回转器的原理

回转器的原理
回转器的原理

回转器的原理与应用

5050309090--杨帆 5050309091--刘俊良 5050309092--那日松 5050309093--陈铭明

5050309689--赵佳佳 5050379004--白恒远

摘要:在中规模电路器件中,大家对运算放大器最为了解,而回转器也是一个相当重要的器件。回转器的概念是B.D.H.Tellegen 于1948年提出的。六十年代由L.P.Huelsman 及B.A.Sheei 等人用运算放大器及晶体管电路实现,它如今在工业生产中发挥着重要作用。下面我们就把回转器的原理和一些应用简单介绍一下。 关键字:回转器 阻抗逆变原理

1 基本概念和原理:

理想回转器(gyrator )是实际回转器的理想化模型,简称回转器。回转器是一种典型的两端口电路元件,他的符号如图1所示。

图1:回转器符号

其电压—电流关系为:

12

21u r u ri =???

=?

i u (1) 或表示为:

12

21

i gu i g =??

=?? (2)

式中,r 称为回转电阻,g 称为回转电导,简称回转比。两者互为倒数,是表示回转器特

性的参数。根据上式,回转器的等效电路如图2所示。

图2:回转器等效电路

2 端口特性

对于一个二端口元件,描述它的最好方法是找到它的端口特性。由回转器的电压-电流关系,可以得到它的二端口电路参数矩阵。 其中, 开路电阻矩阵 R=00r r ???????; 短路电导矩阵 G=; 0

0g g ??

?

????

传输参数矩阵 T= 10

0r r ????????

由于参数矩阵不可逆,所以回转器是一个非互易的二端口元件。

3 功 率

在任一瞬时,输入回转器的功率为

112221120p u i u i ri i ri i =+=?+=这表明回转器与理想变压器一样,既不储存能量,也不消耗能量,也是一种无源元件。

4 应 用

通过上面的原理简单介绍,可以看出:理想回转器可以建立两个端口的电压电流关系。这自然使我们想到了两种特殊的电路元件--电容和电感。

的确如此,理想回转器最重要的一个用途就是实现电感与电容的互换。下面我们就来着重讨论一下它是如何实现这一重要功能的。

就图1,如果在输出端口接一个电容元件C(如图3),则有22/i Cdu dt =?, 代入回转器输入输出关系式(1),得回转器输入输出端口的电压-电流关系:

22112()du di di

u ri r C

r C L dt dt dt

=?=??==1 其中2L r C =。

可见,从回转器输入端口的电压-电流关系看,上图电路就是一个电感为2L r C =的电感元件。

图3

以上,只是在输出端口接入一个电容负载时,回转器能把一个电容元件“回转”成一个电感元件,那么当接入一个一般的负载时,情况又如何呢?下面引出更一般的阻抗逆变原理。

若在回转器的输出端接以负载阻抗Z ,如图(a)所示,则其输入阻抗为

(3)

可见输入阻抗Z0与Z成反比,此即为阻抗逆变换作用。(b)为其等效电路。

从式(1)看出,Z0与Z的性质相反,即能将R,L,C相应回转为电导g2R,电容g2L,电感r2C, 这就是回转器的阻抗逆变原理。

特别是将电容回转成电感这一性质尤为宝贵。因为到目前为止,在继承电路中要实现一个电感还有困难,但实现一个电容却很容易。利用回转器将电容C回转成电感L=r2C的电路如图3所示,这只要将 Z=1/jωC代入式(3)即可证明。

图4 回转器的阻抗逆变换作用

阻抗逆变换作用具有可逆性,即若将Z接在输入端口,如图4(c)所示则可证明输出端口阻抗仍为Z0=1/g2Z= r2/Z。

当Z=0时,Z0=∞,即当一个端口短路时,相当于另一个端口开路。

当Z=∞时,Z0=0,即当一个端口开路时,相当于另一个端口短路。

根据回转器的阻抗逆变原理,在工业控制中,对一些变化及其缓慢的信号,对这些信号进行收集,处理以及控制时,往往需要极低频率的信号源和时间常数很大的滤波器, 也需要超长延时的控制处理电路,这些电路中的大电容,大电感可以用运算放大器和较小的电容,电阻来实现. 这样既做到了电感、电容器的微型化, 又非常经济实用, 电容电感量的调整也非常方便.

由于回转器具有阻抗逆变的作用. 将运算放大器及其外接元件组成的回转器, 就能实现L 值极高的大电感,从而实现超低频振荡,这种等效电感的电感量可达 1 MH ,甚至更高,如果将等效电感与适当的电容组成并联振荡回路, 它的振荡频率很容易低于 1 Hz ,在此回路两端接上正反馈回路, 就能维持稳定振荡. 因此回转器在未来的振荡电路、传感器电路、机器人学等工业控制中被广泛应用。

5 回转器的实现

以上介绍了有关回转器的一些基本知识和应用,从中可以知道回转器是一种原理简单,应用广泛且在工业生产中能发挥重要作用的一种器件,那么回转器的内部结构是什么样的呢?它到底为什么能有逆变换阻抗的作用?下面就简单介绍一下用运算放大器实现回转器的过程。 以下图5

就是用运算放大器实现回转器的原理图。

图5 用运算放大器实现回转器图示

如图5,跟据运算放大器的“虚断”性,可将R 1与R 2视作串联,又因为R 1= R 2=R 所以

=+c U ?CB U ?B U ?=2B U ?=21U ?

(4)

又因为运算放大器的“虚断”性质可得

c D D F

U U U U R R

????

??= (5) 合并式(4)(5)可得

F U ?=-21U ?+2D U ? 即=-2F U ?1U ?+22U ?

(6)

根据运算放大器的“虚断”性质可得

1a b I I I ?

?

?

=+=

121c

U U U U R R

????

??+ (7) 合并(4)(7)得

1a b I I I ?

?

?

=+=

12112U U U U R R

??????+=2

U R ?

? (8)

又因为

2112F

a c U U U U I I I R R

????

?

?

?

??=?+=

+ (9) 合并(6)(9)得

1

2U I R

?

?

=

(10) 设g=

1

R

,将(8)(10)两式联立可得 2112U I R

U I R ?

?

?

???=????=

??

满足理想回转器的特性方程,即实现了回转器的功能。

6 总 结

理想回转器在课本中的要求并不多,只是简单了解一下它的端口特性就可以了。但通过

查阅有关资料,我们发现回转器是一种在工业生产中有重要应用的器件,有必要对它进行更进一步的研究。它能够建立起电容和电感这两个最为重要动态元件之间的联系,实现二者的互换,给工程实践提供了方便。通过上面的分析,我们希望大家能对理想回转器的原理及其应用有更进一步的了解。同时,我们在写这篇论文时也有不少收获,不仅了解了回转器的有关知识,而且在介绍实现回转器的过程中,对理想放大器的性质也有了更深的理解。

由于作者水平有限,文章中难免会有些错误,欢迎读者加以指正。

参考文献:

《兰州交通大学学报(自然科学版)》 第24 卷 第6 期 《电路基础》 上海交通大学出版社

《电路原理》 机械工业出版社 徐国凯主编

多圈绝对值编码器工作原理

2010-04-30 08:14 传统的绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 单圈绝对值编码 多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。 多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了安装调试难度. 绝对值多圈有电子增量计圈与机械绝对计圈等多种,(还有其他几圈方式,但不多见)。机械绝对计圈,无论是每圈位置是绝对的,而且圈数也是绝对值的,但是,这样的话,圈数就有个范围,例如现在较多的4096圈和65536圈两种。这样,就有人提出来,超过圈数还算不算绝对的在一次加工中不超过圈数,或停电移动不超过1/2圈数,当然是绝对的。 电子增量计圈,通过电池记忆圈数,实际上是单圈绝对,多圈增量,好处是省掉了一组机械齿轮,经济、体积小且没有圈数限制,似乎也不错,但是他毕竟是多圈增量的,不能算真正意义上的绝对值,什么是真正意义上的绝对值就是不依赖于前次历史的直接读数。它在停电后,由于电池低功耗的要求,移动的速度与范围其实是有限制的,另外加上电池的因数,可靠性方面还是要有疑问的。尤其是如果计圈的失误,反而无法找到原来的绝对位置。 事实上,很多人理解用绝对值,都是停电后移动的问题,却不了解德国人在运动控制中用机械真多圈绝对值的真正用意,由于真正的绝对值是不依赖于前次历史

编码器知识详解

光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90。的两路脉冲信号。 编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器的应用 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计米器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 光电旋转编码器在工业控制中的应用 -------------------------------------------------------------------------------- 1.概述 在工业控制领域,编码器以其高精度、高分辨率和高可靠性而被广泛用于各种位移测量。 目前,应用最广泛的是利用光电转换原理构成的非接触式光电编码器。光电编码器是一种集光、机、电为一体的数字检测装置。作为一次光电传感检测元件的光电编码器,具有精度高、响应快、抗干

自动自清洗过滤器工作原理

◆全自动自清洗过滤器工作原理(一) 水由入口进入,首先经过粗滤网滤掉较大颗粒的杂质,然后到达细滤网。在过滤过程中,细滤网逐渐累积水中的脏物、杂质,形成过滤杂质层,由于杂质层堆积在细滤网的内侧,因此在细滤网的内、外两侧就形成了一个压差。 当过滤器的压差达到预设值时,将开始自动清洗过程,北京罗伦过滤设备科技有限公司此间净水供应不断流,清洗阀打开,清洗室及吸污器内水压大幅度下降,通过滤筒与吸污管的压力差,吸污管与清洗室之间通过吸嘴产生一个吸力,形成一个吸污过程。同时,电力马达带动吸污管沿轴向做螺旋运动。吸污器轴向运动与旋转运动的结合将整个滤网内表面完全清洗干净。整个冲洗过程只需数十秒钟。排污阀在清洗结束时关闭。过滤器开始准备下一个冲洗周期。 ◆全自动自清洗过滤器工作原理(二) 待处理的水由入水口进入机体,水中的杂质沉积在不锈钢滤网上,由此产生压差。通过压差开关监测进出水口压差变化,当压差达到设定值时,电控器给水力控制阀、驱动电机信号,引发下列动作:电动机带动刷子旋转,对滤芯进行清洗,同时控制阀打开进行排污,整个清洗过程只需持续数十秒钟,当清洗结束时,关闭控制阀,电机停止转动,北京罗伦过滤设备科技有限公司系统恢复至其初始状态,开始进入下一个过滤工序。 设备安装后,由技术人员进行调试,设定过滤时间和清洗转换时间,待处理的水由入水口进入机体,过滤器开始正常工作,当达到预设清洗时间时,电控器给水力控制阀、驱动电机信号,引发下列动作:电动机带动刷子旋转,对滤芯进行清洗,同时控制阀打开进行排污,整个清洗过程只需持续数十秒钟,当清洗结束时,关闭控制阀,电机停止转动,系统恢复至其初始状态,开始进入下一个过滤工序。 ◆全自动自清洗过滤器工作原理(三) 水由进水口进入过滤器,首先经过粗滤芯组件滤掉较大颗粒的杂质,然后到达细滤网,通过细滤网滤除细小颗粒的杂质后,清水由出水口排出。在过滤过程中,细滤网的内层杂质逐渐堆积,它的内外两侧就形成了一个压差。当这个压差达到预设值时,将开始自动清洗过程:排污阀打开,主管组件的水力马达室和水力缸释放压力并将水排出;北京罗伦过滤设备科技有限公司水力马达室及吸污管内的压力大幅下降,由于负压作用,通过吸嘴吸取细滤网内壁的污物,由水力马达流入水力马达室,由排污阀排出,形成一个吸污过程。当水流经水力马达时,带动吸污管进行旋转,由水力缸活塞带动吸污管作轴向运动,吸污器组件通过轴向运动与旋转运动的结合将整个滤网内表面完全清洗干净。整个清洗过程将持续数十秒。排污阀在清洗结束时关闭,增加的水压会使水力缸活塞回到其初始位置,过滤器开始准备下一个冲洗周期。在清洗过程中,过滤机正常的过滤工作不间断。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ-=2 2 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器;

按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。

绝对值编码器的工作原理

******************************************************************************* 从编码器使用的计数来分类,有二进制编码、二进制循环编码(葛莱码)、二-十进制吗等编码器。 从结构原理来分类,有接触式、光电式和电磁式等几种。最常用的是光电式二进制循环码编码器。码盘上有许多同心圆,它代表某种计数制的一位,每个同心圆上有透光与不透光的部分,透光部分为1,不透光部分为0,这样组成了不同的图案。每一径向,若干同心圆组成的图案带标了某一绝对计数值。二进制码盘每转一个角度,计数图案的改变按二进制规律变化。葛莱码的计数图案的切换每次只改变一位,误差可以控制在一个单位内。精度受到最低位分段宽度的限制。要求更大计数长度,可采用粗精测量组合码盘。 接触式码盘可以做到9位二进制,它的优点是简单、体积小输出信号强,不需要放大;缺点是电刷摩擦是、寿命低、转速不能太高。 光电式码盘没有接触磨损寿命长,转速高,最外层每片宽度可以做得更小,因而精度高。每个码盘可以做到18位进制。缺点是结构复杂价格高。 电磁码盘是在导磁性好的软铁和坡莫合金原盘上,用腐蚀的办法作成相位码制的凹凸图形,当磁通通过码盘时,由于磁导大小不一样,其感应电势也不同,因而可区分0和1,到达测量的目的。该种码盘是一种无接触式码盘,具有寿命长‘转速高等优点。它是一种发展前途的直接编码式测量元件。 工作原理,接触式码盘,每个码道上有一个电刷与之接触,最里面一层有一导电公用区,与各码道到点部分连在一起,而与绝缘部分分开。导电公用区接到电源负极。当被测对象带动码盘一起转动时,与电刷串联的电阻上将会出现电流流过或没有电流流过两种情况,带标二进制的1或0.若码盘顺时针转动,就可依次得到按规定编码的数字信输出。如果电刷安装不准就会照成误差。葛莱码没转换一个数字编码,只改变一位,故照成的误差不会超过一个单位。 *******************************************************************************

编码器工作原理

编码器工作原理 Prepared on 22 November 2020

的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器、等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,也能得到一个速度信号,这个信号要反馈给器,从而调节的输出数据。故障现象: 1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电路来处理。编码器pg接线与参数与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的,因此选择合适的pg卡型号或者设置合理. 编码器一般分为增量型与绝对型,它们存着最大的区别:在的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。这样的编码器是由码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置的唯一性,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 由于绝对编码器在定位方面明显地优于增量式编码器,已经越来越多地应用于工控定位中。绝对型编码器因其高精度,输出位数较多,如仍用并行输出,其每一位输出信号必须确保连接很好,对于较复杂工况还要隔离,连接芯数多,由此带来诸多不便和降低可靠性,因此,绝对编码器在多位数输出型,一般均选用串行输出或型输出,德国生产的绝对型编码器串行输出最常用的是SSI (同步串行输出)。

双层滤料机械过滤器工作原理以及反洗操作

双层滤料机械过滤器工作原理以及反洗步骤 一、过滤原理 双层滤料过滤器的过滤原理包括机械筛分和接触混凝两种作用。 1.机械筛分 过滤器滤料间孔眼往往很小,尤其在滤层上表面,水流经过的时候该类孔眼将截留部分悬浮物,同时截留下来的悬浮物重叠架桥,从而形成孔眼更小的滤网,以除去更小的悬浮物。2.接触混凝 过滤器内滤料排列比较紧密,悬浮物胶体在流经滤料间弯弯曲曲的孔道时,极易与滤料颗粒撞击,由于胶体悬浮物具有较强的表面活性,便吸附在滤料颗粒上被除去。 二、双层滤料机械过滤器的手动反洗 1.反洗前检查 1.1机械过滤器反洗泵、清水泵完好备用且已送电,进水门全开;压力表完好且表门开启。 1.2反洗水箱液位足够高且出水门开启。 1.3罗茨风机完好备用且已送电。 1.4双滤料过滤器所有阀门呈关闭状态,与其它过滤器已隔离。 2.反洗操作(以规格:Φ3400,出力:74m3/h ,流速:8m/h,石英沙800㎜;无烟煤400㎜双过为例,具体反洗流量根据情况而定) 2.1放水:开启过滤器排气气动门、正排气动门、反排气动门、放水至滤料上100mm,后关正排门。 2.2反洗:打开双过反洗进水气动门,启动机械过滤器反洗水泵,缓慢开启出水门,逐渐增加反洗流量(防止水量过大冲击石英砂垫层,造成垫层乱层),控制反洗流量250-299T/h(排水中应无滤料带出),反洗至出水澄清,停双过反洗泵关反进气动门。 2.3放水:开正排气动门、放水至滤料上100mm,关正排气动门。 2.4空气擦洗:启动罗茨风机,开启进气气动门,气压维持在0.052Mpa左右,擦洗5-8min,关进气气动门停罗茨风机。 2.5反洗:开反洗进水气动门,启动双过反洗水泵,控制反洗流量250-288T/h(在排水中无滤料的情况下可尽量增大反洗流量),反洗至出水澄清,停反洗泵、关反进气动门、排气气动门、反排气动门。 3.正洗 3.1启动清水泵、开启进水气动门、排气气动门,待排气气动门溢水后开启正排气动门、关排气气动门、调整流量不大于35-45T/h,进行正洗。 3.2正洗40-60min,停清水泵,关进水气动门、正排气动门、开排气气动门放尽压力后关排气气动门。

编码器的工作原理及分类

编码器的工作原理及分类 编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。 故障现象:旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”。。。联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理。 编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用

机械过滤器工作原理及如何选型简要介绍

机械过滤器工作原理及如何选型简要介绍机械过滤器的选型是根据系统总进水量来选择过滤器的大小以及组合方式的(一台机械过滤器不够可选择多个并联使用以及备用的数量),如根据反渗透系统水回收率的大小和系统产水量的比值得出系统总进水量。 机械过滤器内的填料是由许多不同粒径的精制石英砂严格按从大到小的次序配置而成,因而形成良好的石英砂级配。过滤器在刚投入使用时,过滤效果往往不是很好,是因为在刚开始时过滤器没有形成“架桥”,所谓“架桥”是指由水中悬浮物组成一道拦截网,该拦截网拦截与其粒径相当的悬浮物,继而拦截粒径较小的悬浮物,形成一个先拦截大颗粒物质、后拦截小颗粒物质的反粒度式过滤过程。过滤器一旦形成“架桥”,过滤效果非常好,随着投入运行的时间加长,过滤精度越来越高,拦截网越来越厚,进出口压差越来越大,当压差达到1kg/cm2应对过滤器进行反冲洗,在反冲洗的过程中最好配有压缩空气对石英砂擦洗,一般的工程经验是直径小于2500mm的机械过滤器不需用压缩空气;而直径大于2500mm的机械过滤器必须用压缩空气进行擦洗才能够达到满意的清洗效果;反冲洗流量一般为过滤器的设计容量的3-4倍。 老式的机械过滤器大都采用大的鹅卵石作为基础垫层,底部用凸形的钢板均匀地打上透水孔,使布水不均匀,容易产生中心过滤率大而边沿过滤率小;在滤器经过反洗时会发生石英砂混层的现象,这样就不可避免地会发生滤料泄露到下级管道和精密过滤器中,对精密过

滤器和反渗透装置形成严重的威胁。经过不断地实践和实验,不少厂家对机械过滤器进行了改进,布水装置采用多孔板加装特殊形式ABS 水帽,该种ABS水帽具有双向出力不同的功能,即运行时出力较小、反洗出力可几倍增加,使过滤器在正洗时的布水更均匀,反洗时更彻底,出水品质大大提高。为防止在运行或反洗时有细砂透过滤器,该种ABS水帽的透过间隙非常小,一般在0.1-0.2mm左右。值得注意的是,在过滤器填料填装的过程中,必须将过滤器内注入一定量的水来防止大的石英砂击碎ABS水帽;在安装水帽的过程中,不能穿硬的鞋以防止踩碎ABS水帽。 机械过滤器设有反洗水进口限位蝶阀,控制和调节反洗水流量,反洗强度应使滤层膨胀15-25%,反洗压缩空气强度一般在10-18L/S.m2。如无压缩空气可考虑用罗茨风机。

单相变压器的基本工作原理和结构

变压器是一种静止电器,它通过线圈间的电磁感应,将一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能. 3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行 3.3 单相变压器的负载运行 3.4 变压器的参数测定 3.5 变压器的运行特性 隐形专家改编于2009-05

3.1 变压器的基本工作原理和结构 3.1.1 基本工作原理和分类 一、基本工作原理 变压器的主要部件是铁心和套在铁心上的两个绕组。两绕组只有磁耦合没电联系。在一 次绕组中加上交变电压,产生交链一、二次绕 组的交变磁通,在两绕组中分别感应电动势。 1 u 1 e 2 e 2u 1i 2 i Φ 1 U 2 U 1 u 2u L Z 1 2 12d Φe =-N dt d Φe =-N dt 只要(1)磁通有 变化量;(2)一、二次绕组的匝数不同,就能达到改变压的 目的。

二、分类 按用途分:电力变压器和电子变压器。 按绕组数目分:单绕组(自耦)变压器、双绕组变压器、三绕组变压器和多绕组变压器。 按相数分:单相变压器、三相变压器和多相变压器。 按铁心结构分:心式变压器、壳式变压器、环形变压器。 按工作频率分:低频(工频)与高频变压器

3.1.2基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成或卷绕而成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、胶心 胶心也可称骨架,用塑料压制而成,用来固定线圈。 四、固定夹 固定夹也可称牛夹,用铁板冲压而成,用来将变 压器固定在底板上。

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

绝对值编码器工作原理

从增量值编码器到绝对值编码器 旋转增量值编码器以转动时输出脉冲,通过计数设备来计算其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计 数设备计算并记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 这样的方法对有些工控项目比较麻烦,甚至不允许开机找零(开机后就要知道准确位置),于是就有了绝对编码器的出现。 绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线。。。。。。编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一 组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘的机械位置决定的,它不受停电、干扰的影响。 绝对编码器由机械位置决定的每个位置是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。 从单圈绝对值编码器到多圈绝对值编码器 旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。 如果要测量旋转超过360度范围,就要用到多圈绝对值编码器。 编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编 码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是由机械位置确定编码,每个位置编码唯一不重复,而无需记忆。

增量式编码器工作原理

增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 编码器是把角位移或直线位移转换成电信号的一种装置。 前者成为码盘,后者称码尺。按照读出方式编码器可以分为接触式和非接触式两种。接触式采用电刷输出,以电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小,绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。 旋转增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。这样,当停电后,编码器不能有任何的移动,当来电工作时,编码器输出脉冲过程中,也不能有干扰而丢失脉冲,不然,计数设备记忆的零点就会偏移,而且这种偏移的量是无从知道的,只有错误的生产结果出现后才能知道。 解决的方法是增加参考点,编码器每经过参考点,将参考位置修正进计数设备的记忆位置。在参考点以前,是不能保证位置的准确性的。为此,在工控中就有每次操作先找参考点,开机找零等方法。 比如,打印机扫描仪的定位就是用的增量式编码器原理,每次开机,我们都能听到噼哩啪啦的一阵响,它在找参考零点,然后才工作。 增量式编码器特点: 增量式编码器转轴旋转时,有相应的脉冲输出,其旋转方向的判别和脉冲数量的增减借助后部的判向电路和计数器来实现。其计数起点任意设定,可实现多圈无限累加和测量。还可以把没转发出一个脉冲的Z信号,作为参考机械零位。编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。需要提高分辨率时,可利用90 度相位差的A、B两路信号对原脉冲数进行倍频,或者更换高分辨率编码器。 增量式角度数字编码器的工作原理:

旋转编码器工作原理

增量式旋转编码器工作原理 增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对式旋转编码器更具有廉价和简易的优势。 下面对增量式旋转编码器的内部工作原理(附图) A,B两点对应两个光敏接受管,A,B两点间距为 S2 ,角度码盘的光栅间距分别为S0和S1。 当角度码盘以某个速度匀速转动时,那么可知输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值相同,同理角度码盘以其他的速度匀速转动时,输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。如果角度码盘做变速运动,把它看成为多个运动周期(在下面定义)的组合,那么每个运动周期中输出波形图中的S0:S1:S2比值与实际图的S0:S1:S2比值仍相同。 通过输出波形图可知每个运动周期的时序为 A B 1 1 0 1 0 0 1 0 A B 1 1 1 0 0 0 0 1 我们把当前的A,B输出值保存起来,与下一个A,B输出值做比较,就可以轻易的得出角度码盘的运动方向, 如果光栅格S0等于S1时,也就是S0和S1弧度夹角相同,且S2等于S0的1/2,那么可得到此次角度码盘运动位移角度为S0弧度夹角的1/2,除以所消毫的时间,就得到此次角度码盘运动位移角速度。

S0等于S1时,且S2等于S0的1/2时,1/4个运动周期就可以得到运动方向位和位移角度,如果S0不等于S1,S2不等于S0的1/2,那么要1个运动周期才可以得到运动方向位和位移角度了。 旋转编码器只有增量型和绝对值型两种吗?这两种旋转编码器如何区分?工作原理有何不同? 只有增量型和绝对型 增量型只是测角位移(间接为角速度)增量,以前一时刻为基点.而绝对型测从开始工作后角位移量. 增量型测小角度准,大角度有累积误差 绝对型测小角度相对不准,但大角度无累积误差 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 编码器的原理: 编码器的原理与应用 编码器是一种将角位移转换成一连串电数字脉冲的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿条或螺旋杆结合在一起,也可于控制直线位移。 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度盘是由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子和图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。 增量型编码器 增量型编码器一般给出两种方波,它们的相位差90度,通常称为通道A和通道B。只有一个通道的读数给出与转速有关的信息,与此同时,通过所取得的第二通道信号与第一通道信号进行顺序对比的基础上,得到旋转方向的信号。还有一个可利用的信号称为Z通道或零通道,该通道给出编码器轴的绝对零位。此信号是一个方波,其相位与A通道在同一中心线上,宽度与A通道相同。 增量型编码器精度取决于机械和电气的因素,这些因素有:光栅分度误差、光盘偏心、轴承偏心、电子读数装置引入的误差以及光学部分的不精确性,误差存在于任何编码器中。 编码器如以信号原理来分,有增量型编码器,绝对型编码器。增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向 ,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

翻盘真空过滤机基本结构与工作原理

【中国塑料机械交易网】小编讯: 翻盘真空过滤机的基本结构与工作原理。水平的环形面积内设置了若干个独立的偏心梯形滤盘,滤盘通过两端轴承座安装在内外转盘上,滤盘的滤室上方配有滤板、滤网、滤布,滤盘内圈方向通过旋转接头输液胶管连接至上分配头。转盘置于若干个托轮上并被圆周上若干个挡轮径向定心,转盘圆周装有柱销齿与传动装置,星轮啮合带动转盘以及转盘上滤盘公转,同时通过上分配头上的浮动拨杆带动上分配头同步旋转,每个滤盘又通过翻盘叉组件配合周边导轨控制滤盘自转卸料,分配头连通真空系统及反吹空气接管。料浆通过加料斗从滤盘上方,相对过滤机公转的逆方向均布于滤布上,在真空吸力下,料浆滤液穿过滤布经滤盘U形底槽、抽液管轴、旋转接头、胶管到上分配头,流向下分配头过滤腔室出品排出,而在滤布上形成滤饼,滤饼在过滤区继续真空脱水。经过过滤区后滤饼受到一次洗液洗涤,此时仍处于真空吸力下,洗涤液经过滤饼带走残余过滤有效成分。脱水后的滤饼继续按工艺接受二次洗液洗涤。此逆流多级洗涤法非常节省洗涤液,因为第二级洗涤所得稀薄洗涤液可作为第一级洗液。最后,滤盘旋转至反吹卸料区,滤盘逆公转方向自转倾覆,滤饼被压缩空气吹松,靠重力并借助压缩空气卸料,此时滤盘通过上分配头同下分配头的压缩空气腔室相连。卸料后的滤布紧接着受到冲洗水冲洗再生,这时滤盘不与压缩空气或真空相连。然后接通真空吸干滤布上残余冲洗水,接着滤盘翻回水平位置,重新加料。至此,公转一周完成过滤、一洗、二洗、翻盘反吹卸料、滤布冲洗及吸干、复位加料这样一个循环过程。其中,过滤与洗涤区大小可调,洗涤次数、干渣下料或湿渣下料可选。过滤、洗涤区间属于有效过滤区,其对应面积即为有效过滤面积。 过滤机的每个滤盘小端部都通过吸液胶管与中心分配头的上错气盘各孔一一对应相通,并与其同步水平回转。下错气盘上开着许多分别与过滤、洗涤、吸干等各真空系统相连的按比例分配的腰形孔相通,并固定在机座上不动。 翻盘真空过滤机展开的原理:各滤盘在绕中心分配头回转时完成加料、过滤、一洗、二洗(三洗)的过滤操作,并通过大端部的翻盘滚轮沿周边的曲线轨道进行机械的翻盘动作,完成反吹、排渣、冲洗滤布、滤布吸干、滤盘复位等辅助操作过程。整个过程周而复始地连续操作。系统采用逆流洗涤法,并将各区所得不同的滤液浓度严格分开处理。 翻盘真空过滤机具有以下主要特点。 1、由若干个偏心梯形滤盘组成,滤盘组成,滤盘自身倾翻卸料。 2、可以连续完成加料、过滤、洗涤、卸料、滤布再生等操作工序。 3、采用了滤盘倾翻结合压缩空气反吹实现卸料,使得卸料比其他刮料的方式更干净、更彻底,滤布几乎不发生机械损伤且再生效果非常好。 4、过滤区(角度)、洗涤区(角度)可按工艺需要调节。 5、采用的滤布压紧机构使滤布拆卸更换方便,且不损伤滤布。 6、可进行多级逆流洗涤,用较少的洗涤液可获得较高的洗涤效果。 7、制造成本较高,占地面积较大。

车轮传感器、旋转编码器工作原理

车轮传感器、旋转编码器工作原理 对于工业控制中的定位问题,一般采用接近开关、光电开关等装置。随着工控的不断发展,出现了旋转编码器,其特点是: 1、信息化:除了定位,控制室还可知道其具体位置; 2、柔性化:定位可以在控制室柔性调整; 3、安装方便和安全、使用寿命长。 一个旋转编码器,可以测量从几个微米到几十几百米的距离。多个工位,只要选用一个旋转编码器,就可以避免使用多各接近开关、光电开关,解决现场机械安装麻烦,容易被撞坏和遭高温、水气困扰等问题。 由于是光电码盘,无机械损耗,只要安装位置准确,其使用寿命往往很长。 4、多功能化:除了定位,还可以远传当前位置,换算运动速度,对于变频器,步进电机等的应用尤为重要。 5、经济化:对于多个控制工位,只需一个旋转编码器,安装、维护、损耗成本降低,使用寿命增长。 鉴于以上优点,旋转编码器已经越来越广泛地被应用于各种工控场合。 编码器(encoder)是将物理信号编制、转换为可用以通讯、传输和存储的信号的一种设备。应用于速度控制或位置控制系统的检测元件。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺。 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90

度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器(旋转型)工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。

什么是旋转编码器

旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 编码器如以信号原理来分 增量脉冲编码器:SPC 绝对脉冲编码器:APC 两者一般都应用于速度控制或位置控制系统的检测元件. 增量型编码器与绝对型编码器的区分 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 旋转编码器由精密器件构成,故当受到较大的冲击时,可能会损坏内部功能,使用上应充分注意。 注意的事项是: (1)安装 安装时不要给轴施加直接的冲击。 编码器轴与机器的连接,应使用柔性连接器。在轴上装连接器时,不要硬压入。即使使用连接器,因安装不良,也有可能给轴加上比允许负荷还大的负荷,或造成拨芯现象,因此,要特别注意。 轴承寿命与使用条件有关,受轴承荷重的影响特别大。如轴承负荷比规定荷重小,可大大延长轴承寿命。

相关文档
最新文档