 本装置加入了一些安全措施,如流量开关、水位开关和温度开关,以便发送信号,判断运行是否正常,或是否具备启动条件。蒸发冷却系统投入需要满足以下条件:1.负荷率大于60%,2.入口温度大于15℃,3.水箱水位在正常位置。 3 大气温度的变化对于燃气轮机及其联合循环影响分析 大气温度对于简单循环及其联合循环的功率和效率有相当大的影响,这是由于以下三方面造成的,即①随着大气温度的升高,空气的密度变小,致使吸入压气机的空气质量流量减少,机组的做工能力随之变小;②压气机的耗功量是随着吸入空气的热力学温度成正比关系变化的,即大气温度升高时,燃气轮机的净出力减小;③当大气温度升高时,压气机的压缩比将有所下降,这将导致燃气透平做工量的减少,而燃气透平的排气温度却有所增加。这样燃气轮机及其联合循环的效率和净功率将会发生如图一所示的变化。 图一大气温度与燃气轮机及其联合循环的效率和净功率曲线 4 投用蒸发冷却系统相关参数分析 4.1燃气轮机净输出功率比较。根据与西门子签订的性能保证合同参数,对于2+2+1方式设置的联合循环机组,蒸发冷却系统投入前后对燃气轮机单循环净输出功率的区别如下(注:燃气的工况下)。 4.1.1在大气温度为46℃、湿度为40%、大气压力在1013mbar的情况下,不投入蒸发冷却系统,两台燃气轮机的单循环净输出为362707KW; 4.1.2在大气温度为46℃、湿度为40%、大气压力在1013mbar的情况下,投入蒸发冷却系统,两台燃气轮机的单循环净输出为397966KW; 蒸发冷却系统投入前后区别如下:投入后两台燃气轮机的负荷每小时高35259kw,相当于每台燃气轮机每小时高17629.5kw,每台燃气轮机每小时出力高出9%,则燃气轮机出力可达到100%的负荷,如果不投入蒸发冷却系统,则燃气轮机出力只有91%的负荷。 4.2蒸发冷却系统投入前后参数变化分析 某套燃气轮机负荷控制方式为基本负荷,根据蒸发冷却系统投入前后参数变化趋势整理成数据如表一所示,分析如下:

燃气轮机控制系统概况

燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮机控制系统—SPEEDTRONIC Mark V的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying system. Keywords: Gas Turbine; control system 1.燃气轮机控制系统的发展 燃气轮机开始成为工矿企业和公用事业的原动机组始于40年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展,燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966年美国GE公司推出的第一台燃机电子控制系统的雏形。该套系

燃气轮机故障类型及原因

燃气轮机故障监测及诊断 1. 国内燃气轮机主要类型 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。 燃气轮机分为: (1)轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。 (2)重型燃气轮机为工业型燃气轮机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。 燃气轮机有不同的分类方法,一般情况如图1-1所示。 图1-1

2. 燃气轮机故障类型 1.燃机在启动过程中“热挂” 2.压气机喘振 3.机组运行振动大 4.点火失败 5.燃烧故障 6.启动不成功 7.燃机大轴弯曲 8.燃机轴瓦烧坏 9.燃机严重超速 10.燃机通流部分损坏 11.润滑油温度高 12.燃机排气温差大 3. 燃气轮机故障原因 “热挂”的原因: (1)启动系统的问题。启动柴油机出力不足;液力变扭器故障等。 (2)压气机进气滤网堵塞、压气机流道脏,压缩效率下降。 (3)燃机控制系统故障。 (4)燃油雾化不良。 (5)透平出力不足。 产生压气机喘振的原因: 压气机喘振主要发生在启动和停机过程中。引起喘振的原因主要有:机组在启动过程升速慢,压气机偏离设计工况;机组启动时防喘放气阀不在打开状态;停机过程防喘放气阀没有打开。 机组运行振动大的原因: 引起燃气轮机运行振动的原因较多,对机组安全运行构成威胁,因此应高度重视。下面列举部分引起机组振动的情况: (1)机组启动过程过临界转速时振动略微升高,属正常现象,但在临界转速后振动会下降。按正常程序启动燃气轮机时,机组会快速越过临界转速,如果由于升速慢引起振动偏高,应检查处理升速较慢的原因。 (2)启动过程中由于压气机喘振引起的振动偏高,喘振时压气机内部发

航空发动机和燃气轮机耐高温叶片

附件4 航空发动机和燃气轮机耐高温叶片 “一条龙”应用计划申报指南 一、产业链构成 面向航空发动机和燃气轮机等应用领域,以提高高温合金精密铸造涡轮叶片质量和可靠性为核心,组织产业链各环节优势力量,推动重点项目攻关,突破单晶高温合金母合金纯净度控制、复杂定向/单晶涡轮叶片制备、长寿命热障涂层设计与制备等关键技术,带动上游原辅材料产业、高端装备产业等相关产业互融共生、分工合作、利益共享,推进产业链协作发展,形成上下游产业对接顺畅的应用示范全链条,推动航空发动机和燃气轮机的开发、生产和应用。 关键产业链条环节 序号产业链环节航空发动机叶片地面燃气轮机叶片 1上游原材料√√ 2关键设备制造√√ 3高性能涡轮叶片合金开发√√ 4高纯净度母合金制备√√ 5涡轮叶片精密铸造√√ 6涡轮叶片机加√√ 7涡轮叶片制孔√√ 8涡轮叶片焊接√√ 9涡轮叶片热障涂层√√ 10下游应用√√ 二、目标和任务 (一)上游原材料 1.母合金用原材料 (1)环节描述及任务。开发镍、钽、铼等原材料制备技术,提

高原材料的杂质元素含量控制水平,为涡轮叶片用铸造高温合金熔炼提供优质原材料,为母合金锭纯净度控制奠定基础。 (2)具体目标。具备优质原材料生产能力,镍、钽、铼等具体化学成分控制要求如下表所示: 表1镍的化学成分控制要求 表2钽的化学成分控制要求 类别牌号 化学成分,% Ta Nb C O N Fe Ni Mn 不大于 钽条TTa-1余量0.010.0150.200.010.010.0050.003 类别牌号W Mo Si Zr Al Cu Cr Ti 不大于 钽条TTa-10.00 30.0030.010.0030.0030.0030.0050.003 表3铼的化学成分控制要求 类别 化学成分,% Re K Na Ca Fe Cu Mo Pb 不小于不大于 铼条、铼粒99.990.00050.00050.00050.00050.00010.00010.0001 类别W As Se Sn Ba Mn Be Pt 不大于 铼条、铼粒0.00050.00010.00030.00010.00010.00010.00010.0001 类别Co Cd Bi Si Mg C Zn Sb 不大于 铼条、铼粒0.00050.00010.00010.00050.00010.00150.00010.0001 类别Al Ni Ti Cr Tl Te S 不大于 铼条、铼粒0.00010.00050.00050.00010.00010.00010.0005 2.陶瓷型芯/型壳用原材料 (1)环节描述及任务

燃气轮机控制系统概况模板

燃气轮机控制系统 概况 燃气轮机控制系统—SPEEDTRONIC Mark V 摘要:本文介绍了燃气轮机及其控制系统的发展历程,以及燃气轮 机控制系统—SPEEDTRONIC Mark V 的工作原理及主要功能,并列举了几个燃气轮机控制系统的例子。 关键词:燃气轮机;控制系统 SPEEDTRONIC Mark V Gas Turbine Control System Abstract: This paper introduce the development history of gas turbines and their control system, and the functional principle and main features of gas turbine control systems, accompanied by some exemplifying

system. Keywords: Gas Turbine; control system 1. 燃气轮机控制系统的发展燃气轮机开始成为工矿企业和公用事业的原 动机组始于40 年代后期,其最初被用作管道天然气输送及电网调峰。早期的控制系统采纳了液压机械式气轮机调速器,并辅以气动温控,启机燃料限制稳定及手动程控等功能。其余诸如超速、超温、着火、熄火、无润滑油及振动超标等保护均由独立的装置来实现。 随着控制技术的飞快发展, 燃气轮机控制系统出现了以燃料调节器为代表的液压机械操动机构,以及用于启、停机自动控制的继电器自动程序控制。继电器自动程序控制,结合简单的报警监视亦 可和SCADA(监控与数据采集)系统接口,用于连续遥控运行。这便是于1966 年美国GE 公司推出的第一台燃机电子控制系统的雏形。该套系统, 也就是后来被定名为SPEEDTRONIC MARK I 的控制系统,以电子装置取代了早期的燃料调节器。 MARK I 系统采用固态系列元件模拟式控制系统, 大约50 块印刷电路板, 继电器型顺序控制和输出逻辑。 MARK II 在1973 年开始使用。其改进主要是采用了固态逻辑系统, 改进了启动热过渡过程, 对应用的环境温度要求放宽了。 在MARK II 的基础上, 对温度测量系统的补偿、剔除、计算等进行改型, 在70 年代后期生产出MARK II +ITS, 即增加了一套集成温度系统。对排气温度的控制能力得以加强, 主要是对损坏的排气热电偶

燃气轮机航空叶片介绍

航空发动机叶片 众所周知,在航空发动机里叶片是透平机械的“心脏”,是透平机械中极为主要的零件。透平是一种旋转式的流体动力机械,它直接起着将蒸汽或燃气的热能转变为机械能的作用。叶片一般都处在高温,高压和腐蚀的介质下工作。动叶片还以很高的速度转动。在大型汽轮机中,叶片顶端的线速度已超过600 m/s,因此叶片还要承受很大的离心应力。叶片不仅数量多,而且形状复杂,加工要求严格;叶片的加工工作量很大,约占汽轮机、燃气轮机总加工量的四分之一到三分之一。叶片的加工质量直接影响到机组的运行效率和可靠行,而叶片的质量和寿命与叶片的加工方式有着密切的关系。所以,叶片的加工方式对透平机械的工作质量及生产经济性有很大的影响。这就是国内外透平机械行业为什么重视研究叶片加工的原因。随着科学技术的发展,叶片的加工手段也是日新月异,先进的加工技术正在广泛采用。 叶片的主要特点是:材料中含有昂贵的高温合金元素;加工性能较差;结构复杂;精度和表面质量要求高;品种和数量都很多。这就决定了叶片加工生产的发展方向是:组织专业化生产,采用少、无切削的先进的毛坯制造工艺,以提高产品质量,节约耐高温材料;采用自动化和半自动化的高效机床,组织流水生产的自动生产线,逐步采用数控和计算机技术加工。叶片的种类繁多,但各类叶片均主要由两个主要部分组成,即汽道部分和装配面部分组成。因此叶片的加工也分为装配面的加工和汽道部分的加工。装配面部分又叫叶根部分,它使叶片安全可靠地、准确合理地固定在叶轮上,以保证汽道部分的正常工作。因此装配部分的结构和精度需按汽道部分的作用、尺寸、精度要求以及所受应力的性质和大小而定。由于各类叶片汽道部分的作用、尺寸、形式和工作各不相同,所以装配部分的结构种类也很多。有时由于密封、调频、减振和受力的要求,叶片往往还带有叶冠(或称围带)和拉筋(或称减震凸台)。叶冠和拉筋也可归为装配面部分。汽道部分又叫型线部分,它形成工作气流的通道,完成叶片应起的作用,因此汽道部分加工质量的好坏直接影响到机组的效率。 下面说一下叶片的材料,由于透平叶片的工作条件和受力情况比较复杂,因此对叶片材料的要求也是多方面的,其中主要的要求概括如下:(1).具有足够的机械强度。即在工作温度范围内具有足够的,稳定的机械强度(屈服极限和强度极限),并且在工作温度范围内这些机械强度具有稳定的数值。在高温情况下(一般指450℃以上),具有足够的蠕变极限和持久强度极限。(2).具有高的韧性和塑性以及高温下抗热脆性(高温下稳定的冲击韧性),避免叶片在载荷作用下产生脆性断裂。(3).耐蚀性。抵抗高温下气体中有害物质的腐蚀以及湿蒸汽和空气中氧的腐蚀能力。(4).耐磨性。抵抗湿蒸汽中水滴和燃气中固体物质的磨蚀。(5).具有良好的冷、热加工性能。(6).具有良好的减振性。叶片是处在交变载荷下工作,除要求有较高的疲劳极限外,还要求有良好的减震性能,即高的对数衰减率。这样可以减小振动产生的交变应力,减小叶片疲劳断裂的可能性。 根据使用温度、使用温度和化学成份等,可以将叶片材料分为两类:(1).马氏体、马氏体-铁素体和铁素体钢。这类钢的使用温度最高不超过580℃,可以作为汽轮机叶片材料。(2).奥氏体钢、铁镍合金和镍基合金等。着类钢的使用温度最高不超过700~750℃,可以作为燃气轮机叶片材料。

北航航空燃气轮机结构设计期末考试复习宝典概要

、填空题。 1.推力是发动机所有部件上气体轴向力的代数和。 2.航空涡轮发动机的五大部件为进气装置、压气机、燃烧室、涡轮和排气装置;其中“三大核心”部件为:压气机、燃烧室和涡轮。 3.压气机的作用提咼空气压力,分成轴流式、离心式和组合式三种 4.离心式压气机的组成:离心式叶轮,叶片式扩压器,压气机机匣。 5.压气机增压比的定义是:压气机出口压力与进口压力的比值,反映了气流在压气机内压力提高的程度。 6.压气机由转子和静子等组成,静子包括机匣和整流器。 7.压气机转子可分为鼓式、盘式和鼓盘式。 8.转子(工作)叶片的部分组成:叶身、樺头、中间叶根。 8.压气机的盘式转子可分为盘式和加强盘式。 9.压气机叶片的榫头联结形式有销钉式榫头;燕尾式榫头;和枞树形榫头。 10.压气机转子叶片通过燕尾形榫头与轮盘上燕尾形榫槽连接在轮盘。 11压气机静子的固定形式有:燕尾形榫头;柱形榫头和焊接在中间环或者机匣上。 12压气机进口整流罩的功用是减小流动损失。 13.压气机进口整流罩做成双层的目的是通加温热空气 14.轴流式压气机转子的组成:盘;鼓(轴)和叶片。 15.压气机进口可变弯度导流叶片(或可调整流叶片)的作用是防止压气机喘振。 16.压气机是安装放气带或者放气活门的作用是防止压气机喘振。 17.采用双转子压气机的作用是防止压气机喘振。 18压气机机匣的基本结构形式:整体式、分半式、分段式。 19压气机机匣的功用:提高压气机效率;承受和传递的负载;包容能力。 20整流叶片与机匣联接的三种基本方法:榫头联接;焊接;环 21.多级轴流式压气机由前向后,转子叶片的长度的变化规律是逐渐缩短。 22.轴流式压气机叶栅通道形状是扩散形。 23.轴流式压气机级是由工作叶轮和整流环组成的。 24.在轴流式压气机的工作叶轮内,气流相对谏度减小,压力、密度增加。 25.在轴流式压气机的整流环内,气流绝对速度减小,压力增加。 26.叶冠的作用:①可减少径向漏气而提高涡轮效率:②可抑制振动。 27.叶身凸台的作用:阻尼减振,避免发生共振或颤震,降低叶片根部的弯曲扭转应力(防

燃气轮机叶片

燃气轮机叶片加工与控制 一.燃气轮机的结构与组成 燃气涡轮发动机主要由压气机、燃烧和涡轮三大部件以及燃油系统、滑油系统、空气系统、电器系统、进排气边系统及轴承传力系统等组成。三大部件中除燃烧外的压气机与涡轮都是由转子和静子构成,静子由内、外机匣和导向(整流)叶片构成;转子由叶片盘、轴及轴承构成,其中叶片数量最多。 二.燃气轮机工作原理及热处理过程 工作原理:发动机将大量的燃料燃烧产生的热能,势能给涡轮导向器斜切口膨胀产生大量的动能,其一部分转换成机械功驱动压气机和附件,剩余能由尾喷管膨胀加速产生推力。 三.燃气轮机叶片 1.在燃气涡轮发动机中叶片无论是压气机叶片还是涡轮叶片,它们的数量最多,而发动机就是依靠这众多的叶片完成对气体的压缩和膨胀以及以最高的效率产生强大的动力来推动飞机前进的工作。叶片是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键,因此对其投入的人力、物力、财力都是比较大的,而且国内外发动机厂家正以最大的努力来提高叶片的性能,生产能力及质量满足需要。 在流道中,由于在不同的半径上,圆周速度是不同的,因此在不同的半径基元级中,气流的攻角相差极大,在叶尖、由于圆周速度最大,造成很大的正攻角,结果使叶型叶背产生严重的气流分离;在叶根,由于圆周速度最小,造成很大的负攻角,结果使叶型的叶盆产生严重的气流分离。因此,对于直叶片来说。除了最近中径处的一部分还能工作之外,其余部分都会产生严重的气流分离,也就是说,用直叶片工作的压气机或涡轮,其效率极其低劣的,甚至会达到根本无法运转的地步。叶片的工作条件。 压气机叶片含风扇叶片属于冷端部件的零件,除最后几级由于高压下与气体的摩擦产生熵增而使温度升高到约600K(327°C),其余温度不高,进口处在高空还需防结冰。工作前面几级由于叶片长以离心负荷为主,后面几级由于温度以热负荷为主。总之压气机叶片使用寿命较长。叶片的使用的材料一般为铝合金、钛合金、铁基不锈钢等材料。 涡轮是在燃烧室后面的一个高温部件,燃烧室排出的高温高压燃气流经流道流过涡轮,所有叶片恰好都是暴露在流道中必须承受约1000°C的高温1Mpa 的以上高压燃气的冲刷下能正常工作。因此叶片应有足够的耐高温和高压的强度。涡轮叶片的使用寿命远低于压气机叶片约2500h。 转子叶片,静子叶片只承受热应力及弯曲应力,没有离心应力。叶片使用的材料一般为高温铸造合金如K403、K424等、和高温合金如GH4133等,温下高强度材料。 2.叶片加工与控制 (1)加工 叶片的加工分两大部分:一部分为叶片型面加工,一部分为榫头加工及缘板加工:压气机工作叶片的型面是用高能高速热挤压成型后经抛光而成;整流叶片是由冷轧成型经抛光而成。涡轮叶片的叶型,无论是工作叶片

燃气轮机的空气进气和排气系统

燃气轮机的空气进气和排气系统 发表时间:2017-12-26T15:07:14.253Z 来源:《防护工程》2017年第21期作者:杨士博徐有宁[导读] 本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响。 沈阳工程学院能源与动力工程学院辽宁沈阳 110136 摘要:本文基于对燃气轮机空气的进气和排气系统,空气质量对燃气轮机的运行性能和可靠性有着巨大的影响,文中着重对进气系统的结构、工作规程,以及空气中的大颗粒悬浮物会对进气设备造成腐蚀和污染,进气系统的噪音污染进行了详细描述。关键词:进气系统排气系统进气管道和消音 燃气轮机是以空气为工质,其进口空气质量和纯净度是提高机组性能和可靠性的前提。因为空气中或多或少包含各种无机物和有机物颗粒杂质,在燃气轮机通流部分中将产生侵蚀、积垢和腐蚀,但一般不会同时发生。对于电站燃气轮机,灰尘颗粒对叶片的侵蚀是较为突出的问题,对机组的寿命有很大影响。 1、空气的进气系统 空气的进气系统包括以下部分:一带有防风雨罩的过滤器房,一个采用高效过滤元件的自动清洁的过滤系统,以及一个进气管路系统。采用了向上和向前这一方式的安排,过滤器房处于进气管道支托结构的顶部上面。进气管路系统与进口的放气加热组合件一起也安装在进气管道支托结构的上面。空气进入过滤器房,通过过道,声学的消声器,进气的加热组合件,垃圾杂质的筛网,然后通过进口的压力通风部位进入至汽轮机的压气机。过滤器房处于抬高位置的安排使系统的结构紧凑扎实,可使过滤器房中尘屑的拾取量达到最少进气系统的结构中所采用的材料和涂料,在设计上考虑到使之免于维修保养。过滤器房的外部和内部的所有面积上(因暴露于空气气流中)以及管路上都涂以一种有防腐和保护作用的无机的含锌底层涂料和环氧树脂的外层涂料。进口处的消音打孔板是用不锈钢制作而成。垃圾杂质的筛网也是不锈钢制成。所有支架的钢材都经过镀锌处理。 2、进口部分 过滤器房包括防风雨罩(其后是水分的分离器)以及一个高效的自动清洁过滤站。防风雨罩是防备大雨和防止空气中大的污染物质进入到进口处的过滤器房。方法是把空气向上引入速度则低于下落雨滴和空气中大杂质落下时达到终点的速度。对于沿海的、水上的、离岸面向海面的平台上使用场合中,建议在防护罩中装有水分分离器,在这些地方的空气中,海水中有高度的盐分能成为一个问题或者有可能需要去除掉潜在的有腐蚀性的液体。自动清洁过滤元件装在垂直的尘格板上。它们是放在一薄钢板的封闭室内,是按照确当的气流流通安排和免受天气影响而设计的。当过滤元件上载满了尘屑以及通过过滤介质后的压力降达到了一个预定数值(用一压力微分开关测量)时,换向一脉动型自动清洁装置启动。采用了一自动程控器控制,过滤元件组以规定的次序,依次进行清洁。程控器操纵着一组电磁阀,每一只控制着几个过滤器的清洁。在清洁进行时,每个阀门释放一短暂的脉冲高压空气。这一脉冲空气冲击着过滤网,造成一短暂的逆向气流,这一气流便积聚在网上的尘屑松开而跌落入存放箱中。在清洁循环完成后,尘屑然后被排放出。清洁循环会一直连续进行,直至尘屑被充分地清除掉并且该部分的压力降到达了压力微分开关上较低的一个设置值才停止。 3、进气管道和消音 空气的进气管道将空气气流从示波器房的出口导入燃气轮机压气机的进口。它包括 8 英尺消音,4 英尺结合有进口放气加热组合件的有消音衬里的管路,一个有消音衬里的90°弯管(内有杂质过滤网),一个有消音衬里的挠性连接口,以及进口处的压力通风部分。进口的消音设施包含着一有声学上处理过的衬里的导管,它含有用矿石棉构成的绝缘挡板,包裹着玻璃纤维布,并且用打着孔眼的不锈钢钢板封装。消音管道内壁的经声学上处理的衬里和消声装置的管路下游有着相似的结构。挡板的垂直-平行外形结构是为了消除压气机的基本音频而特殊设计的,同时也可降低其他频率的噪音水平。采用了一个压气机的放气加热装置后,一部分压气机排放出空气气流被用来加热进入的空气。这一点在汽轮机启动,停机和其他操作状态下可加强汽轮机的可操作性。进口放气加热装置包括一组不锈钢管,装至紧接在消音段后面的无衬里管路上,管路外的一集合总管将空气分配至伸入至管路的这些垂直的不锈钢管,在管路中,排放出的空气通过这些分配管子上所集合成的一系列孔分散至进入的空气气流中。弯管内窝藏着 2 件固定的不锈钢杂物滤网。该杂物滤网的目的在于保护压气机免受从过滤器房、管路或由于维修工作中的过失而进入弯管的硬件的散件。位于杂物滤网下游的一个可移动的出入面板用于清除和检查的目的。有消音处理衬里的膨胀接头将进气装置与燃气轮机隔开。进口处的压力通风乃是进气管路与燃气轮机空压机之间的连接点。进气管路系统也包含有露点温度传感器的设置,该传感器用以监测进口放气加热组合件的下游空气气流,可使与进口放气加热装置有相联系的工作性能的退化降低最少,通过与Mark V 的信息传递,进气系统中所有部分的相对湿度都处于结霜点以下。 4、结论 本文主要对燃气轮机的空气的进气和排气系统做了详细的描述,分析了空气质量对燃机运行和可靠性,对设备的污染和受损有什么影响。为了能够发挥出设备运行性能和可靠性的,必须配备良好的进气系统,对进入机组的空气进行过滤,必须滤掉其中的杂质,这一个能起自动清洁作用的过滤系统(装置)可以容易地和有效地除去悬浮于空气中的 10μm 或更大一些的颗粒。这些颗粒一般来说当存在有足够的数量时是造成显著腐蚀和压气机被弄脏的原因。与进气系统相联系的噪音污染问题是大家所关心的。燃气轮机运行时在进气管路中产生了一相当大的噪音。通过装在管道中成为一组成部分的消音器的应用,使噪音削弱。 参考文献: 【1】、焦树建.燃气轮机与燃气-蒸汽联合循环装置上/下[M].北京:中国电力出版社,2007.8 【2】、杨顺虎.燃气-蒸气联合循环发电设备及运行[M].北京:中国电力出版社,2003. 【3】、黄兵,魏海霞,陈涛.初效过滤器在燃机进气系统上的应用[J].冶金动力,2(4)57-59. 【4】、骆桂英,俞立凡.燃气轮机进气过滤系统的运行[J].发电设备,2008(5)398-403.

燃气轮机叶片冷却技术的发展

动力与能源工程学院 动力机械及工程学科专题研究课程设计 学号: 专业: 动力机械及工程 学生姓名: 任课教师: 2009年12月 燃气轮机叶片冷却技术的发展 1概述 燃气轮机作为大型动力装置,广泛应用于发电,船舶,航空航天等工业领域。 其主要性能指标为系统循环热效率和输出功率,它们均随涡轮转子燃气进口温度(RIT)的增加而增加。据计算,RIT 在1073~1273K范围内每提高100℃,燃气轮机的输出功率将增加20%~25%,节省燃料6%~7%。所以,要使燃气轮机性能的不断提高,关键在于提高RIT,但伴随而RIT的提高,燃气轮机热端部件材料的耐热问题也随之而来。目前,燃气轮机的RIT远高于涡轮叶片金属材料的熔点;下一代燃气轮机若以氢气和人造气为燃料,RIT将会更高,如果不能成功的解决这一问题,用提高RIT来提高燃气轮机性能只能是个美好的愿望。 先进的冷却技术可使热端部件能承受更高的工作温度,提高燃气轮机的循环热效率,延长燃气轮机使用寿命,提高系统工作的安全性和可靠性。据推算,如果无冷却导向叶片材料的使用温度能达到1470 K,则该导向叶片采用内部对流冷却时,可使涡轮进口温度提高到2200 K。由此可见,开展叶片冷却技术的研究具有十分重要的意义。

2燃气轮机气冷技术的发展进程 早期的涡轮叶片没有采用冷却技术,RIT受叶片材料的限制,很难超过1 323K。为了突破这一瓶颈,气体冷却技术被应用到实践中,这一技术是用来自不同压缩级的压缩空气作为冷剂对燃气涡轮的热端部件进行冷却,可大幅提高燃气初温。由于空气容易获取,实践成本较低,空气冷却得以快速发展,应用颇广。但随着人们对燃气轮机性能的要求不断提高,继续使用空气冷却将消耗掉大量的压缩气,这对燃气轮机的整体性能的提高不利。据估计,按现有传统复合冷却技术,当高性能涡轮系统RIT > 1763 K时约有35 %的压缩空气用于热通道组件的冷却,用于燃烧的空气更少,这将大大减少了涡轮系统的循环热效率和输出功率。另外,冷却空气的流道由于提高燃气轮机的初温和高压冷却空气的流动以及冷却空气与主流燃气的掺混带来较大的热力和气动损失。这些因素将降低燃气轮机的热效率,且各种损失还随冷却介质流量的增加而增加,将与提高RIT的收益相抵消。 为了解决这一问题,一方面需要改进气冷结构和发展新型结构,另一方面则可以采用其它介质来代替空气作冷却介质。新介质被要求既易得可用,冷却效果好,损失较小,又能保持已有冷却技术的结构简单性和可靠性。 对大型陆用燃气轮机来讲,水蒸气是叶片冷却介质的首选。使用蒸汽作为冷却介质的优点有蒸汽来源丰富,且可再次利用,在任何采用空气冷却的系统中使用,不会使冷却叶片转子的结构和制造工艺变得复杂。与空气相比,水蒸气冷却运行能耗低、损失小,克服了空气冷却的所有不足,可通过增加冷却蒸汽流量来更多地提高RIT。因为蒸汽压力不受压气机出口压力的限制,所以冷却蒸汽流量的增加,冷却通道的流阻不会遇到什么困难。 此外,许多专家和科研人员另辟蹊径,从已发展成熟的空气冷却技术着手对进一步提高燃气初温做了大量研究,并取得了一些进展。结果表明向空气中加入水雾时冷却效果较纯空气的冷却效果好,但由于水滴吸热蒸发后变成水蒸气,引入一个新组分,其换热强化机理和液滴动力学方面极为复杂,直至目前几乎所有的试验研究,尚不适用于实际燃气轮机涡轮叶片冷却。由此向高性能大型燃气轮机的冷却蒸汽中添加水雾以强化换热的想法就产生了,这种新的想法被称为汽雾冷却技术。研究表明,汽雾冷却与传统空气冷却相比,换热系数

燃气轮机英文词汇

燃气轮机词汇表(A-I) 英文索引 A Acceptance test 验收实验 Actual enthalpy drop (enthalpy rise) 实际焓降(焓增) Actuating oil system 压力油系统 Aero-derivative gas turbine, aircraft-derivative gas turbine 航空衍生(派生)型燃气机轮 Air charging system 空气冲气系统 Air film cooling 气膜冷却 Air intake duck 进气道 Alarm and protection system 报警保护系统 Annular combustor 环型燃烧室 Annulus drag loss 环壁阻力损失 Area heat release rate 面积热强度 Atomization 雾化 Atomized particle size 雾化细度 Automatic starting time of gas turbine 燃气机轮的自动起动时间 Auxiliary loads 辅机负荷 Availability 可用性 Average continuous running time of gas turbine 燃气轮机平均连续运行时间 Axial displacement limiting device 轴向位移保护装置 Axial flow compressor 轴流式压气机 Axial flow turbine 轴流式透平 Axial thrust 轴向推力 B Base load rated output 基本负荷额定输出功率 Black start 黑起动 Blade 叶片 Blade height 叶(片)高(度) Blade inlet angle (叶片)进口角 Blade outlet angle (叶片)出口角 Blade profile 叶型 Blade profile thickness 叶型厚度 Blade root 叶根 Bleed air/extraction air 抽气 Blow-off 放气 Blow-off valve 放气阀 Burner inlet temperature 透平进口温度 Bypass control 旁路控制

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

汽轮机常用英文缩写.

汽轮机常用英文缩写 缩写全称中文 A/M auto/manual 自动/手动 ADS automatic dispatch system 自动调度系统 AGC automatic generator control 机组自动发电控制 AOP auxiliaty oil pump 辅助油泵 AOV air operated valve 汽动门 AST automatic stop trip 自动停机跳闸系统 A-STP auto stop 自动停止 A-STRT auto start 自动启动 ATC automatic turbine control 汽轮机自动控制 A-TRIP auto trip 自动跳闸 AUX auxiliary 辅助的 BAF baffle 隔板 BASE base 基本方式 BBL barrel 圆筒型支架 BF boiler follow 锅炉跟随方式 BKUP backup 备用 BOPMS balance of plant master system 机组辅助设备主控顺序BP base plate 底版,支撑板 BPS bypass control system 旁路控制系统 BRG bearing 轴承 BW backwash 反洗 BYP bypass 旁路 CAB cabinet 小室 CAEP condenser air extraction pump 真空泵 CAV cavity 空腔 CAVIT cavitation 汽蚀 CC closing coil 闭式循环 CCCW closed circuit cooling water 闭式循环冷却水 CCCWP closed circuit cooling water pump 闭式循环冷却水泵CCW condenser circulating water 循环水 CCW counter clockwise 逆时针的 CCWP condenser circulating water pump 循环水泵 CE case expansion 缸胀 CEP condensate extraction pump 凝结水泵 CHEM chemical 化学 CIV close interceptor valve 关中压调门 CLD cold/cooled 冷的 CLF clarifier 净化器 CLG cooling 冷却 CLNG cleaning 清洁,净化

燃气轮机相关系统简介

燃气轮机相关系统简述 1 燃气轮机燃烧系统 燃烧系统主要由燃气轮机和余热锅炉的烟气系统构成。 空气由燃气轮机的进气装置(内部设有过滤器和消声器)引入压气机压缩后,进入环绕在燃机主轴上的分管式燃烧室。 厂外天然气经过厂区调压站分离、过滤和调压后,满足燃机进口要求的天然气再经过燃机天然气前置模块的加热、压力控制阀和流量控制阀的调整后通过燃料喷嘴喷入燃烧室后与进入燃烧室的压缩空气进行混合燃烧,燃烧后的高温烟气进入燃气轮机膨胀作功,带动燃气轮机转子转动,拖动发电机发电。作功后的烟气温度依然很高,高温烟气通过烟进入余热锅炉。在炉内,高温烟气加热锅炉给水产出过热蒸汽去汽机作功,烟气中的热量被充分吸收和利用,最后经余热锅炉的主烟囱排入大气。 2燃气轮机燃料前置处理系统 燃机在主厂房外设有燃料前置处理模块,包括二级精过滤装置、性能加热器和终端过滤器,另外还有在启动时运行的电加热装置,性能加热器的加热源为来自余热锅炉中压省煤器出口的热水,在正常运行工况下将天然气加热到185℃以提高联合循环的效率。启动电加热装置可将天然气加热28℃,使天然气的烃露点过热度和水露点过热度达到燃机启动时的要求。 3燃气轮机的水洗系统 为了保持燃气轮机的出力和效率,清除叶片及通流部分的污垢,三套燃气轮机配有一套公用的水洗系统。燃气轮机的水洗系统包括洗涤剂箱、清洁水箱和清洗泵。水洗疏水直接通过管系统收集排至水洗疏水箱。水洗疏水箱的容量为13300 升,布置在余热锅炉过渡烟道下方。疏水箱内的水洗废水通过水洗废水排水泵打至化水专业的中和池。 4燃气轮机箱体的通风系统 为了适应燃气轮机的快装和抑制噪声的需要,燃气轮机以箱装体的形式供货。透平间和排气扩散段下端靠近运转层处,开有进风消声百页窗,在主厂房屋顶处装有排风机和消声器,以排出透平间和排气扩散段(包括燃机2#轴承)的热量,而负荷联轴器间的热量排放则采取在负荷联轴器间顶部装有送风机,送入主厂房内的空气,热空气由风接至主厂房外。 5 燃气轮机CO2 灭火保护系统

相关文档
最新文档