电动汽车充电对电网影响

电动汽车充电对电网影响
电动汽车充电对电网影响

创新实验

电动汽车充电对电网影响

学院:信息与电气工程学院

班级:电气工程及其自动化(定单)2010-3 姓名:汪海鹏

学号:201001100321

指导老师:白星振

一电动汽车新增电力需求预测----------------------3 二充电机谐波分析-------------------------------------------------4 三电动车的充电模式的技术状况--------------------5 (1)常规充电模式---------------------------------5

(2)快速充电模式---------------------------------6

(3)更换电池组-----------------------------------7 四谐波的产生与危害------------------------------8 五谐波消除的主要措施------------------------------------------12 (1)合理增大充电机的滤波电感值---------------------------12

(2)增大整流装置的脉波数---------------------------------------12 (3)采用功率因数校正技术---------------------------------------12

(4)由容量较大的系统供电-------------------------------------13

(5)加装滤波装置-------------------------------------------------13

(6)谐波消除的目标值-------------------------------------------13 六结束语---------------------------------------14

一电动汽车新增电力需求预测

据国家新能源汽车产业发展规划相关文献资料表明,2010 2015年是我国电动汽车实现产业化,系统化、和规模化推广使用的关键五年。从我国电动汽车发展和应用现状来看,很多专家推测2016年将是我国电动汽车产业化集约化生产发展的拐点,电动汽车研究发展和实际应用将进入高速成长期。据一些不完全调查统计资料预测,到2020年就东部沿海上海市其电动汽车的市场规模预计将可以达到35万辆(按市场渗透率为15%进行估算)。大量电动汽车的充电将会给电网带来新一轮的电力负荷快速增长,假设以每辆电动汽车配置12kW ? h的蓄电池进行估算,则上海市所有电动车一天所需充电容量将会达到337万kW -h(此处同时利用系数取0.8进行计算),这就势必会增大电网用电负荷峰谷差,给电力系统发电、输电、以及配电环节提出

了更大的压力。智能电网建设发展的核心在于采取新的技术手段,充分挖掘电网中的能源潜力,有效提高电网能源的综合利用效率和运营经济效益,同时达到节约能源资源,保护环境的目的。在大量电动汽车充电负荷的加入后,智能电网要根据充电负荷实际需要,构筑适应多种能源供需单元的发电、配电、以及用电自适应调节控制系统,以期更加适应多元化电能供需的市场化电能高效利用交易需要,在确保电动汽车充电等多样化电力负荷接入与电网运营安全互动的基础上,更加适应各类电力客户自主选择、智能自动化操作需要。电动汽车入网(V2G)技术就是电动汽车的能量按照并网智能控制策略,在受控状态下实现与电网间的安全稳定双向互动和能量交换,是“智能电网技术”中能源优化利用的重要组成部分。在V2G电动汽车入网技术中,电动汽车蓄电池的充放电被统一智能调配,即按照充电汽车既定的充放电控制策略, 在满足电动汽车用户安全稳定行驶需求的前提下, 最小化电动汽车接入电网中带来的谐波等污染, 实现电动汽车充电与电网的安全互动。智能快捷的充电方式成为电动汽车充电技术发展的趋势, 智能充电技术的开发应用具有远大的前景。

二充电机谐波分析

目前应用的充电机一般是高频充电机,动力蓄电池充电方法和充电控制策略采用较多的是典型的两阶段充电方法(恒流限压/恒压限流,CC/CV)"在采CC/CV充电方法时,在一个完整的充电周期中,充电

机输出电流Io(t)和输出电压u(t)的典型曲线以及充电机输出功率p(t)(p(t)=u(t)i(t))的曲线

大功率纯电动汽车充电机的一般结构框图如图所示

三相电网输入交流电,经过三相桥式不可控整流电路整流变成直流电,滤波后提供给高频DC一DC功率变换器,功率变换器经过直直变换输出需要的直流,再次滤波后为纯电动汽车动力蓄电池充电。

三电动车的充电模式的技术状况

电动汽车逐步形成大规模商业应用的前夕,作为电力部门更应关注电动汽车大量使用的充电设备,是否会对电网的供电质量产生不良影响,目前国内的电动汽车所使用的充电设备为:高频和工频两种。

不同种类的动力电池具有不同的充电属性,充电方式必须与电池的充放电曲线进行匹配,最佳充电属性在0.1C~0.3C之间变化。电池系统额定电压相同的情况下,最高充电电压由于电池种类、结构形式上的区别也体现出一定的差别。对于不同种类的电池,充电方式及电控制和管理策略也不同,因此应根据电池的特性来确定不同的充电方法。

由于电动汽车动力电池组的技术和使用特性的不同,电动汽车的充电模式存在一定的差别。通常有常规充电、快速充电和更换电池组

三种充电模式。

(1)常规充电模式

常规充电是指采用小电流(0.1C~0.3C)在较长的时间内对蓄电池进行慢速充电,这种充电又叫普通充电。常规蓄电池均采用小电流的恒压恒流三段式充电,一般充电时间为10~12小时,最长可达15小时。

常规充电的优点:

1)充电器和安装成本较低,便于实现车载;

2)可充分利用电力低谷时段进行充电,降低充电成本,保证充电时段电压相对稳定;

3)充电设施体积小可携带,便于车辆在停车场以外的地方充电。

常规充电的缺点:

充电时间过长,难以满足车辆紧急运行的需求。

常规充电的适用性:

1)设计电动汽车的续驶里程尽可能大,能满足车辆运营一天的需要,仅仅利用晚间停运时间充电;

2)由于常规充电以常规的电流为蓄电池充电,因此在家里、停车场和公共汽车站都可以进行充电;

3)常规充电站的规模一般较大,以便能够同时为多辆电动汽车进行充电。

(2)快速充电模式

常规充电的充电方法一般时间较长,给实际车辆使用带来许多不

便。快速充电模式的出现,为电动汽车的商业化提供了技术支持。快速充电又称应急充电,是指以较大的电流(一般用1 C~3C)在30min 至2h的短时间内,为电动汽车进行充电的一种模式。

快速充电的优点:

1)充电时间短,场地周换快;

2)充电站场不需要大面积的停车场。

快速充电的缺点:

1)充电效率较低,安装成本和工作成本较高;

2)充电电流大,对充电的技术和方法要求高,对电池的寿命有负面影响;

3)充电电流大易造成电池异常,存在安全隐患。

快速充电的适用性:

1)电动车的续驶里程适中,在车辆运行的间隙进行快速补充,满足车辆安全运营需要;

2)大电流快充使充电时间大为缩短,为后续的均衡充留出足够的时间;

3)由于相应的大电流需求会对公用电网产生有害的影响,因而快速充电模式只适用于专用的充电站。

(3)更换电池组

即电池组快速更换系统。通过直接更换电动汽车的电池组来达到充电的目的。由于电池组重量较大,更换电池的专业化要求较强,需配备专业人员并借助专业机械来快速完成电池的更换、充电和维护。

更换电池的优点:

1)提高了车辆的使用效率,方便用户的使用;

2)更换下来的蓄电池可以在低谷时段进行充电,降低了充电成本,提高了车辆运行的经济性;

3)解决了充电时间长、蓄存电荷量少、电池质量差、续驶里程短等难题;

4)便于电池组的维护、管理,提高了电池的使用寿命;

5)有利于废旧电池的回收和再利用。

更换电池的缺点:

对于电池与电动汽车的标准化、电动汽车的设计改进、充电站的建设和管理以及电池的流通管理等有严格的要求。

更换电池的适用性:

1)车辆电池组设计标准化,易更换;

2)车辆运营中需要及时的更换电池,充电站可以对电池和车辆实现专业化、快速化的分离;

由于电池组快速更换专业化要求高,因而电池组快速更换模式只适用于标准的充电站

四谐波的产生与危害

在电力系统中谐波产生的根本原因是非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

电动汽车的投入使用,必然要增加相应的充电设备,而充电机对

电动汽车充电时,由于直流电流在交流三相之间不断地换相而产生谐波。

谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也给周围的通信系统和公用电网带来危害。谐波对公用电网和其他系统的危害大致有以下几个方面:

1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中线时会使线路过热甚至发生火灾。

2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。

3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这使上述1)和2)的危害大大增加,甚至引起严重事故。

4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。

5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致信息丢失,使通信系统无法正常工作。

非正弦电路的谐波与功率因数分析

在供用电系统中,希望交流电压和交流电流呈正弦波形"正弦波电压可表示为:

其中U)电压有效值

ω)角频率ω=2Πf

汽)初相角

f)频率

T)周期

当正弦波电压施加在线性无源元件如电阻!电感和电容上,其电流和电压分别为比例积分和微分的关系,仍为同频率的正弦波"但当正弦电压施加到非线性电路上时,电流就变为非正弦波,非正弦电流在电网阻抗上产生压降,使正弦电压发生畸变"在公用电网中,通常电压的波形畸变很小,而电流波形的畸变可能较大"因此,研究电压波形为正弦波!电流波形为非正弦波的情况有很大实际意义。

对于周期为T=2Πω的非正弦电流i(t),一般满足狄里赫利条件,可将i(t)分

解为如下的傅立叶级数形式:

频率与工频相同的分量称为基波频率为

基波频率大于1整数倍的分量称为谐波,谐波次数为谐波频率和基波频率的整数比。

n次谐波电流含有率以下表示

一第"次谐波电流有效值其中n=2,3…

谐波电流含量为

电流总谐波畸变率为

非正弦电路中,有功功率,视在功率,功率因数的定义均和正弦电路一样。

有功功率为瞬时功率在一个周期内的平均值,即

其中,,表示基波电流与电压的相位差。

电流的有效值为

则视在功率为

基波电流产生的无功功率为

而谐波电流产生的无功功率,或称为畸变功率,为

此时,功率因数为

其中,称为位移因数,称为基波功率因数或位移因数可见,功率因数由电流波形畸变和基波电流相移这两个因素共同决定。

五谐波消除的主要措施

(1)合理增大充电机的滤波电感值

合理增大充电机的滤波电感值, 可降低充电机的电流畸变率, 该方法简便、实用。但滤波电感值增大, 功率损耗也会增加, 同时充电机制造成本增加, 体积增大。

(2)增大整流装置的脉波数

增大充电机整流装置的脉波数,可以有效减少整流装置产生的特征谐波, 降低谐波含有率, 从而降低谐波总畸变率。鉴于充电站在城市中多呈小规模、多布点设置, 充电车位控制在6~8车位之间。假设单台充电机充电电流按200 A、充电电压按400 V 考虑, 则整个充电站的总容量在700 kV A 左右, 远远小于地铁牵引站的容量,因此无需采用更高次数的脉波整流方式。在电动汽车充电站采用12脉波整流, 将特征谐波控制在h =12k 1 的范围内, 在技术上是可行的, 经济上

也是合理的。

(3)采用功率因数校正技术

在充电机的前端采用升压型有源功率因数校正装置, 也是提高功率因数、降低谐波含量的有效手段之一。功率因数校正装置分为有源和无源2种类型。无源装置的优点是简单、无需控制, 而缺点是体积较大, 且功率因数仅能校正至0 8 左右, 谐波含量仅能降低50% 左右, 效果不甚理想; 有源装置能将功率因数校正至0 995, 谐波含量仅能降低至5% 以下, 效果理想, 但缺点是成本较高, 其价格一般比无源装置高30% ~ 40% 。

(4)由容量较大的系统供电

当系统容量增大时, 无论是从谐波源还是从低压母线侧为端口看出去, 其等值阻抗值均降低, 整流装置产生的谐波在变压器高、低压侧的电压畸变率均降低, 同时系统谐振点向频率更高的方向移动(5)加装滤波装置

滤波器包括无源滤波器、有源滤波器。无源滤波器运行稳定可靠, 结构简单, 价格便宜, 但其滤波效果易受温度、频率、滤波电容及电抗制造偏差等因素影响; 有源滤波器瞬时产生与谐波电流大小相等且方向相反的电流, 以中和谐波电流。与无源滤波器相比, 有源滤波器成本较高, 功率较小, 在现阶段仍以使用无源滤波器为主。

(6)谐波消除的目标值

我国于1998年12月14日发布了国家标准GB17625.1-1998《低压电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)》,

等效采用IEC6100-3-2:1995,但在技术内容上与国际标准完全一致。GB17625.1规定了准备接入公用低压配电系统中的电气、电子设备(每相输入电流≤16A)可能产生的谐波的限值。只有经过试验证实符合该标准限值要求的设备才能接入到配电系统中。这样就可以对低压电气及电子产品注入供电系统的总体谐波电流水平加以限制。

该标准对以下四类没备确定了谐波电流时发射限值:A类设备:平衡的三相设备以及除B、C、D类外的所有其它设备;B类设备:便携式电动工具;C类设备:包括调光装置的照明设备;D类设备:输入电流具有标准定义的“特殊波形”,其有功功率不大于600W的设备。

该标准还规定了对试验电路和试验电源的要求、对测量设备的要求和对试验条件等内容的要求。

目前,全国电磁兼容标委会正在组织有关专家对GB17625.1进行修订,使该标准更加适应市场的需求,使操作变得更容易、更简便。

此外,1993年颁发的国家标准GB/T14549-1993《电能质量公用电网谐波》,考虑了不同谐波源叠加计算的方法,规定了各级电网电压谐波总畸变率和用户注入电网的谐波电流容许值,对限制公用电网中的谐波起到了积极的作用。

认真贯彻执行有关国家标准关于限制谐波的规定,就能从总体上控制供电系统中的谐波水平,保证供电系统供给优质的电力。

六结束语:

综上所述,充电站接入对电网运行是有影响的需要从多方面采取措施。充电机供货商应该采用先进技术降低设备对电网的谐波电

流注入,也需要考虑多台充电机同时工作时谐波电流的叠加影响:设计单位在方案设计时应首先评估充电站可能对电网接入点的影响,在接入点的选择、电网电容器配置、充电站接线方式等方面进行优选。必要时需要根据评估部门的建议设计滤波器:业主为保证充电站长期运行和安全运行。需要考虑电能质量在线监测和谐波报警以及谐波保护功能。

电动汽车对电力系统的影响

电动汽车对电力系统的影响 发表时间:2018-05-30T15:34:33.137Z 来源:《基层建设》2018年第9期作者:麦涛[导读] 摘要:汽车作为推动人类文明向前跃进的现代社会化工业产物,从生产、技术、规模、经济效益等方面来看,都取得了巨大的成就。 身份证号码:45010219891206xxxx 摘要:汽车作为推动人类文明向前跃进的现代社会化工业产物,从生产、技术、规模、经济效益等方面来看,都取得了巨大的成就。但是燃油汽车对于环境和能源的弊端日益凸显,而电动汽车作为一种新能源汽车,对环境的保护有积极意义。目前电动汽车已经得到一定的推广,但是其充电方式主要为通过外部提供的直流电源对电动汽车进行充电,会对电网造成一定的“污染”。本文从电动汽车充电设备及充 电特性出发,分析了电动汽车充电行为对风或光微电网、负荷平衡、电能质量、环境等方面的影响。探讨了不同地点、不同数量的电动汽车同时接入电网充电,对电网造成的影响。 关键词:电动汽车;电力系统;充放电;电网引言 电子技术应用于各个领域,悄然改变着人们的生活,使人们的生活更加方便快捷。得益于电子技术的支持,人们的出行方式有了更大的改变,电动汽车开始出现在人们的生活中,因其具有使用方便、价格低廉、节约能源的特点,日益受到人们的喜爱,在市场上的销售量呈逐年上升的态势,越来越多的人原意使用纯电动汽车。在能源日益紧缺的当今社会,电动汽车以其能源清洁的特点获得了空间的技术发展机遇,然而随着电动汽车使用量的逐渐提升,对电力系统施加的负荷压力也越来越大,必然会导致对电力系统运行安全性和稳定性的威胁。因此,加强电动汽车对电力系统影响方面的研究是非常必要的。 1.电动汽车充电对电力系统的影响 伴随着电动汽车数量的不断攀升,包括电动汽车智能化充放电的管理及电力的合理调度控制等在内的电网调整问题逐渐浮出水面,成为电力系统在适应电动汽车等新能源机械的过程中重点研究的课题。 1.1充电负荷对电力系统的影响分析 当电动汽车的数量达到一定规模时,必然会因充电问题对电力系统造成较大的用电负荷负担。电动汽车充电具有间歇性和随机性,对电力系统的影响主要表现在以下方面:第一,影响配电系统的安全性、可靠性。一般情况下,电动汽车在充电时多采用快充方式,这种方式在电力系统的负荷高峰期必然会引发变压器过载问题,从而使配电系统的功率损耗无法得到控制,电压偏移的问题也不可必免。由此带来的对配电系统运行安全性和可靠性的考验是相当严峻的。第二,影响配电系统的投资成本。研究发现,在用电负荷高峰期进行电动汽车充电,会使配电系统的建设成本至少增加20%左右,这一比率会随着负荷密度的提高而不断提高[1]。第三,影响电能质量。电动汽车快充对电力系统的负荷影响不仅使变压器出现过载问题,使变压器的温度快速提升,同时对电动汽车上的电力装置造成谐波污染,使电力系统电压下降、网损增加,而在常规充电的模式下,这一问题相对更小。 1.2不同充电模式对电力系统的影响分析 1)无序充电方式。伴随着电动汽车保有量持续上升,无序充电方式的使用也逐渐增多。无序充电方式会导致电力系统电力负荷小时数的显著降低,从而使系统的整体运行效率下降。这种无序充电方式会增强电网线路的负载率(70%~83%),使得电力系统的运行可靠性受到严重威胁。 2)有序充电方式。所谓有序充电方式即在电力系统的负荷低谷期进行大规模的电动汽车车载电池的充电,使得电力系统的负荷放电得以平衡。同时,现在对于再生能源发电技术的开发使得清洁能源的利用率更高[2],结合再生能源产生的特点使其与电力系统共同服务于电动汽车车载电池的充电,可以使电力系统的负荷状态更为稳定。 1.3电动汽车充电对电力系统的冲击作用 无论采用对常规充电方式还是直流机快充的充电方式,电动汽车充电都会对当地电力系统产生一定影响。 1.3.1对输电网和配电网产生的影响 研究人员通过调查纯电动汽车车载充电对输电网和配电网用电平衡的影响后,根据峰荷—时间模型来分析配电网与输电网的负荷曲线与电动汽车充电负荷特性之间的关系,得出了一个结论,那就是,电动汽车采取常规充电方式或者直流机快速充电方式都会在一定程度上对输电网和配电网产生某种影响。在夏季和冬季用电的负荷高峰期,这种冲击作用尤其明显,不仅会打破原有的电网负荷平衡,而且容易引发局部地区用电紧张的问题[3]。 1.3.2产生一定的谐波污染 电动汽车在充电过程中使用的电力电子装置会产生一定的谐波,对电力系统产生谐波电流的冲击作用。一般情况下,人们会采取添加无功补偿设施或者滤波装置的方式来降低谐波电流的有效性。 2.降低电动汽车对电力系统影响的应对措施 2.1加强对电动汽车充放电的技术研究 针对电动汽车对电力系统的影响,相关技术的开发利用对于解决问题具有重要意义。通过智能控制手段有效调整电动汽车充放电的策略和进行相关充电设备的科学规划,有助于加强电力系统运行的稳定性和安全性[4]。 2.2改变电动汽车的商业运营模式 目前,电动汽车的使用多集中于公共交通工具的应用方面,这为通过改变商业运营模式而有效调整电动汽车的充电规律提供了可能性。例如,可以通地更换电池等手段避开电力系统的用电高峰期,或集中在用电低谷其进行电动汽车的集中充电,这对于提高电力系统运行的经济性、改善电力负荷状态具有重要意义。 2.3建立分时充电电价 通过调整不同用电时段的电价,利用价格优势引导电动汽车用户的充电行为,可有效减少无序充电行为的发生率,从而降低无序充电对电力系统的不良影响。 3.电动汽车应用的发展趋势

国家电网与电动汽车,要互补不要喂养

国家电网与电动汽车,要互补不要喂养 如果不是那一条条橘黄色电源线慵懒地插在车身一旁,摆在特拉华大学理 工学院西北角的那15 辆MINI-E,乍一看会被人误以为是宝马经销商把展台搬 到了大学校园。但熟悉MINI 的的各位邦友肯定都特门儿清,因为除了i3 和 i8,宝马至今木有推出过其他任何量产版的新能源车型,所以这几辆小MINI 显然另有他用。不过小编这里可先要卖个关子,大伙儿不如先猜猜这些市面上 根本见不到的宝马电动车,背后到底牵扯了怎样的商业“机密”呢? 其实这些MINI-E 正是宝马专门为特拉华大学理工学院的实验项目量身打造 的产品。我们都知道电动车充电,耗的是国家电网的能源。但如果反其道行之,将电动车的多余电量再卖回给国家电网,在技术层面是否可行呢?这想法虽胜 似“无稽之谈”,但恰恰却是特拉华大学谋篇布局的方向,在获得了私营企业财 团的资金支持后,一项名为“电动车对电网”(vehicle-to-grid,简称V2G)的技 术才得以开花结果。按照该项目负责人的描述,这项V2G 技术主要希望通过 不断挖掘电动车电池巨大的储能潜力,帮助地方电力系统进行供需的有效管理。 这项技术经过多年的开发和成熟地孵化后,目前已经能够向全美最大的电网 运营商PJM Interconnection 输送稳定的电流。一位来自特拉华大学海洋科学系、同时也是V2G 技术其中一位缔造者的Willett Kempton 教授在接受记者采访时,笑称“这项技术已经成功把15 辆MINI-E 变成了PJM 电网的一部分。它不仅有 利于整个电力系统的稳定运行,同时还可以趁机为实验室赚些’零花钱’”。 在过去的两年里,来自特拉华大学以及PJM 下属子公司——NRG 能源的研

大规模电动汽车充电对配网的影响及控制方法

大规模电动汽车充电对配网的影响及控制方法 发表时间:2018-12-04T09:47:18.970Z 来源:《河南电力》2018年12期作者:舒文平许新兰[导读] 文章针对电动汽车的充电模式及充电站对电网电能质量的影响展开分析和讨论,并对电动汽车充电站的单台电动汽车充电桩充电过程进行电能质量监测。(国网安徽省电力有限公司宣城供电公司安徽宣城 242600)摘要:电动汽车充电站是发展电动汽车所必需的重要配套基础设施。在政府对电动汽车产业的大力推动下,我国电动汽车产业将步入快速发展期,这也极大地推动了电动汽车能源供给设施的建设,大量电动汽车的充电行为势必会给电网带来不可忽视的影响。文章针对电动汽车的充电模式及充电站对电网电能质量的影响展开分析和讨论,并对电动汽车充电站的单台电动汽车充电桩充电过程进行电能质量监 测。在监测的数据中,筛选具有典型特征的电能质量参数与国家公布的电能质量相关标准进行比较。 关键词:电动汽车;配网;影响;控制引言 电动汽车是一种新兴能源的代表,相比那些以燃烧汽油来获取动力的传统汽车而言,电动汽车在节能、环保等多个方面都占据着较为明显的优势。随着我国智能电网建设步伐的加快,我国未来的电动汽车所具有的车载电池必将承载整个只能电网的移动储能单元功能,能够实现在电网的峰荷阶段对电网输送电能资源,而在电网的低谷阶段时,则由电网主动向电动汽车的车载电池进行充电处理,这样才能有效的降低电网峰谷差,从而真正对电网起到补充的作用。本文首先分析了国内主要能源供给设施的类型,归纳了影响电动汽车充电行为的关键因素,总结了电动汽车充电行为对电网的影响。 1 电动汽车充电现状 电动汽车具有智能化、高能效、低噪声、低排放的特征,电动汽车的应用将成为实现节能减排的必经之路,因此备受市场的关注。调查数据显示,90%的电动汽车充电行为发生在夜间的车场或车库,充电时间为6小时至8小时。在电动汽车渗透率下,电动汽车充电却会直接影响到配电网的负荷、损耗、电压等,因此应当加以重视。其大规模的入网充电对电网产生不可忽略的影响,而配电网作为其接入端,影响是直接性的,威胁配电网的安全稳定运行,恶化用户的电能质量。随着电动汽车的推广普及,用户充电时间和空间上的随机性将增加电网运行的不确定影响因素。 2电动汽车能源供给设施类型电动汽车能源供给设施主要类型有:交流充电桩、充电站和电池更换站。 交流充电桩针对整车充电方式,根据安装方式可分为立式和壁挂式等类型,根据单台充电桩充电接口的数量又可分为一桩一充式和一桩两充式等不同种类。一般适用于小型纯电动汽车、可外接充电式混合动力汽车大多采用此种方式。其体积小,安装使用方便,可广泛应用在各种类型的充换电设施中,并可很方便地安装在各种公共场所、单位内部及小区内部停车场内。但是充电时间过长,充满电的时间一般需要6至8个小时,影响车辆使用效率。 充电站是由多台充电设备组成,为电动汽车进行充电,并能够在充电过程中对充电设备、动力蓄电池进行状态监控的场所。充电站的充电设备除非车载充电机外还有少量的交流充电桩。可为商用车、乘用车、特种车等各种车辆提供快充和慢充等不同形式的整车充电服务,快充为主。充电时间短,但是对电网的冲击大,同时也影响电池的寿命。 电池更换站是指采用电池更换方式为电动汽车提供电能补给的场所,是一种重要的电动汽车能源供给方式。目前,国内对商用车两侧换电、乘用车后备箱电池更换和底盘电池更换等电池更换方式均进行了研究。 3电动汽车充放电对电网的影响在不同的电动汽车渗透率下,电动汽车充电对配电网的影响主要表现在以下方面:线路在低负载率时,电动汽车充电可以改善线路运行的效率,但过高的电动汽车渗透率会增加变压器和线路上的电流,进而增加线路负载损耗,此时线路在非经济区间运行;当电动汽车渗透率偏高时,电动汽车充电会引起末端节点电压下降,此时电网的正常供电受到影响;在电动汽车渗透率不断增加的同时,电动汽车无节制的充电将会威胁到配电网的正常运行,应设法加以控制。 3.1随机性的快速充电对电网负荷的影响 一般如果采用100A以上的快熟充电设备来为电动汽车进行充电的话,则单车的快熟充电功率必将在几天之内达到千瓦以上。所以,如果在某一个时间段这种快速充电的行为在多架电动车同时进行的情况下,则必然会对本地的配电网产生较大的功率冲击,从而引起该地区配电网内不局部范围出现严重负荷的情况,这对于电网来说是极为不利的。因此在对电动汽车进行普及的过程当中就必须对电动汽车的使用者加以正确的引导,促使其在充电时间方面进行合理的安排。 3.2对电能质量造成一定的影响 由于电动汽车所采用的双向变流充放电的操作,所以很容易产生谐波,以及造成一定的谐波污染,这就给电网带来较为严重的电能质量问题,因此就需要对电动汽车充放电设备的谐波技术指标进行严格的控制,经过总结主要有以下几点(1)需要贯彻和执行与谐波相关的国家标准,以便从整体上来控制供电系统的谐波水平[3]。(2)需要增加换流装置的相数,而换流装置则是谐波的主要源头之一,因此当期脉动数量由6开始增加到12时,则可以大大的降低谐波电流的有效值。(3)曾装武功补偿装置,从而提升系统所具有的谐波承受能力。(4)装配滤波装置,谐波污染可以进行就地治理的方式,在往后的充电站建设当中也可能出现越来越多的绿色充电机,以此来对谐波进行治理。 3.3对电网的规划造成一定影响 电动汽车真正普及之后往后每天的负荷高峰阶段,电动汽车的车载电池存储能量也将作为分布式的电源来按照需求对配电网进行供电处理。通常会由于电动汽车的数量巨大,同时具有一定的移动性和分散性的特点,因此电动汽车在进行充放电设施方面也将对电网所进行的规划配电容量设置以及配电线路选型等方面产生较为巨大的影响。一些电动汽车所进行的随机性接入电网进行充电将直接影响系统方面的负荷预测,促使其原有的配电系统方面的规划具有严重的不确定性,因此很难真正的确定往后的系统规划目标。所以,配电网规划起来将变得较为困难。

电动汽车充电技术国内外研究现况及发展趋势

电动汽车充电技术国内外研究现况及发展趋势 班级: 姓名: 学号:

摘要:对国内外电动汽车、电动汽车充电技术及规划布局等方面现状进行了研究,并对电动汽车充电需求进行了分析。介绍了国内外电动汽车充电设施的发展状况,对未来我国电动汽车发展前景进行了初步研究,提出积极推动电动汽车充电设施建设应是电网企业义不容辞的责任以及未来发展机遇。 关键词:电动汽车充电技术研究现状发展趋势 1.前言 电动汽车是全部或部分由电能驱动电机作为动力系统的汽车,按照目前技术的发展方向或者车辆驱动原理,可划分为纯电动汽车、混合动力汽车和燃料电池电动汽车三种类型。近年来,我国电动汽车行业取得了快速发展,攻克了一系列关键技术难题,在部分领域已实现了与日美欧等国同步发展。目前我国发展电动汽车已具有消费市场规模大、制造成本低、技术取得局部突破、资源保障能力强的四大优势。在技术突破和政策扶持的双重刺激下,我国电动汽车已处于市场引爆的临界点,预计未来两年电动汽车的市场规模和生产规模将迅速扩大,电动汽车将进入快速成长期。电动汽车充电设施是电动汽车产业链的重要组成部分,在电动汽车产业发展的同时还应该充分考虑充电设施的发展。 1 电动汽车充电的基本方式 目前常用的电动汽车充电方式有慢充、快充和快换三种: (1) 慢充方式。慢充一般以较小交流电流进行充电,充电时间通常为6~10 h,慢充方式一般利用晚间进行充电,充电时可以采用晚间低谷电价,有利于降低充电成本,但是难以满足使用者紧急或者长距离行驶需求。慢充一般采用单相220V/16A 交流电源,通过车载充电器对电动汽车进行充电,车载充电器可采用国标三口插座,基本不存在接口标准的问题。电动汽车慢充一般通过充电桩进行。 (2) 快充方式。快充又称应急充电,以较大直流电流在20 min 至1 h 内,为电动汽车提供短时充电服务,快充方式可以解决续航里程不足时电能补给问题,但是对电池寿命有影响,因电流较大,对技术、安全性要求也较高。快充的特点是高电压、大电流,充电时间短(约1 h)。目前,这种充电方式的充电插口的针脚定义、电压、电流值、控制协议等均没有国家标准,也没有国际标准,已投入使用的充电机和电动车电池充电插口均由各生产厂家自定,世界各国都在积极争夺标准的制订权,各大电动汽车厂家也纷纷抢先投放产品,抢占市场、提高占有率,试图使多数充电站不得不采用其充电设备,从而成为事实标准。快充方式主要在充电站中进行。 (3) 快换方式。快换则是通过直接更换车载电池的方式补充电能,换电时间与燃油汽车加油时间相近,大约需要5~10 min。快换方式最为便捷,但是需要电动汽车和车载电池实现标准化,而且快换过程中需要专业人员进行操作。快换可以在充电站也可在专用电池更换站完成。这种方式的优点是电动车电池不需现场充电,更换电池时间较短,但要求电池的外形、容量等参数完全统一,同时,还要求电动汽车的构造设计能满足更换电池的方便性、快捷性。 2 国外电动汽车充电设施发展状况

电动汽车充电对电网影响

创新实验 电动汽车充电对电网影响 学院:信息与电气工程学院 班级:电气工程及其自动化(定单)2010-3 姓名:汪海鹏 学号:201001100321 指导老师:白星振

一电动汽车新增电力需求预测----------------------3 二充电机谐波分析-------------------------------------------------4 三电动车的充电模式的技术状况--------------------5 (1)常规充电模式---------------------------------5 (2)快速充电模式---------------------------------6 (3)更换电池组-----------------------------------7 四谐波的产生与危害------------------------------8 五谐波消除的主要措施------------------------------------------12 (1)合理增大充电机的滤波电感值---------------------------12 (2)增大整流装置的脉波数---------------------------------------12 (3)采用功率因数校正技术---------------------------------------12 (4)由容量较大的系统供电-------------------------------------13 (5)加装滤波装置-------------------------------------------------13 (6)谐波消除的目标值-------------------------------------------13 六结束语---------------------------------------14

电动汽车对区域电网的影响技术方案

电动汽车对区域电网的影响技术方案 2019.1.20 1系统思路 1.1研究内容 1.研究不同电动汽车接入规模和充电方式对单一设备和整个网络的影响。包括:设备过载 与寿命损失、电压波动和管理、网络损耗; 2.预测地区电网电动汽车充电需求,采用基于Multi-Agent的复杂系统建模方法对大量分 散用户的使用行为和充电习惯进行模拟,得出城市电网范围内电动汽车充电的负荷模型; 3.基于地理信息引擎开发适用于城市电网的电动汽车充放电站智能优化布点和可视化规 划软件; 1.2最终研究成果 1)完善充电站在电网潮流分析中的模型,重新配置地区电力负荷分布,并依据建立的模型 校验线路分布,开发相关的仿真程序,综合优化城市配电网分布。 2)电动汽车充电的负荷模型; 3)电动汽车充放电站智能布点和可视化规划软件。 1.3系统设计要求 1)可靠性。 2)安全性:保证数据和系统的安全性,采用适当加密防护措施,防范利用网络对系统 的攻击和破坏。 3)完整性:要保证数据的完整性,并提供所有相关数据的备份及恢复功能。 4)一致性:保证数据的一致性。 5)连续性:以固定的采样周期对所需数据进行连续采集与存储。 6)及时性:保证数据传输与处理的及时性。 7)开放性:采用开放式体系结构和功能分布式系统设计。 8)扩展性:适应电力调度业务与信息技术的发展。 1.4系统软件设计方案 1)采用C/S 体系结构,整体软件设计分为界面显示层,业务逻辑层,数据操作层三 层结构,方便软件功能的扩展。 2)软件设计应用面向对象思想并采用模块化分布式结构,功能的扩充更改只需修改相 应的软件模块,而不影响整个系统。 3)应用软件模块“即装即用”,可以安装在同一台服务器上运行,也可以分布安装在 不同的业务服务器上运行。 4)根据操作员级别的不同,分别给予相应模块的操作权限。 5)系统运行过程具有完备的记录。包括操作记录,数据库访问记录等。 6)客户端程序做到在线自动升级,以达到免维护的目的。 7)人机界面采用树形结构图、菜单、按钮、对话框以及各类选择框等技术,尽可能减 少键盘输入方式,避免误操作和误输入。 8)用户界面、报表打印及运行记录打印输出完全中文汉化。

国家电网电动汽车充电桩最新企业标准

ICS 29.240 Q/ GDW 国家电网公司企业标准 Q/GDW485-2010 电动汽车交流充电桩技术条件 Technical specitication for electric vehicle charging spot 2010-08-30发布 2010-08-30 实施 国家电网公司发布

一、编辑背景 为了适应电动汽车的发展和应用,支撑电动汽车充电设施师范试点建设,在国家电网公司的领导下,开展了充电设施标准化研究和标准体系建设,2008年12月,国家电网公司发布了第一批企业标准。包括《电动汽车非车载充电机通用要求》等六项标准;2009年12月发布了弟二批企业标准。包括《电动汽车车载充放电装置通用技术要求》等四项标准,为国家电网公司电动汽车能源供给基础设施的建设提供了指导,2010年,根据充电设施建设的要求,并结合示范工程取得的经验和成果,国家电网公司启动了电动汽车充电设施相关企业标准的制修订工作,以完善电动汽车充电设施体系,为充电设施示范试点建设的大范围开展提供有力的标准支持。 二、编辑主要原则及思路 1.根据国家电网公司电动汽车充电设施建设规划,结合充电设施示范工程取得的经验和成果,考虑五年内充电设施的技术发展和建设要求,编制本标准。 2.本标准规定电动汽车交流充电桩的基本构成、功能要求、技术要求、试验方法、检验规则及标志和标识等。 3.本标准适用于国家电网公司建设的电动汽车交流充电桩,用于指导电动汽车交流充电桩的设计、生产和检验。 三、条文说明 1.范围 标准涵盖了交流充电桩的基本构成、主要功能要求、技术要求及实验方法等,是交流充电桩设计和生产的基本要求,也可作为交流充电桩采购和验收的基本条件。 2规范性引用文件 交流充电桩是一种低压交流设备,根据其基本特点,本标准重点参考了GB 7251.1 2005《低压成套开关设备和控制设备第1部分型式试验和部分型式试验成套设备》和GB7251.3 2006《低压成套开关设备和控制设备第3部分对专业人员可进入场地的低压成套开关设备和控制设备—配电板的特殊要求》,引用了其中部分电气、安全性能指标及实验方法。 3.术语和定义 交流充电桩,在有些标准中又称为交流供电装置。 4.基本构成 本标准列出的“桩体、充电插座、保护控制装置、计量装置、读卡装置、人机交互界面等”是交流充电桩的基本构成。应允许生产厂商按照要求在此基础上增加其他辅助结构、 5.功能要求 本部分规定了交流充电桩的主要功能,包括人机交互、计量、刷卡付费、通讯、安全防护、自检等。 5.1.1 根据使用环境和显示数据量,可选择配置数码管和液晶显示屏等。

电动汽车充电对住宅小区配电网的影响研究

电动汽车充电对住宅小区配电网的影响研究 摘要:伴随着电动汽车数量的不断攀升,包括电动汽车智能化充放电的管理及 电力的合理调度控制等在内的电网调整问题逐渐浮出水面,大规模电动汽车充电 将对现有配电网带来明显影响,若不对充电负荷采取干预措施,势必增加发电及 输配电基础设施投资。在配电网方面,电动汽车充电将带来加速变压器损耗、提 高线损、引发配电网线路拥堵等问题,导致系统可靠性下降。本文主要分析了电 动汽车充电对住宅小区配电网的影响以及解决措施。 关键字:电动汽车充电;配电网;影响 1电动汽车充电设备简介 目前新能源汽车主要有替代燃料车、纯电动汽车、燃料电池、油电混合动力 汽车四种。电动汽车在环保、清洁、节能、维护成本较低等方面有明显优势,成 为了当代汽车的主要发展方向,是最有潜力的交通工具。电动汽车能源供给装置 对于电动车产业而言是不可缺少的重要设备,主要包括直流充电器和交流充电桩 两种形式。直流充电器功率大,充电时间段,体积较大,主要用于大型充电站内。交流充电桩一般功率较小,充电时间较长,体积小,占地少。电动车充电模式主 要有三种:常规充电、电动汽车充电和更换电池组。常规充电一般需要6小时以上,通常在下班之后的夜间进行。电动汽车充电采用大电流,可在车辆运行驾驶 员休息期间进行,但瞬间负荷大,对配电网运行形成较大冲击。 2 电动汽车充电对住宅小区配电网的影响 2.1充电桩接入对配电变压器影响 当接入配电变压器的其他负荷占变压器容量的30~40%时:容量小于500千伏安的配电变压器容量裕度有限,强制接入充电机容易造成配电变压器满载或过载 运行,降低变压器运行的经济性;容量大于800千伏安的配电变压器具有较强接 纳能力,允许接入一定数量的充电机,每台配电变压器可接入充电机台数在1~5 台之间,远小于同等条件下常规充电机接入数量。 2.2电动汽车充电对配电线路的影响 电动汽车充电桩接入低压线路的导线截面要求在120mm2以上,在现有导线 截面的配置条件下,充电机应以“干线接入为主,支线接入为辅,进户线不接入” 的原则接入。 目前,中压线路导线截面一般按照远期规划一次选定,其中架空线路主干线 导线截面标准选择240、185和150mm2,分支线标准选择150、120和95mm2;电缆线路主干线导线截面标准选择400、300和240mm2,分支线标准选择240、185和150mm2。整体来看,现有的10千伏线路导线基本能够满足电动汽车充电 站接入的要求。 2.3电动汽车充电对电能质量的影响 电动汽车充电对电压质量的影响主要体现在电压损失引发的末端电压低落问题。根据我国10千伏电压偏差允许值为±7%的要求来看,当充电站10千伏电源 线路长度不超过2公里时,电压偏差能够满足国家标准要求;当线路长度超过2 公里后,电压偏差普遍严重,需考虑增加导线截面适当降低电压损失。 对于电缆线路,各类型充电站的电压损失均在5%左右,满足国家标准±7%的 要求。因此各类型充电站若采用型10千伏电缆线路接入城市配电网,导线截面 满足线路安全载流量要求即可。 2.4电动汽车充电对线路损耗的影响

国家电网公司电动汽车充电设施建设指导意见

(1)满足《国家电网公司电动汽车充电设施建设指导意见》、《电动汽车充电设施建设典型设计》中对交流充电装置技术指标的要求; (2)交流充电桩采用单桩单充式结构,每个充电接口提供AC220V/7kW的交流供电能力; (3)具备对充电桩运行状态的综合测控保护能力如运行状态监测、故障状态监测、充电计量和充电过程的联动控制、短路保护、过流保护等; (4)设置指示灯、数码管显示器或触摸屏,显示运行状态; (5)设置急停开关、操作按键等必需的操作接口; (6)预留交流三相四线电子式多功能电能表的表位,进行交流充电计量; (7)设置刷卡机,支持IC卡付费方式,并配置打印机,提供票据打印功能; (8)具备过/欠压报警、充电接口的连接状态判断、联锁等功能; (9)提供完善的通讯功能,采用GPRS及以太网接口,可根据需要上传交流充电桩的运行状态参数,接 受远程控制命令。 应遵循的主要标准 电动汽车技术标准: GB/T18487.1-2001《电动车辆传导充电系统一般要求》 GB/T18487.2-2001《电动车辆传导充电系统电动车辆与交流/直流电源的连接要求》 GB/T18487.3-2001《电动车辆传导充电系统电动车辆与交流/直流充电机(站)》 GB/T20234-2006《电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求》 电气技术标准: GB/T17215.322-2008《静止式有功电能表0.2S级和0.5S级》 GB17625.2-2007《电磁兼容限值对每相额定电流≤16A且无条件接入的设备在公用低压供电系统中产生的电压变化、电压波动和闪烁的限制》 GB17625.3-2000《电磁兼容限值对额定电流大于16A的设备在低压供电系统中产生的电压波动和闪烁的限制》 DL/T620-1997《交流电气装置的过电压保护和绝缘配合》 DL/T621-1997《交流电气装置的接地》 GJB3855-1999《智能充电机通用规范》 国家电网公司标准: Q/GDW399-2009《电动汽车交流供电装置电气接口规范》 Q/GDW400-2009《电动汽车充放电计费装置技术规范》

电动汽车充电系统技术规范第1部分通用要求

电动汽车充电系统技术规范第1部分:通用要求 深圳市标准化指导性技术文件(SZDB/Z 29.1—2010) 1范围 SZDB/Z 29-2010的本部分规定了电动汽车配套充电设施、设备有关设计、功能、技术和电气安全防护等方面的通用要求。 本部分适用于深圳市电动汽车配套充电设施建设与改造。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 16895.21-2004建筑物电气装置 GB/T 17215.211-2006交流电测量设备 通用要求、试验和试验条件 GB 50057建筑物防雷设计规范 DL/T 620交流电器装置的过电保护和绝缘配合 DL/T 645-2007多功能电能表通信规约 DL 5027电力设备典型消防规程 JJG 842直流电能表检定规程 JB/T 9288外附分流器 3术语和定义 下列术语和定义适用于本规范。 3.1 电动汽车Electric Vehicle (EV) 用于在道路上使用,由电动机驱动的汽车,电动机的动力电源源于可充电电池或其他易携带能量存储的设备。不包括室内电动车、有轨及无轨电车和工业载重电动车等车辆。 3.2 充电 Charge 从外部电源供给蓄电池直流电,将电能以化学能的方式贮存起来的过程。 3.3 充电站EV Charging Station 具有特定控制功能和通信功能,将直流电能量传送到电动汽车上的设施总称。

车载充电机On-Board Charger 固定安装在电动汽车上的充电机。 3.5 非车载充电机Off-Board Charger 固定安装在电动汽车外,与交流电网连接,并为电动汽车动力电池提供直流电能的充电机。若无特别说明,本标准所指充电机为电动汽车非车载充电机。 3.6 充电站监控系统Charging Station Supervisor System 将充电站的充电机、配电设备、谐波监测、视频监视、火灾报警及站内其他设备的状态信息、参数配置信息、充电过程实时信息等进行集成,实现站内设备监视、保护、控制和管理的系统。 3.7 交流充电桩AC Charging Point 固定安装在电动汽车外、与交流电网连接,为电动汽车车载充电机提供交流电源的供电装置。 3.8 直流充电桩DC Charging Point 固定安装在电动汽车外、与交流电网连接,为电动汽车动力电池提供小功率直流电源的供电装置。 3.9 充电桩Charging Point 交流充电桩与直流充电桩的统称。 3.10 充电机效率Charging Efficiency 充电机的直流输出功率与交流输入有功功率之比。 3.11 充电区Charging Area 充电站内为电动汽车进行充电的停车区域。 3.12 配电站Distribution Station 在中低压配电网中,用于接受并分配电力、并将10(20)kV变换为380 V电压的供电设施的总称。

电动汽车充电站对电网的影响研究.

?电能质量? 低压电器(2013No.20) 电动汽车充电站对电网的影响研究术 唐晟1, 苑仁峰2,林毓1 (1.深圳供电局有限公司,深圳440300; 2.上海交通大学电力传输与功率变换教育部重点实验室,上海200240)摘要:建立了电动汽车(EV)充电站模型,从EV充电状态、充电站与上级电网的距离、充电站内充电机不同充电状态组合等三方面,仿真分析了EV充电站对电网电能质量的影响。根据仿真结果给出EV充电站的优化措施。 关键词:电动汽车;电网影响;总谐波畸变;电动汽车充电站 中图分类号:TM46文献标志码:A文章编号:1001-5531(2013)20-0049-03 唐 晟(1982一), 女,高级工程师,主要从事配电网规划工作。 ImpactofElectricVehiclesCharging TANGSheng‘, YUAN on Grid Renfen92,LIN Yul (1.ShenzhenPowerSupplyBureauCo.,Ltd.,Shenzhen440300,China; 2.KeyLaboratoryofControlofPowerTransmissionandTransformation,MinistryofEducation, ShanghaiJiaotongUniversity,Shanghai200240,China) were Abstract:Themodelofelectricvehicle(EV)chargingstationwasbulit.Thesimulations on

done to study theimpactsofEVchargingstation on thepowerqualityofthegridinthreeaspects,includingdifferentEV chargingstatus,distancebetweenchargingstationscharge.Based on andsuperiorpower,andchargingstationsindifferentstate—of- thesimulationresults,therecommendationswere given on theoptimizationofEVcharging. Keywords:electricchargingstation vehicle(EV);grid impact;total harmonic distortion(THD);electric vehicle 0 引言 动力蓄电池充电方法和充电控制策略采用较多的是典型的两阶段充电方法(恒流限压/恒压限流, 电动汽车(ElectricVehicle,EV)有别于一般 电力负荷,其集中储能、分散消耗的储能特性能够使其削峰填谷,成为电网支撑,然而,其充电过程 会产生大量谐波¨4I。EV充电站对电网的影响 CC/CV)‘5J。本文以高频充电机和CC/CV充电 方法为前提条件。其一般结构如图1所示,由三相桥式不控整流电路对三相交流电进行整流,滤波后经过高频DC/DC功率变换电路为蓄电池 充电。

电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响

电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响 电动汽车作为一种重要的清洁能源动力受到了各国的高度关注和大规模投入。在中国、美国、日本、欧盟等国家和地区已上升为国家战略,市场规模快速增长。过去五年,中国新能源汽车的销售量、保有量均实现百倍增长。充电网络也同样处于快速发展时期,中国已经成为全球最大的充电桩市场。大规模充电基础设施投入运营,为配电网发展带来新的机遇和挑战。“车-桩-网”互动模式能够提高配电网的经济性、安全稳定性和环境友好性,但尚未得到足够重视。因此,报告重点对电动汽车发展对配电网的影响及效益进行了研究,以支持“车-桩-网”互动的发展,从而发挥电动汽车移动储能特性,实现削峰填谷,消纳新能源,减少对配电网增容改造的影响,实现经济、社会、环境效益。“车-桩-网”互动方式分为价格引导模式、本地优化的智能充电模式、全网优化的智能充电模式、本地优化的智能充放电模式、全网优化的智能充放电模式共五种互动模式。报告指出,在广泛应用价格引导模式的基础上,本地优化的智能充电模式有望率先得到应用,一方面有利于降低局部配电网的建设改造成本,另一方面能够在技术、设备、标准等方面打下良好基础;下一阶段随着电池成本下降、寿命提升与梯次利用的推广,大电网需求响应、电力市场等配套条件逐渐成熟,本地与全网优化的智能充放电模式有望实现应用。报告对比分析了电动汽车无序充电行为和“车-桩-网”互动对配电网运行的影响,着重分析了有序充电对电网的影响。“车-桩-网”互动可以显著降低对电网最大负荷的影响,促进需求侧资源的协调运行,最大程度消纳新能源,并降低配电网建设改造成本。以一个2000户的居民区配电设施为例,在配置充电桩时,无序充电下小区用电总容量要增加105%,在有序用电模式下用电下仅增加35%,并减少充电桩成本约50%。“车-桩-网”互动增强电网灵活性调节能力。电动汽车的停驶特性与电网负荷的爬坡特性存在较好的匹配关系。当早晨电网负荷爬升以及夜间电网负荷快速降低的同时,电动汽车也进入停驶状态,可以通过充电基础设施接入电网,参与电网的削峰填谷。“车-桩-网”互动模式还能够提高配电网的管理效率,丰富电网的服务模式。

纯电动汽车与电网相互关系的研究现状

纯电动汽车与电网相互关系的研究现状

纯电动汽车与电网相互关系的研究现状 摘要: 随着石油资源的日益枯竭以及人们对城市空气污染的关注,纯电池电动汽车开始受到全 世界的青睐,各国政府和工业界均在加大政策支持力度.可以预计,未来配电网用户端将 接有大量的纯电动汽车电池充电负荷.电动汽车的大规模应用将对城市电网和电力基础 设施产生一定的影响,如局部电网升级、谐波污染等;此外,电动汽车车用电池亦可以作 为分散式储能装置,在电网负荷高峰时,为电网提供容量支持.电动汽车的这一应用被称 为"车辆到电网"."车辆到电网"实现了车用电池和电网的交互作用,将解决以往电能无 法大量储存的困境,实现削峰填谷、稳定可再生间歇式能源电能质量,并提供应急电源. 综述电动汽车与电网交互关系的研究现状,指出虽然该领域是当前的研究热点,但是各 项研究均处于起步阶段,仍有大量的基础研究工作需要展开,如电动汽车电池充电负荷 模型的研究以及车用电池在"车辆到电网"中的模型,等. 关键词:纯电动汽车电力系统电网到车辆车辆到电网 1, 引言 负责把各地人们联系起来的交通运输系统是一个国家经济实力的基本方面。全世界23%二氧化碳排放来源于交通运输业,因此政府和业界开始加大了交通排放对全球气候变化影响的关注。在英国,为了实现苏格兰的气候改变模目标,一个环境保护组织报告称,到2020年前苏格兰道路上的交通工具至少有十分之一是电动车。然而在美国,到2025年之前,在所有登记的车辆中,纯电动汽车的占有量有望达到12%。随着量如此大的纯电动汽车接入电网系统充电,

充电

而不是在加油站增加动力。 2.2 纯电动汽车的市场前景 随着各国政府及汽车制造商对于不断上涨的油价,气候变化和环境保护法规的有效实施的难度的关注,纯电动车汽车得到了长足的发展。几个国家对电动汽车工程作出雄心勃勃的部署使得电动汽车的突破性转机有了迹象。例如,法国计划在2012年之前电动汽车占有100000辆,德国则计划2020年之前占有1000000辆。瑞士国家汽车公司计划2020年之前组装720000辆充电式混合动力车或电动车。在一个五年期里,英国为了支持电动的,混合动力的或者其他更环保的汽车项目,以实现其成为欧洲电动车中心。英国政府已经宣布了10亿英镑的政府支持资金。在此政府计划下,如果汽车驾驶人购买电的或者充电式混合动力的汽车,他们将得到来自政府的接近5000英镑的补贴。这是英国政府未来五年一个25亿英镑计划提升低碳交通的一部分。在苏格兰,一个慈善组织报告指出为了实现2020年至少减排42%这个目标,交通部门要对此作出相当的贡献。到那时候电动汽车要达到29万辆。未了实现这个目标,电动汽车必须达到汽车总量

《电动汽车充电系统技术规范-第部分:充电站及充电桩设计规范》

《电动汽车充电系统技术规范- 第部分:充电站及充电桩设计规范》

作者: 日期:

ICS 43.080 T 47 SZDB/Z |深圳市标准化指导性技术文件 SZDB /Z 29.2 —2015 代替SZDB/Z 29.2-2011 电动汽车充电系统技术规范 第2部分:充电站及充电桩设计规范 Technical specification of electric vehicle charging system Part 2: Code for desig n of EV charg ing stati on and charg ing point 送审稿 (本稿完成日期:) -XX- XX发布 XXXX XX- XX实施 深圳市市场监督管理局

前言.......................................................................................... n I 范围 . (1) 2规范性引用文件 (1) 3 术语和定义 (1) 4总则 (4) 5 充电站和充电桩 (4) 6 充电站和充电桩电气部分 (7) 7 电能质量的要求 (10) 8 电气照明 (12) 9 防雷、接地和检测 (13) 10 电气测量和计量 (14) II 监控系统 (15) 12 充电站安全防护 (15) 13 对其他专业的设计要求 (16) 附录A (规范性附录)谐波电流允许值的换算和公共连接点各用户谐波电流允许值计算...? (18) 附录B (规范性附录)环境噪声限值 (19) 附录C (资料性附录)充电站占地参考面积(以2台变压器、8个充电桩为例) (20) 附录D (资料性附录)充电站建设示意图 (21)

电动汽车接入电网对负荷的影响

电动汽车接入电网对负荷的影响 电动汽车使用电力来代替传统的石油对汽车进行驱动,能够缓解能源紧张的趋势,并减少温室气体的排放,正得到迅速发展。而大规模电动汽车充电势必会对配电网的结构、运行产生巨大的影响。[1]因此,了解并准确预测电动汽车充电对电网的影响对智能配电网的建设具有重要的意义。目前有些学者已经开展了一些电动汽车对电网影响方面的研究,主要包括以下内容:①评估现有发电容量是否能够满足日益增长的电动汽车负荷需求②电动汽车接入网络,研究电动汽车向电网提供辅助服务的价值,包括调频、旋转备用等;③研究日益增加的电动汽车对中、低压电网的影响,涉及负荷、电压、损耗、三相不平衡、谐波等问题,目前这方面的研究较少。对电动汽车使用者的调查表明,电动汽车充电90%是在车场、车库夜间进行的,充电时间大约为6-8h,只有不到10%的充电是在路旁的应急电站完成。因此,本文主要研究电动汽车常规充电方式对配电网的影响。电动汽车渗透率为电动汽车充电负荷与线路最大负荷的比值,为了更好地说明电动汽车充电对配电网的影响,本文以某市一条10KV生活线路为对象,分析了该线路在各种电动汽车渗透率下用户的随机充电行为对配电网的影响。针对高渗透率下用户无控制充电行为对配电网造成的巨大压力,本文提出了智能充电方法,以实现电网和用户的互利。[2] 电动汽车充电影响在无经济利益和政策引导的情况下,车主的充电行为往往是随机的,一般车主在下班回家后就开始充电,如18:00左右开始,于24:00结束,充电时间大约持续6h。用户的这种无控制充电行为,易与原有的负荷高峰叠加形成新的负荷高峰,从而对电网运行造成巨大的压力。本文以某市一条10KV生活线路为对象,分析多种电动汽车渗透率下电动汽车充电对配电网的影响。本文的分析基于以下假设: 1)假设线路三相供电平衡,电动汽车充电负荷均匀分布在各配变台区。 2)为便于分析,采用常规充电方式,即电动汽车充电电压为220V,充电电流为10A,充电功率为2KW,正常充电时间大约为6h。 1.1电动汽车充电对负荷的影响 图2为随机充电时在各种电动汽车渗透率下的线路典型日负荷曲线图,O代表无电动汽车充电负荷。从图中可以看出,线路原始负载率并不高,最大负载率为43.31%,最小仅为17.92%,峰荷发生在19:00—21:00,22:00—7:00负荷较低,08:00—18:00点负荷比较平稳。电动汽车接入电网充电时,会与原有负荷高峰叠加,形成新的负荷高峰。当电动汽车渗透率为100%时,最大负载率高达86.62%,峰谷差大,不利于电网的经济运行。 50%和100%电动汽车渗透率下线路的日负荷曲线。从图可以看出:在50%渗透率时,由于采用智能充电方法在各时段对充电负荷进行了合理分配,并未形成新的负荷高峰;在100%渗透率时,由于电动汽车充电负荷较大,虽然采用智能充电方法也形成了新的负荷高峰,但是与其他方法相比,智能充电方法负荷峰谷差小,曲线相对平滑,对电网造成的影响相对也小。[3]

相关文档
最新文档