函数的定义微课教案

函数的定义微课教案
函数的定义微课教案

课程名称高中数学必修一设计者余贝贝单位(学校)安徽师范大学授课班级

引例引例练习巩固xxxxxxxxxxxxxxxxxxx

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题问题1.y=1(x ∈R )是函数,因为对于实数集R 中的任何一个数值是1”,在R 中y 都有惟一确定的值1与它对应,所以说y 是2 判断下列对应是否为函数:

(1) (2)

(3) (4) (5)

x

(3)(4)

在下列图象中,请指出哪一个是函数图象,哪一个不是,并说明理由

不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域

所以y=x与y=x2

x不是同一个函数.又如:

y=-y=

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

二次函数和abc的关系

1、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列 4个结论中:①abc>0;②b0;④b 2-4ac>0; ⑤b=2a.正确的是 (填序号) 2、根据图象填空,: (1)a 0 ,b 0 ,c 0, abc 0. (2)b 2-4ac 0 (3)c b a ++ 0;c b a +- 0; (4)当0>x 时,y 的取值围是 ; 当0>y 时,x 的取值围是 . 3.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 则下列结论正确的是( ). A.a ﹥0,bc ﹥0; B.a ﹤0,bc ﹤0; C. a ﹤0, bc ﹥0; D.a ﹥0, bc ﹤0 4.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( ) A 、ac <0 B 、a-b+c >0 C 、b=-4a D 、关于x 的方程ax 2+bx+c=0的根是x 1=-1,x 2=5 5、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论: ①b 2-4ac >0; ②abc >0 ③8a+c >0; ④9a+3b+c <0 其中,正确结论的个数是( ) A 、1 B 、2 C 、3 D 、4 6.已知二次函数y= ax 2+bx+c (a≠0)的图象如图, 则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1; ③当x=1时,y=2a ;④am 2+bm+a >0(m≠﹣1). 其中正确的个数是( )A 、1 B 、2 C 、3 D 、4 7、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( ) A .③④ B .②③ C .①④ D .①②③ 8.二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论: ①a <0;②c >0;③b 2﹣4ac >0;④<0中,正确的结论有( ) A 、1 B 、2 C 、3 D 、4 9.函数y=x 2 +bx+c 与y=x 的图象如图,有以下结论: ①b 2﹣4c <0;②c ﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确结论的个数为( ) 第7题图 第8题图 第9题图 第10题图

高一数学《函数的概念(微课)》教学设计.

高一数学《函数的概念(微课)》教学设计 高一数学《函数的概念(微课)》教学设计 课题函数的概念 时间7分至8分 教学目标 1.知识目标: 正确理解现阶段函数的概念,理解定义域的概念 2.能力目标:使学生具有使用函数模型研究生活中简单的事物变化规律的能力。 3.情感目标: 渗透数学来源于生活,运用于生活的思想。 重点让学生理解现阶段函数的概念,定义域的概念。 难点用函数模型去研究生活中简单的事物变化规律时,如何确定定义域. 学情 分析授课班级为高一年级的学生,有朝气,有活力,爱实践,爱生活。本课之前,学生已经学习了初中函数概念,为本课的学习打下基础。 教法与学法教法:微课视频中包含情境教学法、多媒体辅助教学法的使用。 信息化教学资源 1.动画设计《世界在不断的变化》 2.专业录频软件; 3.视频后期处理软件; 4.QQ; 5.其它图片、背景音乐。 课前准备

复习初中数学函数概念 教学过程 环节设计:教师活动、学生活动、设计意图 环节一创设情境 兴趣导入首先让学生观看视频《世界在不断的变化》 老师解说:这个世界在不断的变化,有一句很有哲理的话“这个世界唯一没有变化的就是这个世界一直在改变”。聪明的人类为了在这个不断变化的世界中生存,想出了很多记录世界变化规律的办法。今天我们就来学习一个好办法,它就是数学函数,函数是研究事物变化规律的数学模型之一。 1看视频。2听老师解说,函数是研究世界变化规律的数学模型之一。3了解函数的作用,对函数产生兴趣。 通过让学生观看视频,并对学生讲解,让学生了解函数是用来研究事物变化规律的数学模型之一,这样学生能更深刻的理解函数的功能,即激发了学生学习热情,又回顾初中学习的数学函数的定义。 在某一个变化过程中有两个变更x和y,在某一法则的作用下,如果对于x的每一个值,y 都有唯一的值与其相对应,就称y是x的函数,这时x是自变量,y是因变量. 用一个生活实例加深对知识的理解。 实例:到学校商店购买某种果汁饮料,每瓶售价2.5元,那么购买瓶数x,与应付款y 之间存在一种对应关系y=2.5x.瓶数x在自然数集中每取定一个值,应付款y就有唯一一个值与其对应,我们可以运用对应关系y=2.5x进行方便的运算。 在这个例子中,我们发现自变更x只有在自然数集中取值才有意义,其实如果我们细心研究所有已知函数,就会发现确定自变量x的取值范围,是使用函数模型描述世界变化规律的前提. 所以我们重新定义函数,将自变量x的取值范围用集合D来表示. 函数的定义: 在某一个变化的过程中有两个变量x和y,设变量x的取值范围为数集D,如果对于D内的每一个x值,按照某个对应法则f,y都有唯一确定的值与它对应环节三

高中数学《函数的概念》公开课优秀教学设计三

1.2.1 函数的概念 教学设计 一、教材分析: 本节内容为《1.2.1函数的概念》 ,是人教A 版高中《数学》必修一《1.2函数及其表示》的第一课.函数是中学数学最重要的基本概念之一,在初中,学生已经学习过函数的概念,它是从运动变化的观点出发,把函数看成是变量之间的依赖关系.从历史上看,初中给出的定义来源于物理公式,最初的函数概念几乎等同于解析式.后来,人们逐渐意识到定义域与值域的重要性,而要说清楚变量以及两个变量间变化的依赖关系,往往先要弄清各个变量的物理意义,这就使研究受到了一定的限制.如果只根据变量观点,那么有些函数就很难进行深入研究.例如: 对这个函数,如果用变量观点来解释,会显得十分勉强,也说不出x 的物理意义是什么.但用集合、对应的观点来解释,就十分自然.函数思想也是整个高中数学最重要的数学思想之一,而函数概念是函数思想的基础,它不仅对前面学习的集合作了巩固和发展,而且它是学好后继知识的基础和工具.函数与代数式、方程、不等式、数列、三角函数、解析几何、导数等内容的联系也非常密切,函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用.本节课用集合与对应的语言进一步描述函数的概念,让学生感受建立函数模型的过程和方法. 二、学情分析: 在学习用集合与对应的语言刻画函数之前,学生已经会把函数看成变量之间的依赖关系,同时,虽然函数比较抽象,但是函数现象大量存在于学生的周围,教科书选用了运动、自然界、经济生活中的实际例子进行分析,从实例中抽象概括出用集合与对应的语言来定义函数概念,对学生的抽象、归纳能力要求比较高,能很好的锻炼学生的抽象思维能力以及加深对函数概念的理解. 三、教学目标: (一)知识与技能 理解函数的定义,能用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的三要素. (二)过程与方法 通过三个实例共性的分析到函数概念的形成,再对三个实例进行拓展,让学生对函数概念进行辨析,体现从特殊到一般,再从一般到特殊的思想方法,渗透了归纳推理,实现了感性认识到理性认识的升华. (三)情感、态度与价值观 通过从实际问题中抽象概括函数的概念,培养学生的抽象概括能力,体会函数是描述变量之间依赖关系的重要数学模型,在此基础上学会用集合与对应的语言来刻画函数,感受数学的抽象性和简洁美. 四、教学重点与难点: (一)教学重点 体会函数是描述变量之间的依赖关系的重要数学模型,并能用集合与对应的语言来刻画函数. (二)教学难点 函数概念的理解及符号“)(x f y =”的含义. ?? ?=.01)(是无理数时,当是有理数时, ,当x x x f

函数的概念 省优质课

函数的概念 河南师大附中 司艳鸽 【教学目标】 一、知识与技能 通过丰富实例,引导学生进一步体会函数是描述变量之间的依赖关系的重要数学模型,学习用集合与对应的语言来刻画函数,感悟对应关系在刻画函数概念中的作用,正确理解函数的概念. 二、过程与方法 让学生经历函数概念由特殊到一般的抽象归纳过程,体会运用函数的思想探索现实世界中某些变化的规律,学会运用数学语言进行表达和交流,提高学生的归纳总结能力. 三、情感与态度 学生通过主动探究、合作学习、相互交流,培养刻苦钻研、勇于探索的优秀品质,领会“数学源于实践、服务于实践”的本质.通过体验成功,提高学习数学的兴趣, 树立学好数学的信心,养成锲而不舍的钻研精神和科学态度. 【教学内容】 一、学情分析 在初中,学生已经学习过函数的概念,并且了解函数是变量之间的相互依赖关系.高一学生已初步具备对数学问题的合作探究能力,但是学生分析概括能力、逻辑思维能力尚有不足,这些因素造成了部分学生学习数学兴趣不高,信心不足. 二、地位和作用 函数是中学数学的核心内容,函数的概念在高中数学中,起着承上启下的作用,它是对初中所学概念的完善与深化.在初中,从变量的物理背景入手,用函数表示两个变量之间的依赖关系,而高中,是用集合与对应的语言进一步刻画函数.这是对函数本质特征的再认识,也是学生在函数认识上的一次飞跃. 三、重点难点 重点:用集合与对应的语言刻画函数的概念,正确理解函数的概念. 难点:函数的概念及符号() y f x =的理解. 【教学过程】 一、准备环节 分发导学案,通过导学案引导学生回顾初中函数的定义及相关知识,并预习新知. 二、学习环节 1.联系生活 引入新课 实例1: 一枚炮弹发射后,经26s 落到地面击中目标,炮弹的射高为845m ,且炮弹距地面的 高度h (单位: m )随时间t (单位: s )变化的规律是2 1305h t t =-. 实例2: 近几十年来,大气中的臭氧迅速减少,因而出现了臭氧层空洞问题.下图中的曲线显示了南极上空臭氧层空洞的面积从1979~2001年的变化情况:

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

函数-函数概念,对应是本质

本源探究微课程—函数概念,对应是本质 南昌本源探究微课组 随着数学的不断发展,函数概念历史演变经历了四个主要阶段: (1)函数概念萌芽:变量作为数学名词是约翰 贝努力首先应用的,函数这一名词是德国哲学家兼数学家莱布尼兹首先采用的; (2)函数概念-变量依赖说:1748年,欧拉在约翰 贝努力的基础上首次用“解析式”来定义函数,欧拉二次定义函数,第二个定义与现代函数定义很接近,在函数的表达上不拘于用解析式来表达,破除了用公式表达函数的局限性,他认为函数不一定用公式来表达,他曾把画在坐标系上的曲线也叫函数. (3)函数概念-变量对应说:1823年,柯西的函数定义把函数概念与、连续、解析式等纠缠不清的关系给予澄清,也避免了“变化”一词,但是对于函数概念的本质—对应思想强调不够;此后黎曼和狄里克雷认识到这一点,给出了较精确的定义,彻底抛弃了解析式的束缚,特别强调和突出对应思想,使之具有更加丰富的内涵,被公认为函数的现代定义. (4)函数概念-集合对应说:20世纪初,德国数学家康托提出的集合论被世人广泛接受后,用集合对应关系来表示函数概念渐渐地占据了数学家的思维,通过集合论的概念把函数的对应关系、定义域、值域进一步具体化,函数便明确地定义为集合的对应关系,再进一步发展为现代函数定义的集合关系说. 【例1】观察以下各小问中的两组数据,选用代数式、图表或图象描述两组变量的关系. (1)设弹簧伸长量为x ,作用于弹簧上拉力为y ,某弹簧的伸长量为1、1.5、2、2.5、3、3.5所对应的拉力分别为2、3、4、5、6、7; (2)设年份为x ,平均身高为y ,小明同学从2015年至2020年这六年的平均身高分别是161、 163、168、171、172、173. (3)设学号为x ,分数为y ,学号为1-6 的学生在某次测验的成绩分别是82、85、75、66、85、94; 仔细观察可以看出,每一小问中两组数据有一种对应关系,把两组数据分别看成两个集合,也即是两个集合的元素之间有一种对应关系. 【解析】(1)弹簧伸长量x 构成集合{1,1.5,2,2.5,3,3.5}A ,弹簧拉力y 的构成集合{2,3,4,5,6,7}B ,两组数据中每一个伸长量x 唯一对应一个拉力y ,对应关系为2y x ,从图象分析,是一条直线,是一一对应; (2)设年份为x 构成集合{2015,2016,2017,2018,2019,2020}A ,小明同学这六年的平均身高y 的构成集合{161,163,168,171,172,173}B ,对应关系是找每一年份的身高,无法用代数式表示对应关系,可以用表格来表示这种对应关系: ,也可以用图象表示其中对应关系,从图象分析,是一系列离散的点集,仍是一一对应关系;(3)设学号x 构成集合{1,2,3,4,5,6}A ,某测验的成绩分数y 的构成集合{82,85,75,66,85,94}B ,对应关系是找学号对应学生的分数,用不同学号的学生有考分一样的,无

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系 一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下: 1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:∣a ∣越大,抛物线的张口越小. 2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明02<- a b ,则对称轴在y 轴的左边; b 与a 异号,说明?b 2a >0,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. 3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0,抛物线过原点. 4 a,b,c 共同决定判别式?=b 2?4ac 的符号进而决定图象与x 轴的交点 b 2?4a c >0 与x 轴两个交点 b 2?4a c =0 与x 轴一个交点 b 2?4a c <0 与x 轴没有交点 5 几种特殊情况:x=1时,y=a + b + c ; x= -1时,y=a - b + c . 当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0. 扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。 一.选择题(共8小题) 1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( ) A .a >0 B .b <0 C .c <0 D .b +2a >0 2.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( ) A .a >0 B .b <0 C .ac <0 D .bc <0. 3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:① abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个 4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0; ②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个 第3题图 第4题图 第5题图 第6题图 5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0; ②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;

函数单调性

函数单调性及其应用 1.一元函数单调性及其应用 2.多元函数单调性及其应用 2.1 多元函数单调性的定义 一元函数)(x f y =在某个区间上的单调性,如该区间为),(+∞-∞时,可看成该函数在有向直线x 轴上的单调性;如该区间为[]b a ,或()b a ,时,可以看成该函数在x 轴上的一条有向线段(方向与x 轴正方向相同)上的单调性等等,类似地,可定义二元函数在xoy 面上的一条有向线段,有向直线或射线上的单调性。 定义 设AB 为xoy 面上的一条有向线段,二元函数),(y x f z =在AB 上有定义,对于AB 任意两点21,P P ,设21P P 与AB 同向。 若)()(21P f P f <,则称二元函数),(y x f z =在AB 上单调增加。 若)()(21P f P f >,则称二元函数),(y x f z =在AB 上单调减少。 2.2多元函数单调性的判别法 如果),(y x f u =在点),(y x P 可微,l 的方向余弦是βαcos ,cos ,则),(y x f u =在),(y x P 沿射线l 的方向导数存在,且 βαcos cos y f x f l f ??+??=??。其中l 是),(y x P 出发的一条射线,他的方向向量记作l 由二元函数的中值公式:),(),(0000y x f k y h x f -++ =k h y h x f h k y h x f y x ),(),(0000?+?++?+?+θθθθ 定理 1 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且),(y x f z =在),(B A 内每个点处都可微,则在),(B A 内至少存在一点C ,使得 AB l f A f B f C ???=-)()( 其中),(B A 表示有向线段AB 上不包括两个端点的所有点构成的点集。AB 表示AB 的长度,l 是点A 出发的并且经过点B 的一条射线。 定理2 设二元函数),(y x f z =在区域I 内连续,有向线段I AB l ?=,且

二次函数系数abc与图像的关系

二次函数系数a、b、c与图象的关系 知识归纳: 1.a的作用:决定开口方向和开口大小 2.a与b的作用:左同右异(对称轴的位置) 3.c的作用:与y轴交点的位置。 4.b2-4ac的作用:与x轴交点的个数。 5.几个特殊点:顶点,与x轴交点,与y轴交点,(1,a+b+c), (-1,a-b+c) (2,4a+2b+c), (-2,4a-2b+c)。 针对训练: 1.判断下列各图中的a、b、c及△的符号。 (1)a___0; b___0; c___0;△__0. (2)a___0; b___0; c___0;△__0. (3)a___0; b___0; c___0;△__0. (4)a___0; b___0; c___0;△__0. (5)a___0; b___0; c___0;△__0. 2.二次函数y=ax2+bx+c的图象如图, 用(>,<,=)填空: a___0; b___0; c___0; a+b+c__0; a-b+c__0.

3.二次函数y=ax2+bx+c的图象如图1所示,则下列关于a、b、c间的关系判断正确的是() A.ab<0 B.bc<0 C.a+b+c>0 D.a-b+c<0 4.二次函数y=ax2+bx+c图象如图,则点 A(b2-4ac,-b a)在第 象限. 5.已知 a<0,b>0,c>0,那么抛物线y=ax2+bx+c的顶点在() A.第一象限 B.第二象限 C.第三象限 D.第四象限 6.已知二次函数y=ax2+bx+c的图像如图所示,判断下列各式的符号:(1)a; (2)b; (3)c; (4)a+b+c; (5)a-b+c;(6)b2-4ac; (7)4ac-b2; (8)2a+b; (9)2a-b 7.练习:填空 (1)函数y=ax2+bx+c(a≠0)的函数值恒为正的条件:,恒为负的条件: . (2)已知抛物线y=ax2+bx+c的图象在x轴的下方,则方程ax2+bx+c=0的解得情况为: . 3题图4题图6题图

高中数学《函数的概念》公开课优秀教学设计新版

函数的概念教学设计 教学内容分析 函数的概念是数学中最重要的概念之一,其本质是从一个非空数集到另一个非空数集的特殊对应,它揭示了现实世界中数量关系之间相互依存和变化的实质,是描述客观世界中变量间依赖关系的数学模型。本节课在高中数学中有着承上启下的作用,从初中运动观下的函数定义出发,过渡到使用集合语言描述了更为确切的函数定义,本节课渗透的函数思想将被应用到数学的各个分支领域。本课的教学重点是:理解函数的概念,教学难点是:函数概念及对符号的理解。 教学目标设置 知识与能力:理解函数的集合观定义,并会使用符号表示;理解函数符号;会求一些简单函数的定义域,理解对应法则;使学生提高抽象概括、分析总结、数学表达等基本数学能力。 过程与方法:创设情境,使学生经历从具体函数实例和运动观定义去解析函数的基础上,理解函数的集合观定义,进而理解法则,培养学生类比与联想的学习能力。 情感、态度和价值观:学生亲身经历了由特殊到一般的研究过程,培养了学生质疑、探究的科学精神,也培养学生唯物主义观点。 学生学情分析 教学对象:市重点高中学生。学生对函数概念并不陌生,初中的函数概念教会学生认识变量间的依存关系,并且掌握了一次函数、二次函数和反比例函数的基本性质,已经基本具备建模的能力。学生思维普遍活跃,善于表达,善于发现问题,乐于和教师交流分享他们的解题心得。但高一学生的抽象概括能力较弱,由实例到抽象的数学语言,需要教师的引领。 教学策略分析 在短短的45分钟要让学生经历函数定义发展史上100年的探究历程,学生不可能独立完成,这需要教师用材料铺好一条路,要了解学情并对学生的疑问做好预设,难度大的地方搭好梯子,本节课以“学生为主体,教师引导”教学原则来设计,着重解决了学生的几个疑问。 1、怎么从初中概念出发得到高中函数概念? 学生的抽象概括能力还很薄弱,这使得用集合语言刻画函数概念很有难度,如果直接归纳定义学生会失去刚刚燃起的探究欲望,所以我选择从生活中的三个实例入手,用问题串引领学生完成实例的分析,在分析过程中,重点让学生体会每个例子的“变化过程”就是对应法则,初中定义的”某一区间”用集合语言描述就是定义域A,自然过渡到集合语言描述函数概念。师生共同研究得到函数定义;锻炼了学生的语言表达及思辨能力,让学生感受建立函数模型的过程和方法。 2、对应法则是指什么?

函数的单调性的题型分类及解析

函数的单调性 知识点 1、增函数定义、减函数的定义: (1)设函数)(x f y =的定义域为A ,区间M ?A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=?x x x 时,都有0)()(12>-=?x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=?x x x 时,都有0)()(12<-=?x f x f y ,那么就称 函 数)(x f y =在区间M 上是减函数,如图(2) 注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间. 1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)x 2) 2、我们来比较一下增函数与减函数定义中y x ??,的符号规律,你有什么发现没有? 3、如果将增函数中的“当012>-=?x x x 时,都有0)()(12>-=?x f x f y ”改为当 012<-=?x x x 时,都有0)()(12<-=?x f x f y 结论是否一样呢? 4、定义的另一种表示方法 如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若 0) ()(2 121>--x x x f x f 即 0>??x y ,则函数y=f(x)是增函数,若0)()(2 121<--x x x f x f 即0

函数单调性的定义与应用之欧阳歌谷创作

函数的性质——单调性 欧阳歌谷(2021.02.01) 【教学目的】使学生了解增函数、减函数的概念,掌握判断函数增减性的方法步骤; 【重点难点】重点:函数的单调性的有关概念; 难点:证明或判断函数的单调性 一、增函数与减函数 ⒈增函数与减函数定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2. ⑴若当x1(fx2),则说f(x) 在这个区间上是减函数 说明:函数是增函数还是减函数,是对定义域内某个区间而言的.有的函数在一些区间上是增函数,而在另一些区间上不是增函数.例如函数y=x2,当x∈[0,+∞)时是增函数,当x∈(-∞,0)时是减函数. ⒉单调性与单调区间 若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数.

在单调区间上,增函数的图象是上升的,减函数的图象是下降的. 说明:⑴函数的单调区间是其定义域的子集; ⑵应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在x 1,x 2那样的特定位置上,虽然使得 f(x 1)<(fx 2),但显然此图象表示的函数不是一 个单调函数; ⑶除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“f(x 1)<(fx 2) 或f(x 1)>(fx 2) ”改为“f(x 1)≤(fx 2) 或f(x 1)≥(fx 2)”即可; ⑷定义的内涵与外延:内涵是用自变量的大小变化来刻划函数值的变化情况;外延:①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减. ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数. ⒊ 例题 例1图6是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一单调区间上,函数y=f(x)是增函数还是减函数. 练习:1、函数11-=x y 的增减性的正确说 法是:

函数的概念微课教学设计

课题:函数的概念 教材:普通高中课程标准实验教科书数学必修1(人教版)第一章第二节 1.2.1函数的概念

教学目标: (1)了解构成函数的概念及其要素,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用; (2)从大量的实际例子出发抽象概括出函数的概念,在过程中设法给学生创造运动、自然界、经济生活中的情境,启发引导,充分发挥学生的主体作用; (3)利用函数解决实际问题,渗透数学来源于生活,服务于生活的思想. 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:函数概念及符号“y=f(x)”的含义. 教学手段:多媒体课件辅助教学. 教学过程: (一)创设情景,揭示课题 1、初中阶段我们都学过哪些函数呢? 一次函数()0y ax b a =+≠ 二次函数()20y ax bx c a =++≠ 反比例函数()0k y k x =≠ 2、复习初中所学函数的概念,强调函数的模型化思想. 函数的概念:(初中)一般地,如果变量y 随着变量x 而变化,并且对于x 取的每一个值,y 都有唯一的值与对应,那么称y 是x 的函数,记作()y f x =.其中x 叫作自变量,y 叫作因变量. 两个关键点:①有两个变量x 、y ,②当x 取一个确定的值时,y 都有唯一确定的值. 初中概念从运动变化的角度刻画了变量之间的依赖关系.那么本节课将从一个新的角度:即用集合和对应的语言来进一步学习函数的概念. 【设计意图】通过回忆初中函数的定义,为探究新课做好铺垫. (二)抽象概括,形成概念 1、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: 课本的三个实例:①炮弹的射高与时间的变化关系问题;②南极臭氧层空洞面积与

高一数学函数概念精品获奖课件 公开课优质课比赛用

课题:函数铜陵市二中:严良华

例1:一辆汽车以30千米/时的速度行驶,写出行驶的路程S(千米)与行驶时间t(时)的关系式。解: S = 30t 这里,路程S的数值是随时间的数值变化的,S与t 可以取不同的数值,是变量,而30的数值保持不变,是常量。

常量与变量必须存在于一个变化过程中。判断一个量是常量还是变量,需看两个方面: ①看它是否在一个变化过程中; ②看它在这个变化过程中的取值情况。 再看一个例子:

例1:一辆汽车以30千米/时的速度行驶,写出行驶 的路程S (千米)与行驶时间t (时)的关系式。 解: S = 30t 2 …… S 值 …… 1.5 1 0.5 t 值 15 30 45 60 在变量t 的关系式S=30t 中,给变量t 一个值,就可以相应地 得到变量S 的唯一的一个值,我们说变量t 是自变量,变量 S 是t 的函数。

一般地,设在一个变化的过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它反应,那么就说x是自变量,y 是x的函数。 注意:1. 一个过程 2. 两个变量 3. y值的唯一性 ①在y=x2中,y是x的函数吗? ②在y2=x中,y是x的函数吗?

例2:用总长为60m的篱笆围成矩形场地,求矩形面积S(m2)与一边长l(m)之间的关系式,并指出式中的常量与变量,自变量与函数 解:S=l(30-l)。 其中30是常量,S与l是变量; l是自变量,S是l的函数。 变式练习:用60m篱笆围成矩形,矩形的一边靠墙,另三边用篱笆围成: ①写出矩形面积S与平行于墙的一边长l的关系式。 ②写出矩形面积S与垂直于墙的一边长d的关系式。 并指出两式中常量与变量,函数与自变量。

定义法判断函数的单调性

2.1定义判别法 使用函数单调性定义进行解题是一个重点,也是一个难点。关键在于对函数单调性定义的理解。掌握这一方法有利于形成解题思路。函数的单调性定义: 一般的,设函数)(x f 的定义域为I : 1)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f <.那么就说)(x f 为D 上的增函数; 2)、如果对于定义域I 内某个区间D 上的任意两个自变量21,x x ,当21x x <时都有)()(21x f x f >,那么就说D x f 为)(上的减函数。 例1:已知βα、是方程)(01442R k kx x ∈=--的两个不等实根,函数1 2)(2+-=x k x x f 的定义域为[]βα,,判断函数)(x f 在定义域内的单调性,并证明。 证:令144)(2--=kx x x g ,则函数图象为开口向上的抛物线。 设βα≤<≤21x x ,则01440144222121≤--≤--kx x kx x , ; 将上述两个式子相加得: 02)(4)(4212221≤-+-+x x k x x , 由均值不等式,可得 2221212x x x x +≤; 02 1)(22121<-+-∴x x k x x , 则[]) 1)(1(22)()(1212)()(222121211221122212+++-+-=+--+-=-x x x x x x k x x x k x x k x x f x f 又02 12)(22)(21212121>+-+>+-+x x x x k x x x x k ,

所以0)()(12>-x f x f ,故)(x f 在区间[]βα,上是增函数。 例2、求证x x x f -+=2)(在??? ? ?∞-47,上为增函数。 解:取2121212122)()()(4 7x x x x x f x f x x ---+-=-≤<,则, 分子、分母同时乘以2122x x -+-,得 2121212122) 122)(()()(x x x x x x x f x f -+---+--=-, 由2 12,212,02121≥->-<-x x x x ,所以0)()(21<-x f x f , 函数在??? ? ?∞-47,为单调递增函数。 从上面两个例子可以看出,在应用定义判别法的时候,首先取定定义域中不等两点,对其函数值作差,判断其大小。但是,在做题过程中,不乏对不等式的灵活应用,因此,需熟练掌握一些常用的不等式。 知识链接: 常用的基本不等式 (1)、设R b a ∈、 ,则0)(022≥-≥b a a ,(当且仅当b a a ==,0时取等号)。 (2)、设R b a ∈、,则2 222222,2??? ??+≥+≥+b a b a ab b a (当且仅当b a =时取等号)。 (3)、设R c b a ∈、、,则ca bc ab c b a ++≥++222; ()32222c b a c b a ++≥++ (当且仅当c b a ==时取等号)。 (4)、均值不等式: a 、设)0(∞+∈,、 b a ,则ab b a ≥+2 (当且仅当b a =时取等号)。

二次函数与abc的关系

1、已知二次函数y=ax 2 +bx+c (a≠0)的图象如图所示,则下列 4个结论中:①abc>0;②b0;④b 2 -4ac>0; ⑤b=2a.正确的是 (填序号) 2、根据图象填空,: (1)a 0 ,b 0 ,c 0, abc 0. (2)b 2-4ac 0 (3)c b a ++ 0;c b a +- 0; (4)当0>x 时,y 的取值范围是 ; 当0>y 时,x 的取值范围是 . 3.若一条抛物线c bx ax y ++=2的顶点在第二象限,交于y 轴的正半轴,与x 轴有两个交点,则下列结论正确的是( ). ﹥0,bc ﹥0; ﹤0,bc ﹤0; C. a ﹤0, bc ﹥0; ﹥0, bc ﹤0 4.已知二次函数y=ax 2+bx+c 的图象如图所示,那么下列判断不正确的是( ) A 、ac <0 B 、a-b+c >0 C 、b=-4a D 、关于x 的方程ax 2+bx+c=0的根是x 1=-1,x 2=5 5、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,有下列结论: ①b 2-4ac >0; ②abc >0 ③8a+c >0; ④9a+3b+c <0 其中,正确结论的个数是( ) A 、1 B 、2 C 、3 D 、4 6.已知二次函数y= ax 2+bx+c (a≠0)的图象如图, 则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1; ③当x=1时,y=2a ;④am 2+bm+a >0(m≠﹣1). 其中正确的个数是( )A 、1 B 、2 C 、3 D 、4 7、已知二次函数y=ax 2 +bx+c (a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a <0;④abc>0.其中所有正确结论的序号是( ) A .③④ B .②③ C .①④ D .①②③ 8.二次函数y=ax 2 +bx+c 的图象如图所示,那么关于此二次函数的下列四个结论: ①a<0;②c>0;③b 2 ﹣4ac >0;④<0中,正确的结论有( ) A 、1 B 、2 C 、3 D 、4 9.函数y=x 2 +bx+c 与y=x 的图象如图,有以下结论: ①b 2﹣4c <0;②c﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2 +(b ﹣1)x+c <0. 其中正确结论的个数为( ) 第7题图 第8题图 第9题图 第10题图

相关文档
最新文档