An elasto-plastic damage model for reinforced concrete with minimum number of material parameters

An elasto-plastic damage model for reinforced concrete with minimum number of material parameters
An elasto-plastic damage model for reinforced concrete with minimum number of material parameters

An elasto-plastic damage model for reinforced concrete with minimum number of material parameters

Wilfried B.Kr€a tzig a,Rainer P€o lling b,*

a Institute for Statics and Dynamics,Ruhr-University Bochum,44780Bochum,Germany

b Building Contractors of Mesenbrock,Welter Stra?e4,48249D€u lmen,Germany

Received1November2002;accepted4March2004

Available online20April2004

Abstract

Based on a fully3-D elasto-plastic damage theory,the material behavior of all reinforced concrete components––concrete,reinforcement and bond––is,for biaxial loading,realistically modelled,including cyclic action.Thereby emphasis is layed on concrete in tension and compression.The presented model contains a minimum number of material parameters.It further enables to map exact uniaxial stress–strain curves as proposed by modern codes of practise,like the EC2.

All material parameters of the model can be readily interpreted and determined by few standard experiments,or approximated from concrete compression strength.Finally,the concrete model is veri?ed by numerical simulation of experiments.

ó2004Elsevier Ltd.All rights reserved.

Keywords:Concrete;Reinforced concrete;Material damage;Plasticity;Crushing energy;Material model;Softening

1.Introduction

In structural engineering,reinforced concrete is considered as a2-phase composite of uniaxial steel and multi-dimensional concrete components.Hardened concrete itself,predominantly a mixture of aggregates and a cementitious matrix,exhibits a rather complicated deformation behavior,mainly because of initiation and growth of micro-cracking in the matrix.

Constitutive models for concrete,the central concern of this treatise,exist on very di?erent quality levels.Even the most advanced structural codes of practice[1]o?er mainly elastic behavior,at most some monotonic non-linear stress–strain curves without any rheo-mechanical speci?cation.On the other(research)extreme,we?nd highly sophisticated constitutive attempts with few relations to engineering design practice.But for com-puter simulation of advanced structural problems,like failure analyses or life-cycle assessments,constitutive models are required,improved compared to those from codes of practice and more exact,nevertheless of lowest possible complication.Severe de?ciencies of code mod-els are their uniaxial formulation and the lack of infor-mation for cyclic processes.

If one attempts to set up a constitutive model for cyclic behavior of concrete as pictured in Fig.6or7,one observes?rst the residual strains after complete unloading.These generally are interpreted as‘plastic’deformations,although in concrete there will be cer-tainly no plastic slip like in metal plasticity.The second observation is the sti?ness degradation along the cycles which requires a‘damage’component in the model. Obviously in constitutive modeling of concrete,an elasto-plastic component has to be combined with an elasto-damaging one.

Hence the key aim here is a3-dimensional elasto-plastic description of mechanical responses of reinforced

*Corresponding author.Tel.:+49-2548-9193-883;fax:+49-

2548-1085.

E-mail address:rainer.poelling@https://www.360docs.net/doc/2910208676.html,(R.P€o lling).

0045-7949/$-see front matteró2004Elsevier Ltd.All rights reserved.

doi:10.1016/https://www.360docs.net/doc/2910208676.html,pstruc.2004.03.002Computers and Structures82(2004)

1201–1215

https://www.360docs.net/doc/2910208676.html,/locate/compstruc

concrete,supplemented by a damage component.Be-cause of few cyclic experiments for concrete and the problem of reproductivity of results,a minimum number of well-de?ned,experimentally identi?able material parameters shall control the model[2].

Classical elasto-plastic material theories[3,4]are standard in engineering,they need no explanation here. They are‘stress-based’since their yield conditions and yield potentials are formulated in stress-space.‘Strain-based’plasticity theories,with plastic stresses as internal thermodynamic variables and consequently yield con-ditions in strain-space,have their origins in the works [5,6].Remarkably early,Dougill[7]proposed a‘frac-turing theory’for concrete under compression,in our terminology a‘strain-based’damage concept.Opposite to plasticity,its basic idea required that inelastic defor-mations result merely in sti?ness degradations,thus all unloading paths cross through the origin of the stress–strain diagram,and no residual strains remain after unloading.

In a re-work Dougill and Rida[8]de?ned‘micro-fracturing’materials,equipped with sti?ness degrada-tion from micro-crack evolution,linear-elastic behavior during un-/reloading,and without strain/stress residuals after complete unloading.Hence they laid the basis of ‘strain-based’continuum damage theories[9,10],in which the material sti?ness tensor itself acts as internal damage variable.If instead of this the?exibility(com-pliance)tensor is applied,‘stress-based’continuum damage theories can be established[11,12].

In order to properly model the constitutive behavior of concrete in compression or tension,both constitu-ents––plasticity as well as continuum damage theory––have to be combined,both either in‘stress-based’or ‘strain-based’alternatives.Such?rst coupling work was due to Ba z ant and Kim[13].Their‘stress-based’plas-ticity combined with‘strain-based’damage theory led to an‘elasto-plastic fracturing’concept with a total of26 material parameters.Coupling concepts of both con-stituents in stress-space are due to[14],a work speci?ed by[15]to isotropic damage of concrete under com-pression.[16]therein uni?ed both limit surfaces for yielding and fracturing to one.

Han and Chen[17]?rst combined both constituents in complete tensorial manifold in strain space.In order to reduce the number of material constants,they united yield and damage surface,an idea repeated in[10]. Further,[18]o?ered a scalar coupling of plasticity and damage theories introducing again a uni?ed yield/dam-age condition with the key argument that micro-crack-ing in the cementitious matrix is the single source for both inelastic phenomena.

Finally we mention the survey over all basic condi-tions of coupling alternatives in[19].We stress,that there only elasto-plastic-damage concepts are listed with a sound basis in continuum mechanics.Empirical models of reinforced concrete which all combine the mentioned constituents are legion[2];a prominent concept leading to excellent results is that one of Darwin and Pecknold[20].

All mentioned constitutive models call,in principle, for the ability to describe material failure in compression as well as in tension,obviously both strongly localized phenomena[21].To avoid mesh sensitivity of a partic-ular FE-solution,such localized fracture processes re-quire special treatment[22].The intended constitutive law of this work is aimed to the analysis of complete structures,such that the classical‘smeared crack’con-cept shall be maintained[23].Such concept avoids the immense numerical e?ort of modeling hundreds of single cracks,presently to be mastered only by parallel com-puting techniques,in view of the physical irreproduc-ibility of crack-patterns in concrete structures,even under laboratory conditions.

So in order to avoid modelling of localization bands or surfaces as weak or strong discontinuities,or to avoid enhancements by non-local kinematics,the use of crushing respectively fracture energy is chosen here[2]. Advantageously,such regularization requires only the determination of2additional material constants, namely the crushing and the fracture energy.

Consequently,in this paper a‘stress-based’elasto-plastic damage model for reinforced concrete will be derived.It will be demonstrated,that not only the fun-damental ideas of micro-fracturing and damage theories are equal,but that both concepts lead to identical material descriptions[18],if the material sti?ness tensor itself is used as internal thermodynamic variable.It hence is obvious that both phenomena––damage by tension cracks as well as by compressive micro-crack-ing––follow a uni?ed elasto-plastic damage theory.The ?nal constitutive law will possess a minimum number of material parameters,an important aspect for applica-tion.For this reason,the model is adapted without exact description of the response under highly triaxial com-pression.

2.Theoretical basis of the elasto-plastic damage theory

The fundamental framework of the presented con-cept is the‘stress-based’elasto-plastic damage theory. An excellent summary of this theory with the compli-ance tensor as internal variable has been given by Govindjee et al.[12]in complete analogy to plasticity theory.Recently a scalar combination of both damage and plasticity theory has been performed by[16].We start with a brief summary of the underlying concept.

As in[12]our starting point is the assumption of a Helmholtz-free energy W and the de?nition of internal thermo-dynamical variables.To consider both,plastic deformation and sti?ness reduction,we introduce as

1202W.B.Kr€a tzig,R.P€o lling/Computers and Structures82(2004)1201–1215

internal thermo-dynamical variables the plastic strain e pl

as in ordinary plasticity theory and the change D da of the compliance tensor like in [12].Then the Helmholtz-free energy reads:

q 0W ee ;e pl ;D da ;q T?1ee àe pl T:eD 0tD da

|??????{z??????}D

Tà1:ee àe pl

T

tq 0W in

eq T;

e1T

where r and e denote the stress and strain tensors,respectively.D 0abbreviates the initial compliance ten-sor,and q as further internal variable describes the hardening/softening behavior of the material.W in eq Tcontains the free energy associated with progressive degradation and plastic deformations.Finally,with q 0as initial density we identify the thermodynamically associated variables àr ?q 0o W =o e pl ;

àa eq T?q 0o W =o q ;

e2Tà12

r r ?q 0o W =o D da :e3T

Applying the C LAUSIUS –D UHEM inequality q 0_W

6r :_e ,we arrive on one hand at the compliance rela-tion

e ?eD 0tD da T:r te pl !r ?eD 0tD da Tà1:ee àe pl T;

e4T

and on the other hand at the inequality of dissipation P dis ?1

2

r :_D da :r tr :_e pl ta _q P 0:e5T

After introducing the elastic region E in the space of the associated variables (stresses):E :?fer ;a Tj U er r ;a T60g ;

e6T

we deduce from the principle of maximum inelastic dissipation the following normality rules:_e

pl :o r o er r Tt12_D da ?

o U o er r T

á_k ;e7T

_a

?ào U á_

k :e8T

At this point we have to separate the inelastic strains into those of plastic and damaged origin.Because of few available cyclic experiments for later parameter ?tting,the use of just one scalar b ,as proposed in [16]for separation of plastic from damaged parts,is adopted.Thus we assume _D

da ?2_kb o U o er r T

and

_e

pl ?_k e1àb To U o r

:e9T

Obviously with (34),the normality rule (7)is ful?lled.

With the consistency condition _U

?0one ?nally derives the tangential sti?ness relation and the evolution equa-tions for the internal variables as summarized in Table 1.

3.Uni?ed elasto-plastic damage model for reinforced concrete

3.1.Concrete under compression

3.1.1.Yield/damage potential

A yield/damage potential of Drucker–Prager-type has been selected for description of concrete in com-pression.Such type of potential can be handled rela-tively easy,it enables a su?cient modelling quality at least for uniaxial and biaxial proportional loading.This potential reads U c er ;a c T?

11??3

p àl l I 1?t????J 2p ?àa c eq c T;e10T

with I 1and J 2as ?rst invariant of r and as second

invariant of its deviator s ,respectively.The parameter l herein controls the in?uence of the hydrostatic stress on damage or yield.Further,the term left of the brackets guarantees that during plastic/damage loading a c always corresponds to the negative uniaxial compression stress.Di?erentiation of this potential with respect to r delivers

Table 1

Tangential sti?ness relation and evolution equations of internal variables of the stress-based elasto-plastic damage theory

Elastic loading/unloading _k ?0

Plastic-damaging loading k

>0,U ?0Tangential sti?ness relation:_r ?D à1:_e _r ? D à1àD à1:o U o r o U

o r

:D à1o U :D :o U ào U a ;q o U

!:_e Equations of evolution of internal variables:

_D da ?0_D da ?2b o U á_k or e_D da :r T?b o U _k _e pl ?0_e pl ?e1àb To U o r

á_k _q

?0_q

?o U o a

á_k with _k ?o U

o r

:D à1o U

:

D :o U ào U

a ;q o U

:_e

W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–12151203

o U c o r ?11??3

p àl l o I 1o r t12????

J 2p o J 2

o r

?11??3

p àl l I ts ts T

4????J 2p :e11T

3.1.2.Modi?cation of the internal variable,yield and

damage rule

We now introduce a new internal variable q ?c ,replacing the original one q c :

_q ?

c ?à2b w er T_q c ?2b w er T_k c with w er T?21??3p àl l

1

t1???2

p

:e12T

Then a c in (10)shall be only a function of q ?c .Due to

Section 3.1.4this transformation allows an analytical solution for the hardening/softening function a c eq ?c Tfrom a given uniaxial stress–strain curve [2],one of our goals.The rate of this variable a c reads

_a c ?d a c ?c _q ?c ?d a c ?c 2b _k c :

e13TFurthermore we assume,that the parameter b ,which separates plastic from damage parts,shall also be a function of q ?c .

The equations of evolution of the plastic strain _e

pl and the strain _e

da ?_D da :r can directly be determined from the potential (10).With respect to (11)and (12)we gain:

_e pl ?e1àb eq ?c TTo U c o r _

k c e14T?w er T

121b eq ?c T à1

11??3

p àl l I t14????J 2p s àts T

á _q ?c e15T

and

_e da ?_D da :r ?b eq ?c

To U c o r _k c e16T?b eq ?c T11

??3

p àl l I t14????J 2p s àts T á

_k c :e17T

Assuming now an isotropic damage evolution due to compression,we ?nd the following compliance evolu-tion law,the correctness of which can be veri?ed by an double scalar contraction with r :

_D

da ;c ?b eq ?

c T1??3

p àl l 1 à16????J 2p I I t14????J 2p eI tI T!á_k c e18T

?w er T1211

??3

p àl l I 1

à1

6????J 2p

I I t1

4????J 2

p eI tI T!

á_q ?c :e19T

The tensor D da ;c describes the compliance evolution and can be represented by two scalars in the isotropic case.Consequently,we replace the fourth-order tensor D da ;c

in the set of internal variables by D da ;c s1and D da ;c

s2as fol-lows:

D da ;c ?D da ;c s1I I tD da ;c s2eI tI T:

e20T

By comparison with the coe?cients in (18)and (20),one

arrives at evolution equations for D da ;c s1and D da ;c

s2:

_D da ;c s1?b eq ?

c T1??3

p àl l 1 à16????J 2p _k c ;e21T_D da ;c s2

?b eq ?c

T1??3

p àl

14????J 2

p

_k c :e22T

3.1.3.Tangential sti?ness relation

Because of all above assumptions the tangential sti?ness relation slightly di?ers from the standard form in Table 1,and one arrives with q ?c at:

_r ?D à1"àD à1:o U c o r o U c o r

:D à1o U c o r :D à1:o U c o r td a c d q ?c

?c w er T

#

:_e e23Tin the case of plastic-damaging loading.

3.1.

4.Concept of determination of the hardening/softening

function

We now consider uniaxial loading with respect to an orthogonal cartesian frame,where the unit base vector i 1coincides with the loading direction.Then the compli-ance relation (4)becomes

e ?1E c

tD da ;c !r te pl with e ?e 11;e pl ?e pl 11;r ?r 11

;1E c

?D 1111;D da ;c ?D da ;c 1111e24T

and the evolution equation (19)for the compliance boils

down to

_D da ;c ?w er T1??3p àl l r "à16??3p r !t14??3p r á2#á_q ?c ?_q ?c :e25TBy integration of this relation one arrives at the

important statement D da ;c ?q ?c ;

e26T

interpreting the internal variable q ?c as the uniaxial change of the compliance due to damage.Furthermore we assume the split of inelastic strains into plastic and damaging parts by the scalar parameter b ,as illustrated in Fig.1.From all previous transformations follows for the plastic strain e pl :

1204W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–1215

e pl

?b e pl h tD da ;c

á r

ee Ti

!e pl ?b

1àb

D da ;c á r

ee T?

b

1àb q ?

c

á r ee T:e27T

We then obtain by substituting (26)and the latter identity into (24)

e ?

1c t1q ?

c ! r ee T;e28Twhich equation solves with given function r

ee Tfor e as e ?e eq ?

c T,yielding together with the stress–strain instruction ?nally to a c eq ?c T? r ee eq ?c TT:

e29T

Furthermore we need the di?erential quotient d a c =d q ?c

and ?nd

d a c d q ?c ?àd r d

e d e d q ?c ?a c d r d e e1àb T1à1E c tq ?c 1àb d

r d e

h i ;e30T

with d e =d q ?c gained by total di?erentiation of Eq.(28).

Finally we need the explicit form of b eq ?c T.Starting point is the evolution equation (15),which reduces under uniaxial loading conditions to

_e pl

?1?c à1

r á_q ?c ;e31Tfrom which we ?nd directly b eq ?c T?

11t

o e =o q c

c c :e32T

For further transformation we can conclude from (27)

o e pl o q ?c ?b 1àb a c eq ?c T

tq ?

c

d a c d q ?c !;e33Tleading ?nally to b eq ?c T?

1

1tb 1tq ?c

c ?c

d a c

?c

h

i :e34T

3.1.5.Mapping to uniaxial stress–strain curve

For convenience the uniaxial stress–strain curve of concrete,assumed here as given function,shall be sub-divided into three parts as illustrated in Fig.2.

Region 1:Elastic.Below the initial yield/damage stress f c y we assume linear-elastic behavior,de?ned by Young’s modulus E c and Poisson’s ratio m c .The initial yield stress f c y is taken as one third of the failure strength f c ,such that we obtain the initial condition

a c eq ?c ?0T?f c y ?1

3f c :

e35T

Region 2:Hardening.In this region the stress grows until failure strength f c ,consequently the tangential sti?ness decreases from initial sti?ness to zero (hori-zontal tangent).An analytical function of this behavior,which ?ts well with experiments is found in [2].Eq.(2.1-18)therein reads

r

2ee T?E ci e c

te c

2

E ci e c f

c

à2

e e c

f c ;e36T

with f c and e c as failure stress and accompanying strain,respectively.The modulus E ci ;originally denotes the initial modulus of elasticity.But in order to guarantee the stress–strain curve to cross the point eàe c y ;àf c y T,we de?ne E ci ;with respect to (35)as secant modulus

[2]

Fig.1.De?nition of material parameter b

.

Fig.2.Assumed uniaxial stress–strain curve of concrete under

compression.

W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–12151205

E ci?

1

2E c

f c

e c

2

à

f c

e c

t

3

2

E c:e37T

Region3:Softening.After exceeding the compression strain e c,localization of damage occurs in this softening region.A suitable concept to overcome possible ill-po-sedness there,originally derived for tension softening in smeared crack idealization,is the use of fracture energy: Then the softening branch depends on the fracture en-ergy,a material parameter,and on the characteristic length l eq[24].

Use of fracture energy as material parameter instead of a softening function is generally accepted for tension cracks.The transfer of this concept to softening under compression has been?rst proposed by Feenstra[25] and accepted since that,i.e.[26].To distinguish fracture energy under tension from that one under compression, the latter will be denoted as‘crushing energy’.But one should notice,that because of nonlinear hardening also a di?use crushing energy g cu;exists[27],not included in the presently described localized one.Thus one sets the

volume speci?c localized crushing energy g?

cl (compare

Fig.2)equal to G cl=l eq,where G cl is the material parameter‘crushing energy’and l eq the characteristic length of the respective FE integration point.Clearly,l eq depends on type,quadrature rule and form of the ele-ment[28].

Consequently,the following function has been cho-sen for the softening branch of region3:

reeT?à

1

2tc c f c e c

c

tc c etc c

c

áe2

with c c>0e38T

in which c c is the only free parameter controlling the

area under the stress–strain curve,corresponding to g?

cl .

Note,that this area is?nite.Determination delivers the following relation to the localized crushing energy G cl,as explained in detail in[19]:

c c?

p2f c e c

2G cl

eq à1f c e ce1àbTtb f c

c

h i2:e39TRemark.If the term in square brackets becomes nega-tive,the above equation renders invalid,since this would describe a‘snap-back’-behavior in the considered material point.To avoid this,one should elude elements leading to

l eq6

G cl

f c e ce1àbTtb f c

E c

:e40T

For determination of a ceq?

c T(29)from re-branches,see

Appendix A.3.2.Concrete under tension

For description of concrete behavior in tension we apply the stress-based continuum damage theory again. But for simplicity,all inelastic deformations shall be due to pure damaging,i.e.b?1.Also,opposite to com-pression,we exclude nonlinear hardening before soft-ening.Thus the initial damage surface and the failure surface are identical.

3.2.1.Damage potential

For tension failure,we use the widely accepted damage potential of Rankine type,a criterium in good accordance with biaxial experiments[29].To allow for softening in di?erent directions to model cracks in dif-ferent directions at least a kinematic softening rule is required.Hence introducing the back-stress a t of the stress state r as internal variable,the damage potential reads

U te1Ter;a tT?ne1Tàf ct60;e41Tabbreviating with ne1Tthe?rst eigenvalue of n?ràa t.

The derivatives of this potential with respect to r and a t are

o U t

o r

?Me1T

n

and

o U t

o a t

?àMe1T

n

;e42T

where Me1T

n

denotes the eigenvalue basis of the?rst eigenvalue of n.

3.2.2.Modi?cation of internal variable,kinematic soften-ing and damage rule

If one follows strictly the thermodynamic concept of the continuum damage theory,one has to introduce a

second-order tensor q

t

,thermodynamically conjugate to a t.Furthermore one has to?nd an evolution law as normality condition for this tensor and a tensor-valued function a teq tTas softening rule.The evolution law then reads_a t?o a t=o q t:_q t.Instead of such complexity determination,we replace the fourth-order tensor

o a t=o q t by a scalar function Zea1

t n

T,with a1

t n

?a t:Me1T

n

as normal component of the back-stress in crack-direction.

Introduction of an explicit conjugate variable q1

t n

can be omitted,because no hardening regime has been as-

sumed,and the function q1

t n

ea1

t n

Ttherefore is bijective. These simpli?cations lead to the softening rule,illus-trated in Fig.3:

_a t?Zea1

t n

T

o U t

o a t

_k

te1T

?à_k te1TZea1

t n

TMe1T

n

e43T

corresponding to Prager’s hardening law.(43)guaran-tees crack formation in each principal stress direction, independent of other existing cracks.

Now the normality rule can be derived from the potential U te1T(41)reading

1206W.B.Kr€a tzig,R.P€o lling/Computers and Structures82(2004)1201–1215

_e da ;t :?_D da ;t :r ?_k t e1To U t e1T?_k t e1TM e1Tn :e44T

The anisotropic damage rule:_D

da ;t ?1n

_k t e1TM e1Tn M e1T

n

with

r 1n

?

M e1T

n

:r e45T

has been taken over from [12].This rule guarantees the accomplishment of (44),and preserves symmetry of the compliance tensor.

3.2.3.Consideration of further cracks

As well known,a second crack in 2D-plane and a third one in 3D-space can appear,each orthogonal to the existing ones.Therefore two more damage potentials are introduced analogously to the original one (41):U t e2Ter ;a t T?n e2Tàf ct ;60;e46TU t e3Ter ;a t T?n e3Tàf ct ;60:

e47T

The complete theory thus develops to a non-smooth

multi-surface continuum damage theory.According to Koiter’s rule [30],we then obtain _a

t ?àX 3i ?1

_k t ei TZ ea i t n

TM ei Tn ;e48T

_D

da ;t ?X 3i ?1

1r i n _k t ei TM ei Tn M ei T

n with r i n ?M ei T

n :r :

e49T

Loading conditions have to been introduced for each crack direction separately:_k

t ei TP 0;U t ei T60;

_k

t ei TáU t ei T?0:e50T

3.2.

4.Closure of cracks

Crack closures results in instantaneous local re-sti?-ening of the concrete,where the cracks remain as ‘pas-sive’ones.Following an idea of Ortiz [11]we thus

disregard in the compliance tensor D the constituent D da ;t ,which represents all cracks,but maintain D da ;ta of all ‘active’cracks:D ?D 0tD da ;c tD da ;ta :

e51T

Kraj c inovi c [31]obtained the following relation between D da ;ta and D da ;t ,assembling only those active cracks in principal directions,which belong to positive principal stresses:

D da ;ta ?P t:D da ;t :P t;

e52T

where P tdenotes a fourth-order projection tensor.According to [31],one possible form of P twith H eTas Heaviside-function is:

P t

?X 3i ?1

H r ei TàáM ei T

r M ei T

r :e53T

3.2.5.Tangential sti?ness relation

With all these assumptions the tangential sti?ness relation will expectedly slightly di?er from that one in Section 2.For its evaluation,we determine the consis-tency parameters by use of the consistency condition _U

t ei T?0,the damage rule (49)and the kinematic soft-ening rule (48),?nally arriving at:

_r ?D à1"

àX 3i ?1H _k t ei T D à1:M ei Tn M ei Tn :D à1M ei Tn :D à1

:M ei Tn

àZ a i t n àá#:_e :e54T

3.2.6.Assumed uniaxial stress–strain curve of concrete

under tension

In order to relate our theory to experiments,the softening function Z a i

t n àáwill be determined directly from a given uniaxial curve analogously to the proce-dure in Section 3.1.5.Due to Fig.4we hence distinguish:Region 1:Elastic region.Below the tension strength,the initial damage stress f ct ,linear-elastic behavior is

assumed.

Fig.3.Illustration of the assumed kinematic softening rule.

W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–12151207

Region 2:Softening.In the literature softening curves for concrete in the post-peak region generally are linear or exponential [32].We will base our derivation on the exponential function r ee T?f ct áe ee t àe T=c t

e55T

in which c t controls the area under the stress–strain curve and thus the volume-speci?c fracture energy g ?t .In analogy to the compression regime,the post-peak curve here depends on the material parameter G f ,the fracture energy,and on the equivalent length l eq in the quadra-ture point,relating:c t ?

G f l eq f ct à12f ct

E c

:e56T

Again we emphasize,that for large element sizes a ‘snap-back’-phenomenon may occur.The critical length scale

is for tension l eq ?2G f E c =f 2

ct ,however Ba z ant and Oh [24]recommend,not to violate the condition

l eq 6

G f E c

f 2ct

:e57T

For too small element sizes,Ba z ant and Oh [24]rec-ommend to reduce the failure stress f ct ‘arti?cially’,such

that the condition (57)is ful?lled.The determination of the softening function Z a i

t n àáfrom a given re -curve is detailed in Appendix B.

3.3.Summary of the concrete model

Both previously presented models for concrete in compression and in tension can be united in a multi-surface material theory.The elastic region then is limited by 4damage surfaces U c ?0,namely (10)and U t ei T?0(41),(46)and (47).The loading conditions,the tangen-tial sti?ness relation and the evolution equations of all internal variables are summarized in Table 2.

The complete material model contains nine material parameters,all to be determined by standard experi-ments.If just Young’s modulus E c and the compression strength f c is known for a particular concrete,all remaining parameters can be approximated from for-mulae in [2].These 9parameters are:

?Compression strength f c :The mean value of the uni-axial strength under compression,determined by a cylinder compression test [2].

?Initial Young’s modulus E c and Poisson’s ratio m c :These elastic constants are due to standard

tests.

Fig.4.Assumed uniaxial stress–strain curve of concrete under tension.

Table 2

Loading conditions,tangential sti?ness relation and evolution equations of internal variables of ?nal concrete model Loading conditions:_k

c P 0,U c 60,_k c U c ?0_k

t ei TP 0,U t ei T60,_k t ei TU t ei T?0Compliance tensor:D ?D 0tD da ;c tD da ;ta

with D da ;ta ?P t:D da ;t :P t

Tangential sti?ness relation:

_r ?D à1àD à1:o U c o r o U c

o r :D à1

o U

c

:D à1

:o U c td a c ?c

2b eq ?c TáH e_k c TàáááàX 3i ?1D à1:M ei Tn M ei Tn :D à1M ei Tn :D à1:M ei Tn àZ a i t n àáH _k t ei T "

#:_e Evolution equations of

internal variables:

_D da ;c s1?b eq ?

c T1?3

p àl l

1

à1???2

p

_k c _D da ;c s2?b eq ?c T1?3

p àl 1???2p _k c _e

pl ?e1àb eq ?c TTo U c o r

_k c q ?c ?

2b eq ?c Tw er T_k c

with _k c ?o U c

o r

:D à1o U

c

o r

:

D à1:o U c

o r td

a c d q c 2

b eq ?

c Tw er T

:_e

_D da ;t ?P 3

i ?11i t n

M ei Tn M ei Tn _k t ei T

_a t ?P 3i ?1Z a i t n àáM ei Tn _k t ei T

with _k t ei T?M ei T

n :D à1

M ei T

n :D à1:M ei T

n àZ a i

t n eT

:_e

1208W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–1215

?Crushing strain e c:Strain of concrete,if compression strength is reached.For medium strength concrete this strain can be approximated as2.2&[2].?Tension strength f ct.

?Fracture energy G f:In reinforced specimen,G f can be falsi?ed by bond e?ects(see Section3.5).Thus we employ the energy G fc;related to a single crack,the determination of which is not trivial.However, approximations generally su?cient for structural analysis can be taken from[2].

?Localized crushing energy G cl:Up to now,only Vonk

[27]o?ers experimental values for the complete

(localized and di?use)crushing energy,values be-tween10and25kN/m for medium strength concrete with aggregate sizes64–8mm.Roughly speaking, this value is200–500times the fracture energy.Since more accurate values are rare in literature,the local-ized crushing energy has been approximated by ?tting the analytical softening branch with experi-mental data,see Section4.1.

?The damage parameter b,illustrated in Fig.1,can be determined by curve-?tting to cyclic uniaxial com-pression tests,delivering values around0.5[19].?l:This parameter controls the in?uence of the hydro-static stress on the yield/damage potential.Numerical tests have demonstrated[19],that a value of0.05 adopts the presented material model well to experi-mentally recorded biaxial failure curves[29].

3.4.Steel

Reinforcement steel typically is used as bars in rein-forced concrete structures,thus only uniaxial steel behavior has to be modelled here.For failure analyses simulation at least elasto-plastic behavior is required. For more sophisticated models,mapping hardening and the Bauschinger-e?ect under cycling loading to any de-sired degree of accuracy,the reader is referred to [19,33,34].

3.5.Bond

In design and dimensioning of reinforced concrete structures,generally rigid bond is assumed.For ad-vanced treatments special attention is spend to softening and sti?ening e?ects for crack development and growth. Out of several modelling alternatives we adopt the concept by Feenstra[25]as follows:The complete bond e?ect is virtually separated into a‘tension-softening’-part,considered on concrete side,and a‘tension-sti?-ening’-part,usually allocated to steel.For simplicity,the latter will be neglected in our examples.

The basic postulate of the following concept con-cerning‘tension-softening’in reinforced concrete is,that the complete fracture energy G f inside a?nite element with the characteristic length l eq shall be equal to the sum of the fracture energies of all primary and second-ary cracks inside the equivalent length.Thus before starting any computer simulation we estimate the ex-pected mean crack distance l s,depending on the per-centage of reinforcement q s,the reinforcement diameter d s and the concrete cover c,all in the framework of[2]. Consequently we set for the fracture energy

G f?max G fc;

l eq

s

G fc

&'

;e58T

with G fc;from[2],as explained before.For the mean crack distance l s we?nd in[2]:

l s?

2

3

l s;max

with l s;max?

d s

s;eff

and q s;eff?

A s

c;eff

:e59T

Above A s denotes the area of reinforcement and A c;eff the e?ective tension area of concrete.For surface-like structures,reinforced orthogonally in x-and y-direction, [2]o?ers for the maximum crack-distance

l s;max?

j cos u c j

l s x;max

t

j sin u c j

l s y;max

à1

e60T

in which u c denotes the angle between the expected crack-line and the x-direction.l s x;max as well as l s y;max denote the expected maximum crack-distances in x-and y-direction in accordance with Eq.(59).

4.Examples

https://www.360docs.net/doc/2910208676.html,puter simulation of uniaxial stress–strain curve of concrete

As demonstrated in this example,the parameter G cl can be determined from uniaxial compression tests performed in de?ection-controlled manner up to the softening region.For such re-calculation,the compres-sion tests of van Mier et al.[35]have been selected.All required material parameters are given in Fig.5.

First we varied G cl and found the best agreement of the stress–strain curve for specimen with height of100 mm using a value of G cl?20kN/m.In fact,this value is larger than in[27],what can be explained with larger aggregate sizes(16mm)in the experiments.For all varied l eq,the gained results are also plotted in Fig.5in comparison with the tests.In all simulations,the height of the specimen has been chosen as characteristic length l eq.

The excellent agreement of the calculated re-curves with the experiments demonstrates the correctness of the ‘crushing energy’concept and the high quality of the derived analytical function(38)for the softening region.

W.B.Kr€a tzig,R.P€o lling/Computers and Structures82(2004)1201–12151209

4.2.Model capability for cyclic processes

One of the key features of the new concrete model is

its capability for cyclic loading processes.Fig.6dem-onstrates this in comparison to the cyclic compression tests of [36].l eq therein has been selected equal to the specimen height of 15.0cm,and the crushing energy G cl

is chosen such that the monotonic post-strength path is modeled su?ciently exact.

Fig.7depicts the simulation of a cyclic tension-compression test in [37].The equivalent length l eq ?35mm has been chosen identically to observations in the experiment;all other material parameters are due to the publication.

Both Figures demonstrate strong and weak points of the derived model.Generally,the correspondence with the tests is excellent.Small deviations are due to the struggle for greatest possible simplicity:the de-and re-loading paths lack any hysteresis,and plastic defor-mations in tension are neglected (Fig.7).All these deviations can be healed:for the price of additional material parameters.4.3.Reinforced concrete beam

The following response up to failure of a reinforced concrete test beam has been simulated by use of the FE-code FEMAS 2000[38].These nonlinear numerical simulations have been performed in a deformation controlled technique using Newton–Raphson-iterations.The test beam with high reinforcement ratio

was

https://www.360docs.net/doc/2910208676.html,parison of experimental compression tests [21]with presented material

model.

Fig.6.Simulation of cyclic compression test

[36].

Fig.7.Simulation of cyclic compression–tension test [37].

1210W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–1215

experimentally investigated by Bresler and Scordelis [39].Geometry,reinforcement,loading and material parameters are depicted in Fig.8.

In the FE-analysis layered beam elements were used. For symmetry reasons,only one half of the structure with14elements was discretized.20concrete layers serve as internal re?nement,and the reinforcement bars are modelled as two extra layers.

The calculated load–displacement curves for di?erent crushing energies G cl are shown in Fig.9,compared with the experiments and the analysis of Zahlten[40].The accordance of calculated and experimental response curves seems excellent,especially,since no?tting parameters are used.All material properties stem from [39]or from approximative formulae in[2].

Note,that the failure load depends on the localized crushing energy G cl.Obviously,the ratio of both failure loads calculated with G cl?1000N/m and G cl?10N/m, is1.14.This fact demonstrates,that the limit load––for highly reinforced specimen and failure triggered by crushing of concrete––is dominated by a size e?ect.In this example the failure load seems to be predicted best with the choice G cl?10kN/m,however,this value overestimates the experimental one of353.6kN by approximately10%.

4.4.Reinforced concrete plate

To demonstrate the applicability of the presented model to structural problems,a plate-experiment of McNeice[41].is re-calculated.The quadratic plate was orthogonally reinforced and corner supported.Geo-metric properties,reinforcement and material parame-ters are shown in Fig.10.

The load–de?ection curve,calculated with3·3shell-elements of10layers each under use of symmetry conditions,is depicted in Fig.11,together with the experimental results of McNeice.The correspondence between both curves is convincing.However in the re-gion just beyond crack-initiating the response of

the Fig.8.Geometry,structure and material parameters of beam according to

[39].

Fig.9.Discretisation and load–deformation curve of beam according to[39].

W.B.Kr€a tzig,R.P€o lling/Computers and Structures82(2004)1201–12151211

numerical system seems to be a bit sti?.Better results are

gained,if the tension strength is reduced from 2.96to 2.30MPa.5.Conclusions

In this present work we have derived a 3-D material model for concrete,based on a uni?ed thermodynami-cally based elasto-plastic damage theory.This model for concrete is able to represent exactly uniaxial stress–strain curves from codes of practise [2].An important aspect is its low number of 9material parameters.All of them can be determined from standard experiments,or auxiliary estimated from the concrete compression strength f c [2].Thus this model is considered as optimal for use in advanced structural analysis problems of concrete structures.Acknowledgements

The present work originated from projects of the Special Research Center SFB 398‘Life-time oriented

structural design’at the Ruhr-University Bochum.Financial support of the DFG,the National German Science Foundation,is gratefully acknowledged.

Appendix A.Final determination of function a c (q ?c )The principle of determination of a c eq ?c T,explained in Section 3.1.4,will now be applied for the stress–strain law of Section 3.1.5.First of all and depending on q ?c ,we have to decide,if the material is in the hardening or

softening region.Keeping in mind the identity q ?c ?D da ;c

and Fig.2,we ?nd the limit b e c f c à1E c

P q ?c :region 2;

c :region 3:&eA :1T

Now we determine the function a c eq ?c Tfor the regions 2

and 3separately:

Region 2:The function (36)has been substituted into (28),and this equation has been subsequently solved for e ,denoted then as e 2

:

Fig.10.Geometry,structure and material parameters of RC-plate according to

[41].

Fig.11.Discretisation and load–deformation curve of plate according to [41].

1212W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–1215

e 2eq ?c T?E ci á1

c

tq ?c

à1h i f c e 2c E ci ;e 2c à2f c e c t1E c

tq ?

c

1àb f 2c :eA :2T

Thereafter we write with help of (29)for the hardening

region

a c eq ?c T?à r 2e e 2eq ?c TT:

eA :3T

To determine the derivative d a c =d q ?c ,we furthermore need d r

2=d e as d r 2d e ?e e 2te c TE ci e c ee c à e 2Tt2 e 2f c e c eE ci e 2e c àe2

e 2te c T

f c Tf 2c :eA :4T

Region 3:By substituting (38)in Eq.(28),we gain the

cubic equation

2tc c f c e c c e tc c e 2tc c c e 3?à

1c tq ?c

!

;eA :5Twhich can be solved by standard methods,e.g.[42,p.132].For solution,we consider the reduced form of (A.5),namely ^e 3tp 1^e tp 2?0

with :^e ?e t23

e c

p 1?2e c c c f c à13e

2

c

p 2?16e 2c 27à4e c t2c c f c e 3c 3c c f c

t1E c tq ?c

1àb !

2e c c c ;eA :6T

the discriminant D p ?ep 1=3T3tep 2=2T2and the auxil-iary variable Y p ?sign ep 2T????????????j p 1j =3p .The solution of (A.6)reads then:

ea Tp 1?0:^

e ??????

p 23p eA :7Teb Tp 1>0:

^e ??????????????????????????

àp 22t??????D p p 3

r àp 1?????????????????????????????àp 2=2t??????D p

p 3q eA :8T

ec Tp 1<0_D p >0:

^e ?à2Y p cosh

v 3with v ?arcosh p 2

2Y 3p eA :9T

ed Tp 1<0_D p 60:^e ?à2Y p cos

v 3with v ?arccos p 2

2Y 3p

:eA :10T

In case (d)three real-valued solutions exist in fact,from

which we need only the smallest one given in (A.10).Finally we determine e 3?^e à23e c and substitute this expression into (29):a c eq ?c T?à r 3e e 3eq ?c TT:

eA :11T

Again we need for the derivative d a c =d q ?c the term

d r

3=d e ,reading here d r 3d e ?c c tc c

c e 3

2tc c f c e c c

tc c e 3tc c c á e 2

3h i 2:eA :12T

An overview over the computations of a c ,d a c =d q ?c

and b eq ?c Tfrom q ?

c is given in the ?ow chart depicte

d in Fig.12.

Appendix B.Determination of softening function Z (a i t n )Opposite to [16],which searches for an appropriate softening law by trial and re-checking then the obtained uniaxial curve,we deduce the softening law directly from a given uniaxial stress–strain curve.Our starting point is the compliance relation (4)in rate form

_e ?D 0?tD da ;t ?

:_r t_D da ;t ár :eB :1TThe parameter _k

t e1Tas function of _r is determined by use of the consistency condition as

_k t e1T?à1Z a 1t n

àáM e1Tn

:_r :eB :2

T

Fig.12.Flow chart to compute a c eq ?c T,d a c =d q ?c and b eq ?

c T.

W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–12151213

Substituting this expression into the damage rule (45)and the result further into relation (B.1),one obtains

_e ?D 0"tD da ;t à1Z a 1t n àáM e1Tn M e1T

n

#

:_r ;eB :3Ta constitutive statement,which reduces under uniaxial conditions to

_e ?1c "

tD da ;t à1Z a I t n àá#_r

:eB :4TIn this case the compliance 1=E c tD da ;t changes to e =r obtaining

_e ?e r "

à1Z a 1t n àá#_r !d e d r ?e r à1Z a 1t n àá:

eB :5TThe assumed stress–strain law (55)can be solved for e and further di?erentiated with respect to r .Introducing these expressions into (B.5)then leads directly to the desired function Z a 1t n àá

,if one keeps r ?f ct ta 1t n in mind:Z a 1t n àá?

f ct ta 1

t n e t tc t 1àln 1ta t n =f ct

àá?

?:

eB :6T

References

[1]EC 2.Eurocode 2:Design of concrete structures,June 1992.

[2]CEB/FIP.CEB-FIP Model Code 1990(Design Code),1991.

[3]Simo JC,Hughes https://www.360docs.net/doc/2910208676.html,putational Inelasticity.New York,Berlin,Heidelberg:Springer Verlag;1998.

[4]Chen W-F,Han DJ.Plasticity for structural engineers.Springer-Verlag;1988.

[5]Yoder PJ,Iwan WD.On the formulation of strain-space plasticity with multiple loading surfaces.J Appl Mech 1981;48(December):773–8.

[6]Casey J,Naghdi PM.On the nonequivalence of the stress space and strain space formulations of plasticity theory.J Appl Mech 1983;50:350–4.

[7]Dougill JW.On stable progressively fracturing solids.

Zeitschrift f €u

r Angewandte Mathematik und Physik 1976;27:423–37.

[8]Dougill JW,Rida MAM.Further consideration of pro-gressively fracturing solids.J Engng Mech Div (ASCE)1980;106:1021–38.

[9]Simo JC,Ju JW.Strain-and stress-based continuum damage models––I Formulation.Int J Solids Struct 1987;23(7):821–40.

[10]Stevens DJ,Liu D.Strain-based constitutive model with

mixed evolution rules for concrete.J Engng Mech (ASCE)1992;118(6):1184–200.

[11]Ortiz M.A constitutive theory for the inelastic behavior of

concrete.Mech Mater 1985;4:67–93.

[12]Govindjee S,Kay GJ,Simo JC.Anisotropic modelling and

numerical simulation of brittle damage in concrete.Int J Numer Methods Engng 1995;38:3611–33.[13]Ba z ant ZP,Kim S-S.Plastic-fracturing theory for concrete.

J Engng Mech Div (ASCE)1979;105(3):407–28.

[14]Yazdani S,Schreyer https://www.360docs.net/doc/2910208676.html,bined plasticity and damage

mechanics model for plain concrete.J Engng Mech (ASCE)1990;116(7):1435–50.

[15]Luccioni B,Oller S,Danesi R.Coupled plastic-damaged

https://www.360docs.net/doc/2910208676.html,put Methods Appl Mech Engng 1996;129:81–9.[16]Meschke G,Lackner R,Mang HA.An anisotropic

elastoplastic-damage model for plain concrete.Int J Numer Methods Engng 1998;42:703–27.

[17]Han DJ,Chen WF.Strain-space plasticity formulation for

hardening-softening materials with elastoplastic coupling.Int J Solids Struct 1986;22(8):935–50.

[18]Kr €a tzig WB,P €o

lling R.Elasto-plastic damage-theories and elasto-plastic fracturing-theories––A https://www.360docs.net/doc/2910208676.html,put Mater Sci 1998;13:117–31.

[19]P €o lling R.Eine praxisnahe,sch €a digungsorientierte Mate-rialbeschreibung von Stahlbeton f €u

r Strukturanalysen.PhD thesis,Ruhr-University Bochum,2000(in German).[20]Darwin D,Pecknold A.Nonlinear biaxial stress–strain law

for concrete.J Engng Mech Div (ASCE)1977;103(2):229–41.

[21]van Mier JGM.Strain-Softening of Concrete Under

Multiaxial Loading Conditions.PhD thesis,Delft Univer-sity of Technology,1984.

[22]de Borst R,Sluis LJ,M €u

hlhaus HB,Pamin J.Fundamen-tal issues in ?nite element analysis of localization of deformation.Engng Comput 1993;10:99–121.

[23]Rashid YR.Analysis of prestressed concrete pressure

vessels.Nucl Engng Des 1968;7(4):334–44.[24]Ba z ant ZP,Oh BH.Crack band theory for fracture of

concrete.Materiaux et Constructions 1983;16(93):155–77.[25]Feenstra https://www.360docs.net/doc/2910208676.html,putational Aspects of Biaxial Stress in

Plain and Reinforced Concrete.PhD thesis,Delft Univer-sity of Technology,1993.

[26]Menrath H,Haufe A,Ramm E.A model for composite

steel-concrete structures.In:de Borst R,Bicanic N,Mang H,Meschke G,editors.Proceedings to the EURO-C 1998.Rotterdam:Balkema;1998.p.33–42.

[27]Vonk RA.Softening of concrete loaded in compression.

PhD thesis,Delft University of Technology,1992.

[28]Oliver J.A consistent characteristic length for smeared

cracking models.Int J Numer Methods Engng 1989;28:461–74.

[29]Kupfer H,Hilsdorf HK,R €u

sch H.Behavior of concrete under biaxial stresses.ACI Mater J 1969;66(8):656–66.[30]Koiter WT.Stress–strain relations,uniqueness and varia-tional theorems for elastic-plastic materials with a singular yield surface.Quart Appl Math 1953;11(3):350–4.[31]Kraj c inovi c D.Damage Mechanics,volume 41of Applied

Mathematics and Mechanics.Amsterdam,New York,Oxford:Elsevier;1996.[32]Ba z ant ZP,Planas J.Fracture and size e?ect in concrete

and other quasibrittle materials.New Directions in Civil Engineering.Boca Raton–Boston–London–New York:CRC Press;1998.

1214W.B.Kr €a tzig,R.P €o lling /Computers and Structures 82(2004)1201–1215

[33]Dafalias YF,Popov EP.Plastic internal variables formal-

ism of cyclic plasticity.J Appl Mech1976:645–51. [34]Hofstetter G,Mang https://www.360docs.net/doc/2910208676.html,putational mechanics of

reinforced concrete structures.Grundlagen und Fortsch-ritte der Ingenieurwissenschaften.Braunschweig:Vieweg& Sohn;1995.

[35]van Mier JGM,Reinhardt HW,van der Vlugt BW.

Ergebnisse dreiachsiger verformungsgesteuerter Belas-tungsversuche an Beton.Der Bauingenieur1987;62:353–61(in German).

[36]Sinha BP,Gerstle KH,Tulin LG.Stress–strain relations

for concrete under cyclic loading.ACI J1964;61:195–211.

[37]Reinhardt HW,Cornelissen HAW,Hordijk DA.Tensile

tests and failure analysis od concrete.ASCE-EM 1986;112(11):2462–77.[38]Beem H,K€o nke C,Montag U,Zahlten W.FEMAS

2000––User’s Manual,Release3.0.Ruhr-University,Insti-tute for Statics and Dynamics,Bochum,1996.

[39]Bresler B,Scordelis AC.Shear strength of reinforced

concrete beams.ACI Mater J1963;60(1):51–74.

[40]Zahlten W.A contribution to the physically and geomet-

rically nonlinear computer analysis of general reinforced concrete shells.PhD thesis,Ruhr-University Bochum, 1990.

[41]Jofriet JC,McNeice M.Finite element analysis of rein-

forced concrete slabs.J Struct Div(ASCE)1971;97(3ST): 785–806.

[42]Bronstein IN,Semendjajew KA.Taschenbuch der Math-

ematik.Stuttgart,Leipzig:Teubner Verlagssgesellschaft;

1991(in German).

W.B.Kr€a tzig,R.P€o lling/Computers and Structures82(2004)1201–12151215

(领导力)华润公司领导力素质模型

“我宣布,华润集团领导力素质模型正式启用!”2008年12月22日上午,在深圳观澜湖骏豪酒店骏豪演讲厅里,伴随着华润集团领导力素质模型水晶彩球的亮灯仪式,集团宋林董事长向集团各部室、一级利润中心总经理和人力资源负责人揭开了华润集团领导力素质模型的神秘面纱。 宋董即兴进行了简短的演讲。他指出:华润集团领导力素质模型的发布是华润集团历史上一个非常重要的里程碑,标志着华润集团在文化的打造、团队的打造、领军人物的打造上树立了一个价值标准。说到底华润集团领导力素质模型首先是对一把手的要求,也是对全集团的要求,是华润集团核心的文化价值观,它将引领华润集团走向未来,引领华润经理人不断成长,引领华润每一个员工都以素质模型的基本要求去培养自己、锻炼自己、发展自己。 那么,华润集团领导力素质模型究竟是什么?建立领导力素质模型对华润集团有什么意义?未来我们应该如何正确理解并运用领导力素质模型?针对集团各级领导者和广大员工在首次接触“华润集团领导力素质模型”时可能产生的种种疑惑,华润集团领导力发展项目组给出了解释。 一、什么是素质模型? 1、什么是素质? 在商业环境中,素质是指在既定的岗位、角色、组织和文化中,驱动一个人产生优秀工作绩效的各种个性特征的集合。素质决定了一个人能否胜任或者很好地完成工作任务。每一个素质都与特定的行为表现相联系。Hay(合益)集团采用冰山理论阐述了对素质的理解。他们认为素质由以下六个部分组成: ?知识:个人在一个领域内所掌握的信息总和。例如了解财务方面的知识,掌握计算机语言和编程的方法等。

?技能:个人运用他/她所掌握知识的方式和方法。例如可以熟练地进行计算机的操作,或者可以进行流利的外语交流等。 ?社会角色:个人呈现给社会的形象。例如,是一个制定战略者还是执行战略者,是发起变革者还是执行变革者等。 ?自我形象:个人对自己的形象定位。例如把自己看成一个老师或领导者,把自己看成是善演讲的人或不善演讲的人等。 ?个性特点:个人以一定的方式产生行为的性情和气质。例如是个很好的聆听者,有危机感,对数字敏感,有洞察力等。 ?动机:对行为不断产生驱动作用的需要和想法。例如:想要自我成就某些事情,想要影响他人的绩效等。 在冰山模型上,知识和技能在冰山的顶部,较容易发现和测量。水线下的素质,尽管难于被发现,但是却对表面的行为有很大的直接的影响。社会角色和自我形象存在于意识的水平;个性特点和动机在更深的层次下,往往离人的“核心”最近。也就是说,在水面下越深的部分,越不容易被观察与测量,但是对绩效的影响却越长远。冰山模型说明了素质是如何潜在地作用于人的行为,并最终影响与预示着人的绩效。 2、什么是素质模型? 素质模型就是为了完成某项工作,达成某一绩效目标,要求任职者具备的一系列不同素质的组合。素质模型是针对特定的组织,在特定的时期内而设计的。不同的公司,因为它们组织结构、业务模式、所处行业等方面迥异,所以对员工的素质要求不可能相同。即使是同一个公司,处在不同的发展阶段,它们的素质模型也可能会发生变化。 素质模型通常由4-8个与工作绩效最相关的素质组成。素质模型可以帮助管理者判断并发现员工绩效好坏差异的关键驱动因素,据此指导员工改进并提高绩效。 素质模型一般分为三类,第一类是岗位族群的素质,这个一般是对专业岗位人才的要求;第二类是通用素质,是对所有人员的基本要求;第三类是领导力素质,是对领导者和管理者的要求。很显然,华润集团的领导力素质模型,属于第三类。 二、华润集团为什么要建立领导力素质模型? 宋林董事长在2008年7月13-14日的华润集团领导力发展项目阶段汇报会上提出,华润集团大力发展领导力,是为了应对华润集团发展的六大需要,为了消除华润领导者存在的五大现象,为了塑造简单、坦诚、阳光的企业文化,为了解决滞后的领导力发展水平同日益庞大的事业之间的矛盾。

人教版八年级英语下册常用固定搭配总结

八下英语固定用法总结 1.Doing类 Have problems/trouble/difficulty in doing sth Mind doing sth Mind sb doing sth Finish doing sth Do one’s part in doing sth Keep on doing sth Keep doing sth Instead of doing sth Can’t stop/help doing sth Be busy doing sth Be interested in doing sth Succeed in doing sth Consider doing sth Allow doing sth 2.To do 类 Need to do sth Expect sb to do sth Agree to do sth Seem to do sth Wait for sb to do sth Used to do sth Make plans to do sth Ask sb to do sth Decide to do sth Want sb to do sth Want to do sth Learn to do sth Allow sb to do sth Tell sb to do sth Refuse to do sth Offer to do sth Try to do sth It takes some time to do sth Send sb to do sth Have time to do sth Hope to do sth Be able to do sth

The way常见用法

The way 的用法 Ⅰ常见用法: 1)the way+ that 2)the way + in which(最为正式的用法) 3)the way + 省略(最为自然的用法) 举例:I like the way in which he talks. I like the way that he talks. I like the way he talks. Ⅱ习惯用法: 在当代美国英语中,the way用作为副词的对格,“the way+ 从句”实际上相当于一个状语从句来修饰整个句子。 1)The way =as I am talking to you just the way I’d talk to my own child. He did not do it the way his friends did. Most fruits are naturally sweet and we can eat them just the way they are—all we have to do is to clean and peel them. 2)The way= according to the way/ judging from the way The way you answer the question, you are an excellent student. The way most people look at you, you’d think trash man is a monster. 3)The way =how/ how much No one can imagine the way he missed her. 4)The way =because

compare用法与搭配

compare用法与搭配 1. 表示“把……与……比较”,通常用compare…with…,但在现代英语中,也可用compare… to…,或者用compare…and…。如: If you compare his work with [and] hers, you’ll find hers is much better. 要是把他俩的工作比较一下,就会发现她的好得多。 Having compared the new dictionary with [to, an d] the old one, he found the new one more helpful. 将新旧词典比较之后,他发现新词典更有用。 2. 表示“把……比作……”,通常用compare…to…, 一般不用compare…with…。如: Shakespeare compared the world to a stage. 莎士 比亚把世界比作舞台。 The poet compares the woman he loves to a rose. 诗人把他所爱的女人比作玫瑰。 3. 在compared to [with](与……相比)这一习语中,用to或with已没什么区别。如: Compared with [to] him, I’m just a beginner. 和他相比,我只是一个初学者。 Compared to [with] many women, she was very for tunate. 和许多女人相比,她算是很幸运的了。 4. 用作不及物动词时,其后习惯上接with(也有时接t o),多与情态动词can连用,表示“比得上”“能与……比美”,但一般用于否定句或疑问句中。如: Nothing can compare with wool for warmth. 没有 比羊毛更暖和的东西了。 Life in a town can’t compare with life in the c ountry. 乡村的生活比城镇的生活好得多。

动词的用法及各种搭配

一、接不定式(而不接动名词)作宾语的24个常用动词afford to do sth. 负担得起做某事 agree to do sth. 同意做某事 arrange to do sth.安排做某事 ask to do sth. 要求做某事 beg to do sth. 请求做某事 care to do sth. 想要做某事 choose to do sth. 决定做某事 decide to do sth. 决定做某事 demand to do sth. 要求做某事 determine to do sth. 决心做某事 expect to do sth. 期待做某事 fear to do sth. 害怕做某事 help to do sth. 帮助做某事 hope to do sth. 希望做某事 learn to do sth. 学习做某事 manage to do sth. 设法做某事 offer to do sth. 主动提出做某事 plan to do sth. 计划做某事 prepare to do sth. 准备做某事 pretend to do sth. 假装做某事 promise to do sth. 答应做某事 refuse to do sth. 拒绝做某事 want to do sth. 想要做某事 wish to do sth. 希望做某事 注:有些不及物动词后习惯上也接不定式,不接动名词:aim to do sth. 打算做某事 fail to do sth. 未能做某事 long to do sth. 渴望做某事 happen to do sth. 碰巧做某事 hesitate to do sth. 犹豫做某事 struggle to do sth. 努力做某事 二、接不定式作宾补的36个常用动词 advise sb. to do sth. 建议某人做某事 allow sb. to do sth. 允许某人做某事 ask sb. to do sth.请(叫)某人做某事 bear sb. to do sth.忍受某人做某事 beg sb. to do sth. 请求某人做某事 cause sb. to do sth. 导致某人做某事 command sb. to do sth. 命令某人做某事 drive sb. to do sth .驱使某人做某事 elect sb. to do sth. 选举某人做某事 encourage sb. to do sth. 鼓励某人做某事

The way的用法及其含义(二)

The way的用法及其含义(二) 二、the way在句中的语法作用 the way在句中可以作主语、宾语或表语: 1.作主语 The way you are doing it is completely crazy.你这个干法简直发疯。 The way she puts on that accent really irritates me. 她故意操那种口音的样子实在令我恼火。The way she behaved towards him was utterly ruthless. 她对待他真是无情至极。 Words are important, but the way a person stands, folds his or her arms or moves his or her hands can also give us information about his or her feelings. 言语固然重要,但人的站姿,抱臂的方式和手势也回告诉我们他(她)的情感。 2.作宾语 I hate the way she stared at me.我讨厌她盯我看的样子。 We like the way that her hair hangs down.我们喜欢她的头发笔直地垂下来。 You could tell she was foreign by the way she was dressed. 从她的穿著就可以看出她是外国人。 She could not hide her amusement at the way he was dancing. 她见他跳舞的姿势,忍俊不禁。 3.作表语 This is the way the accident happened.这就是事故如何发生的。 Believe it or not, that's the way it is. 信不信由你, 反正事情就是这样。 That's the way I look at it, too. 我也是这么想。 That was the way minority nationalities were treated in old China. 那就是少数民族在旧中

华润公司领导力素质模型

华润公司领导力素质模型 宋董即兴进行了简短的演讲。他指出:华润集团领导力素养模型的公布是华润集团历史上一个专门重要的里程碑,标志着华润集团在文化 的打造、团队的打造、领军人物的打造上树立了一个价值标准。讲到底华 润集团领导力素养模型第一是对一把手的要求,也是对全集团的要求,是 华润集团核心的文化价值观,它将引领华润集团走向以后,引领华润经理 人持续成长,引领华润每一个职员都以素养模型的差不多要求去培养自己、锤炼自己、进展自己。 那么,华润集团领导力素养模型怎么讲是什么?建立领导力素养模型对华润集团有什么意义?以后我们应该如何正确懂得并运用领导力素 养模型?针对集团各级领导者和宽敞职员在首次接触“华润集团领导力素 养模型”时可能产生的种种疑咨询,华润集团领导力进展项目组给出了讲明。 一、什么是素养模型? 1、什么是素养? 在商业环境中,素养是指在既定的岗位、角色、组织和文化中,驱动一个人产生优秀工作绩效的各种个性特点的集合。素养决定了一个人 能否胜任或者专门好地完成工作任务。每一个素养都与特定的行为表现相 联系。Hay(合益)集团采纳冰山理论阐述了对素养的懂得。他们认为素养由以下六个部分组成: ?知识:个人在一个领域内所把握的信息总和。例如了解财务方面的知识,把握运算机语言和编程的方法等。 ?技能:个人运用他/她所把握知识的方式和方法。例如能够熟练地进行运算机的操作,或者能够进行流利的外语交流等。 ?社会角色:个人出现给社会的形象。例如,是一个制定战略者依旧执行战略者,是发起变革者依旧执行变革者等。 ?自我形象:个人对自己的形象定位。例如把自己看成一个老师或领导者,把自己看成是善演讲的人或不善演讲的人等。

常用介词及副词的搭配用法归纳

常用介词及副词的搭配用法归纳 (-)about about既可以用作介词也可以用作副词,它常和下列名词,动词,形容词搭配使用。 名词+about talk about 关于???谈话;information about/on 关于???知识,消息 动词+about think about sth. 考虑某事look about 环顾;考虑 bring about 带来,造成,引起leave about 乱放 come about 发生go about 四处走动 get about 走动,传开,着手干set about 开始,着手 hang about 逗留,徘徊put about 传播谣言 turn about 回首,转身,轮流tell sb.about sth. 告诉某人某事 grief about sth. 对…伤心confuse sb.about sth 使某人对某事感到混乱bother sb.about sth 为某事打扰某人gossip about sb.or sth.谈论、闲聊某人或事某形容词+about hopeful about/of 希望,期待particular about 对…讲究,特别 enthusiastic about 对…热心crazy about ab./sth. 对…欣喜 sure about/of 对..确定知道,对…有把握 anxious about 对…担忧,焦虑anxious for 渴望 careful about/of 注意,保护,保重careful with 对…注意,照顾 careless about 对…不留心feel nervous about/at sth. 对…感到不安 doubtful about/of 对…感到好奇optimistic about 对…感到乐观 happy about/at sth. 因某事而感到高兴 (二)across across 既可以用作介词也可以用作副词,它常与下列动词搭配使用。 come across 横越…,偶尔碰见run across 跑着穿过;偶尔碰见 cut across 抄近路穿过get across 惹(某人)不高兴;通过 get sth. across 领会put across 哄骗put sth. across 使人听懂 (三)against against 只用作介词,常与下列名词或动词搭配使用。 1)名词+against grudge against 对…怨恨declaration against 反对…声明或宣言 hostility against 对…敌意battle against 反对…的斗争 2)动词+against swim against the current/tide 逆流而泳run against the wind 逆风而跑 work against 反对,抢时间defend against 团结起来反对… side against 与别人站在一方反对…人rebel against 反,反抗… stand against 反对…prejudice against 对…有偏见 rise against 起来反对…argue against 抗议,反对… …反抗strike against 抗议,反对protest against

(完整版)the的用法

定冠词the的用法: 定冠词the与指示代词this ,that同源,有“那(这)个”的意思,但较弱,可以和一个名词连用,来表示某个或某些特定的人或东西. (1)特指双方都明白的人或物 Take the medicine.把药吃了. (2)上文提到过的人或事 He bought a house.他买了幢房子. I've been to the house.我去过那幢房子. (3)指世界上独一无二的事物 the sun ,the sky ,the moon, the earth (4)单数名词连用表示一类事物 the dollar 美元 the fox 狐狸 或与形容词或分词连用,表示一类人 the rich 富人 the living 生者 (5)用在序数词和形容词最高级,及形容词等前面 Where do you live?你住在哪? I live on the second floor.我住在二楼. That's the very thing I've been looking for.那正是我要找的东西. (6)与复数名词连用,指整个群体 They are the teachers of this school.(指全体教师) They are teachers of this school.(指部分教师) (7)表示所有,相当于物主代词,用在表示身体部位的名词前 She caught me by the arm.她抓住了我的手臂. (8)用在某些有普通名词构成的国家名称,机关团体,阶级等专有名词前 the People's Republic of China 中华人民共和国 the United States 美国 (9)用在表示乐器的名词前 She plays the piano.她会弹钢琴. (10)用在姓氏的复数名词之前,表示一家人 the Greens 格林一家人(或格林夫妇) (11)用在惯用语中 in the day, in the morning... the day before yesterday, the next morning... in the sky... in the dark... in the end... on the whole, by the way...

purpose的用法与搭配

p u r p o s e的用法与搭配 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

purpose的用法与搭配 用作名词,主要意思为“目的”“目标”,用法注意: 1.表示做某事的目的,通常用 the purpose of 的结构。如: What was the purpose of his visit 他来访的目的是什么? He came here with [for] the purpose of seeing his family. 他来这里的目的是探亲。若 purpose 前用了物主代词,则通常连用介词 in。如: What is your purpose in being here 你在这儿干什么? Her purpose in going to Japan is to look for her uncle. 她去日本的目的是找她叔叔。 以下结构也用介词 in。如: I have a purpose in making this trip to Europe. 我这次欧洲之行是有目的的。 2.表示为了某种目的,通常用for…purposes(其中的 purpose通常用复数)。如: He keeps a horse for pleasure purposes. 他为消遣而养马。 He learns Japanese for business purposes. 他学习日语是为做生意。 类似的例子有:for medical purposes(为了医学的目的),for defence purposes (为了防御之目的),for scientific purposes(为了科学的目的),English for commercial purposes(商业英语)等。 3.用于 on purpose, 意为“有意地”“故意地”。如: I came here on purpose to see you. 我是特意来看你的。

say-tell-talk-speak的用法和区别

词汇辨析 say、tell、speak、talk的区别 1、say意为“说出”“说过”,强调说话的内容,也可与to连用,say to sb.意为“对某人说”。 eg. He often says“hello”to me with a smile. 他常笑着向我问好。 I can say it in English. 我能用英语说它。 He says to me,“I like my hometown.”他对我说:“我喜欢我的家乡。” 2、tell意为“讲述”“告诉”,作及物动词时,指把一件事或一个故事讲出来,有连续诉说之意。如:tell the truth说实话,tell a story讲故事。tell也可接双宾语结构或复合宾语结构。如tell sb. sth.告诉某人某事;tell sb. about sth.告诉某人关于某事;tell sb.(not)to do sth.告诉某人(不要)去做某事。 eg.-What did your mother tell you just now? 刚才你妈妈告诉你什么了? -She told me not to ride a bike quickly. It's too dangerous. 她告诉我不要快骑自行车,那太危险了。 Please tell me something about yourself.请告诉我关于你自己的一些事情。 3、speak的意思是“说话”,作不及物动词时,通常指说话的能力和方

式;作及物动词时,其后的宾语为某种语言。speak to sb.表示“同某人说话”。 eg. Would you like to speak at the meeting? 你要在会上发言吗? Bob speaks Chinese quite well. 鲍勃汉语说得相当好。 Joe can speak a little Chinese. 乔能说一点儿汉语。 May I speak to Mr. Green? 我可以同格林先生通话吗? (此句常用于打电话用语中) He is speaking to Lily. 他正在和莉莉说话。 4、talk的意思是“谈话,谈论”,指相互之间的谈话,一般用作不及物动词,与介词to或with连用,表示“与……交谈”。而谈及关于某人或某事时,后接介词of或about. eg. They are talking on the phone. 他们正在电话中交谈。 My mother is talking with my teacher. 我妈妈正在和我的老师谈话。We are talking in English.我们正用英语交谈。 What are they talking about? 他们正在谈论什么? We talked about this problem for hours. 我们就这个问题谈了好几个小时。 检测: 用say、tell、speak、talk 的适当形式填空。 1. Excuse me .Can you ___________ me the way to the post office ?

“the way+从句”结构的意义及用法

“theway+从句”结构的意义及用法 首先让我们来看下面这个句子: Read the followingpassageand talkabout it wi th your classmates.Try totell whatyou think of Tom and ofthe way the childrentreated him. 在这个句子中,the way是先行词,后面是省略了关系副词that或in which的定语从句。 下面我们将叙述“the way+从句”结构的用法。 1.the way之后,引导定语从句的关系词是that而不是how,因此,<<现代英语惯用法词典>>中所给出的下面两个句子是错误的:This is thewayhowithappened. This is the way how he always treats me. 2.在正式语体中,that可被in which所代替;在非正式语体中,that则往往省略。由此我们得到theway后接定语从句时的三种模式:1) the way+that-从句2)the way +in which-从句3) the way +从句 例如:The way(in which ,that) thesecomrade slookatproblems is wrong.这些同志看问题的方法

不对。 Theway(that ,in which)you’re doingit is comple tely crazy.你这么个干法,简直发疯。 Weadmired him for theway inwhich he facesdifficulties. Wallace and Darwingreed on the way inwhi ch different forms of life had begun.华莱士和达尔文对不同类型的生物是如何起源的持相同的观点。 This is the way(that) hedid it. I likedthe way(that) sheorganized the meeting. 3.theway(that)有时可以与how(作“如何”解)通用。例如: That’s the way(that) shespoke. = That’s how shespoke.

purpose的用法与搭配.

purpose的用法与搭配 用作名词,主要意思为“目的”“目标”,用法注意: 1.表示做某事的目的,通常用the purpose of 的结构。如: What was the purpose of his visit? 他来访的目的是什么? He came here with [for] the purpose of seeing his family. 他来这里的目的是探亲。若purpose 前用了物主代词,则通常连用介词in。如: What is your purpose in being here? 你在这儿干什么? Her purpose in going to Japan is to look for her uncle. 她去日本的目的是找她叔叔。 以下结构也用介词in。如: I have a purpose in making this trip to Europe. 我这次欧洲之行是有目的的。 2.表示为了某种目的,通常用for…purposes(其中的purpose通常用复数)。如: He keeps a horse for pleasure purposes. 他为消遣而养马。 He learns Japanese for business purposes. 他学习日语是为做生意。 类似的例子有:for medical purposes(为了医学的目的),for defence purposes (为了防御之目的),for scientific purposes(为了科学的目的),English for commercial purposes(商业英语)等。 3.用于on purpose, 意为“有意地”“故意地”。如: I came here on purpose to see you. 我是特意来看你的。 She broke the dish on purpose just to show her anger. 她故意打破碟子以表示她的愤怒。 4.用于to little (no, some) purpose,表示“几乎徒劳(毫无成效,有一定效果)地”。如: Money has been invested in the scheme to very little purpose. 资金已投入那计划中却几无成效。 We spoke to little purpose. His mind was clearly made up already. 我们说的话不起作用,他显然早已下定决心了。

领导力模型

为何需要建立企业自己的领导力模型 1 领导力模型是什么? 领导力素质模型是与管理者绩效直接相关的一系列素质的组合,代表企业对于优秀管理者的要求和期望——内部的管理语言和逻辑,代表着企业的价值导向、领导者共同的行为方式。它们整体的发挥能促使管理者产生卓越的绩效表现,对于企业的健康发展和战略目标的实现具有重要的意义。 素质模型是针对特定的组织,在特定的时期内而设计的。不同的公司,因为它们组织结构、业务模式、所处行业等方面迥异,所以对员工的素质要求不可能相同。即使是同一个公司,处于不同的发展阶段,素质模型也可能会发生变化。 2 企业为什么要构建自己的领导力模型而不是把先进企业的模型直接拿来? 第一,构建领导力素质模型是为了解决如下问题。因此构建模型的过程也是提升领导者素质乃至整个组织竞争力的过程。 ●企业领导层的思想理念不能得到高度统一; ●企业经营管理活动不能顺利开展,企业战略不能得以有效实施; ●企业由一个企业变为一个企业集团或由一个经营层变成多个经营层,公司理念难以得到 认可; ●企业业务扩大而需要新人胜任新职,但在公司内部找不到合适的人选或当现有关键岗位 领导人离开后,公司内部没有合适人选能接替现有职位; ●企业快速发展而企业不得不超速提拔候选人; 因此,构建领导力素质模型,可以帮助企业 ●有效统一高层思想,提高企业凝聚力; ●不断提升领导力水平,打造一流的核心团队; ●为建立优秀的企业文化奠定基础; 第二,构建领导力需要把握几个关键点,也说明企业领导力模型是个性化的。 A企业战略 企业的发展战略为企业的运营管理指明了方向和要求,也对领导者和管理者的行为方式

和标准提出了明确清晰的要求。 构建领导力模型的根本目的是统一管理层的思想理念和行为表现,从而支持企业战略目标的实现。 B企业文化 不同的企业文化背景对员工的行为方式提出了不同的要求和期望,在某个特定的组织中,一些行为方式是被接纳认可并且切实有效的,而另一些行为方式可能会让员工觉得不太舒服甚至难以接受。 因此,代表着公司管理层行为规范的领导力模型一定要考虑到企业独特的文化和特性,否则再科学有效的模型还是会难以得到有效的贯彻落实。 C组织能力现状 为了实现战略目标,打造所需要的组织能力,公司具体需要怎样的领导者和管理者?他们必须具备什么能力和特质?公司目前是否有这样的人才储备?主要差距在哪里?这是构建领导力模型之前需要思考的重要问题。 D应用目的 领导力模型的主要应用方向包括:招聘和选拔、培训与发展、绩效管理、薪酬管理、后备干部培养计划。 不同的应用途径对应不同的素质要求,而且后续的落地实施也对前期的模型建构具有一定的影响。比如,后备干部培养计划的流程:1、找出关键的领导岗位;2、明确这些关键岗位所需的素质;3、评价潜在候选人在关键岗位所需各项素质上的表现;4、评价候选人晋升的可行性或者找出来其在哪些方面需要提升;5、选出每个关键岗位的提名候选人;6、对其制定进一步的素质提升计划并付诸实施。这就要求前期的领导力模型能与后续的人才评测进行无缝对接,而且还要能够衡量后备干部的发展情况。 第三,事实表明,不同企业有不同的领导力模型 A IBM领导力素质模型 对事业的热情、致力于成功、动员执行、持续动力 B华润集团领导力素质模型 赢得市场领先:为客户创造价值、战略性思维、主动应变

tell地用法和常见搭配

tell的用法和常见搭配 tell的中文含义是:说;告诉;讲述。 例句:Tell him to wait for a few minutes, please. 请告诉他等几分钟。 tell一般用作及物动词,常用于tell somebody to do something这个结构中,表示“要某人做某事”,如:Tell the kids to be quite, please. 请告诉孩子们保持安静。类似的结构还有ask somebody to do something。 tell还常用于tell somebody something和tell somebody about something这两个结构中。两个结构都有“告诉”的意思,它们的区别是:tell somebody something告诉某人某事(往往是不需要解释、说明的事);tell somebody about something向某人讲述某事(往往含有解释、说明的意味)。试比较: Tell me your phone number. 告诉我你的。 Please tell me something about your school life. 请给我讲讲你的校园生活吧。 常用搭配: tell somebody to do something 告诉某人去做某事 tell somebody something 告诉某人某事 tell somebody about something 向某人讲述某事 speak, talk, say, tell的用法区别 这四个词的用法辨析是中考英语中考得最经常的同义词辨析之一。综观各省市的中考英语真题情况,我们发现,中考对这四个词的考查主要侧重于其用法差异和习惯表达方面的不同。因此,本文拟在这两个方面谈谈它们的具体用法和区别。 一、用法方面的区别 1.speak 强调单方的“说”或“讲”,一般用作不及物动词,要表示“对某人说(某事)”,可用 speak to [with] sb (about sth)。如: Please speak more slowly. 请说慢一点。 I spoke to [with] the chairman about my idea. 我跟主席说了我的想法。

way 用法

表示“方式”、“方法”,注意以下用法: 1.表示用某种方法或按某种方式,通常用介词in(此介词有时可省略)。如: Do it (in) your own way. 按你自己的方法做吧。 Please do not talk (in) that way. 请不要那样说。 2.表示做某事的方式或方法,其后可接不定式或of doing sth。 如: It’s the best way of studying [to study] English. 这是学习英语的最好方法。 There are different ways to do [of doing] it. 做这事有不同的办法。 3.其后通常可直接跟一个定语从句(不用任何引导词),也可跟由that 或in which 引导的定语从句,但是其后的从句不能由how 来引导。如: 我不喜欢他说话的态度。 正:I don’t like the way he spoke. 正:I don’t like the way that he spoke. 正:I don’t like the way in which he spoke. 误:I don’t like the way how he spoke. 4.注意以下各句the way 的用法: That’s the way (=how) he spoke. 那就是他说话的方式。 Nobody else loves you the way(=as) I do. 没有人像我这样爱你。 The way (=According as) you are studying now, you won’tmake much progress. 根据你现在学习情况来看,你不会有多大的进步。 2007年陕西省高考英语中有这样一道单项填空题: ——I think he is taking an active part insocial work. ——I agree with you_____. A、in a way B、on the way C、by the way D、in the way 此题答案选A。要想弄清为什么选A,而不选其他几项,则要弄清选项中含way的四个短语的不同意义和用法,下面我们就对此作一归纳和小结。 一、in a way的用法 表示:在一定程度上,从某方面说。如: In a way he was right.在某种程度上他是对的。注:in a way也可说成in one way。 二、on the way的用法 1、表示:即将来(去),就要来(去)。如: Spring is on the way.春天快到了。 I'd better be on my way soon.我最好还是快点儿走。 Radio forecasts said a sixth-grade wind was on the way.无线电预报说将有六级大风。 2、表示:在路上,在行进中。如: He stopped for breakfast on the way.他中途停下吃早点。 We had some good laughs on the way.我们在路上好好笑了一阵子。 3、表示:(婴儿)尚未出生。如: She has two children with another one on the way.她有两个孩子,现在还怀着一个。 She's got five children,and another one is on the way.她已经有5个孩子了,另一个又快生了。 三、by the way的用法

领导力五力模型

2010-2011学年第1学期研究生 《行政案例分析》期末论文 领导力五力模型分析 学号:4912000279 姓名:张淼 学院:行政管理 2010年12月26日

目录 摘要 (2) 一、领导力概念链 (2) 二、领导力构成要素 (2) 三、领导力五力模型 (2) 四、领导力五力模型分析 (3) 五、领导力五力模型的应用 (5)

摘要:领导活动是令无数人类个体着迷的现象,古今中外都涌现了大批杰出的领导者.对此,领导学研究者从特质、模式、情境、权变、路径一目标、领导一下属交互、变革、团队和心理动力等诸多方面进行了探讨,试图寻找一种培养领导力的有效捷径.本文讨论的是领导力五力模型。 关键字:领导力模型 一、领导力概念链 领导力概念与领导过程、领导行为、领导能力、领导知识和领导情境等密切相关,它们共同构成了领导力概念链,并诠释了领导力诸要素的关系:处于核心层(第一圈层)的是领导过程,领导过程是由具体的领导行为构成的,领导过程通常也代表着领导实践;第二圈层的领导行为、领导能力和领导知识都是领导过程的直接或间接产物,其中,领导能力是关键,领导能力决定着领导行为的质量与效果,领导行为是领导知识的主要来源之一,领导知识义是领导能力的元素和基础;第三圈层的领导情境是指确保领导过程正常运行的环境因素的总和,是领导行为、领导能力和领导知识等要素形成和发展的重要基础。 在领导力概念链的逻辑关系中,作为领导能力总称的领导力起着承上启下的核心作用,领导者一方面需要整合各种领导知识并通过领导实践使这些知识升华为领导力,另一方面还需要通过领导行为应用这些能力从而影响群体或组织的目标及其实现过程。领导力的特殊重要性预示着领导学研究将由领导行为研究范式转向领导力研究范式。 二、领导力的构成要素 领导力是决定领导者领导行为的内在力量.是实现群体或组织目标、确保领导过程顺畅运行的动力。 Chapman和O’nell在《发现,然后培育你的领导力》中提了出了一个经典的领导力形成模式,该模式包括六个要素,即充满理想色彩的使命感、果断而正确的决策、共享报酬、高效沟通、足够影响他人的能力和积极的态度。需要注意,领导力深深扎根于其赖以生存的土壤——被赋予力量的被领导者,领导者的力量来源于被领导者而不是他们的上级。 三、领导力五力模型 根据领导力概念谱系,领导力是支撑领导行为的各种领导能力的总称,其着力点是领导过程;换言之,领导力是为确保领导过程的进行或者说领导目标的顺利实现服务的。基于领导过程进行分析,可以认为,领导者必须具备如下领导能力:

相关文档
最新文档