全站仪三角高程测量误差与边长及角度的关系(1)

全站仪三角高程测量误差与边长及角度的关系(1)
全站仪三角高程测量误差与边长及角度的关系(1)

全站仪在使用中的误差

全站仪在使用中的误差 时间:2010-05-07 10:21:08 来源:本站作者:四眼我要投稿我要收藏投稿指南 随着现代高新技术的发展与运用,促使测绘工作正从传统的测绘技术手段向现代数字测绘过渡,全站仪在现代测绘工作中的应用比例也越来越大。因此,有必要对全站仪在使用过程中的误差产生及大小做分析。 全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微电脑处理器于一体,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。本文分别对这两项误差在城市测量中的大小进行分析,然后综合两方面的影响对地面点的点位误差进行分析与估算。最后单独分析全站仪的高程误差。 一、全站仪测图点位中误差分析 1、全站仪测角误差分析 检验合格的全站仪水平角观测的误差来源主要有: ①仪器本身的误差(系统误差)。这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M 标,由误差传播定律知,野外一测回测角中误差M1测= M 标,野外半测回测角中误差M 半测= M1测=2M 标。 ②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在《测量学》教材中有很详细的分析其公式为M 中= ρ e/ ×S AB/S1S2其中e 为偏心距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过3mm ,这里取e=3mm 。S1在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视图根点)之间的距离,S2取全站仪设站点至待测地面点之间的规范限制的最大距离。由公式知,对中误差对水平角精度的影响与两目标之间的距离S AB成正比,即水平角在180 时影响最大,在本文讨论中只考虑其最大影响。 ③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m 偏= ρ /2× √ (e1/S1)2+(e2/S2)2,S1、S2的取法与对中误差中的取法相同,e1取仪器设站时照准后视方向的误差,此项误差一般不会超过5mm ,取e1=5mm ,e2取全站仪在测图中的照准待测点的偏差。因为常规测图中棱镜中心往往不可能与地面点位重合,偏差为棱镜的半径 R=50mm ,固取e2=50mm 因为对中误差与目标偏心误差均为“对中”性质的误差,就对中本身而言,它是偶然性的误差,而仪器一旦安置完毕,测它们就会同仪器本身误差一样同时对测站上的所有测角发生影响,根据误差传播定律,则测角中误差M β= 。 下面就以上分析,根据《城市测量规范》中给出的各比例测图,图根控制测量与各比例测图

全站仪测量高程

全站仪测量高程 量仪器高法: 就是在设站的时候量取仪器高,输入仪器高,菱镜高即可,量仪器高的时候是从已知高程控制点量到仪器中心的距离,并不是地面到仪器中心的距离。 这种方法不建议使用,如果对标高要求不高的话可以使用。例如地形图的测绘可以使用。 测量高差法: 如果对坐标没有要求,只需要测出高程,那不需要架设在控制点上,随便找个位置整平即可,先在已知高程点上测一下,仪器会显示出X Y Z,X和Y不管,只看Z。记下Z的数据,然后再拿去待测点测一下,同理记下Z的数据。求出这两个数据的差值就可以算出待测点的高程,比如;已知高程42米,在已知点的读数5.263,待测点的读数4.263。那待测点的高程就是41米。有时候仪器会显示负的读数,没关系,同理即可!需要记住的是菱镜高不能变动。 这种方法的使用原来跟水准仪一样了。测量精度较高,推进使用。特别适用于深基坑的高程测量。 改变仪器高法: 如果你有已知高程点32米,那你就把仪器高设置32左右,随便设,把菱镜立在已知高程点上,测一下,如果仪器显示比已知高程点高了,你就把仪器高改一下。举例说明;已知高程点35.5米,仪器整平,进入测量界面,输入仪器高36米(有的仪器在测量界面就可以直接输入,有的要在后视界面设置),菱镜高输入1.2米(一般是1.2米,随便输入也可以)。然后把菱镜立在已知高程点上测一下,仪器显示34.8米,说明比已知高程低了.7米,那就把仪器高升高0.7米,改为36.7米,在测一下,仪器显示35.5米,那说明测量对了(如果不对,那还得试一下。反正总可以弄到和已知高程点一样的,摸索摸索!),想测什么就测什么了。这种方法也很好用。 最后说明一下,全站仪测量高程的精度没有水准仪高,因为仪器瞄准的时候是尽可能的瞄准菱镜中心,如果上下移动一点对高程都有影响。测量距离远的话更是不准。大概是2CM左右。建议不在迫不得已的时候不要使用全站仪测量精度要求高的点。

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

全站仪在施工测量放样中的误差及其注意事项

全站仪在施工测量放样中的误差及其注意事项 目前,随着科学技术的发展,全站仪已经相当普及而且不断向智能化方向发展,全站仪以其高度自动化和准确快捷的定位功能在目前工程测量中广泛应用。许多新技术运用到全站仪的制造和使用当中,如无反射棱镜测距、目标自动识别与瞄准、动态目标自动跟踪、无线遥控、用户编程、联机控制等。为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在施工测量放样中的误差及其注意事项进行探讨。 1仪器精度的选择 为了能够满足施工中测量精度,应该严格按照有关规范和设计技术文件规定的测角和测距精度要求匹配的原则进行仪器选用: mβ/(ρ)≈mS/S或mγ/ρ≈ms/S 式中mβ、mγ为相应等级控制网的测角中误差、方向中误差,(″);ms为测距中误差,m;S为测距边长,m;ρ为常数,ρ=206265″。 例如:使用的测距仪标称精度为±(5mm+5×10-6S),平均测距长度S为按 500m计,按照精度匹配原则有:mγ=ms/S×ρ=5P500000×206265=2″,因此,当 使用的测距仪标称精度为±(5mm+5×10-6S)时,应选用测角精度为2″级经纬仪。 2全站仪在施工放样中坐标点的精度估算 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差 ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: Mp=± (1) 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误

差、仪器本身的测角精度以及外界的影响等。 由式(1)可得S2=[(M2P-m2s)×ρ2]/m2β (2) 顾及s2=(Xi-XA)2+(Yi-YA)2 因此(Xi-XA)2+(Yi-YA)2=(M2p-m2s)/(mβ/ρ)2 (3) 式(3)表明,对一定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站A。因此对每一个放样控制点A,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 3全站仪三角高程的精度估算 设仪器高为i,棱镜高度为l,测距仪测得两点间的斜距为 S,竖直角α,则AB两点的高差为: hAB=Ssinα+i-l (4) 式(4)是假设的水平面来起算的,实际上,高程的起算面是平均海水面。因此,在较长距离测量时要考虑地球曲率和大气折光对高差的影响,在高差计算中加两差改正,即: hAB=Ssinα+i-l+h球+h气 =Ssina+i-l+s2/(2R)-k2s/(2R) (5) 式中R为地球曲率半径,取6371km,h球、h气为大气折光系数。一般来说,两差改正很小,当两点间的距离小于400m时,可以不考虑。 由式(5)可知: m2h=m2ssin2α+(s/ρ)2m2a+[s2/(2R)]2m2k+m2i+m2l (6) 由于α角一般比较大,因此,测距误差ms对测定高差的影响不是主要的,若采用对中杆,仪器和棱镜高的测量误差mi,ml大约为1mm,竖直角的观测误差mɑ

全站仪后方交会法步骤和高程测量步骤

全站仪后方交会法步骤和 高程测量步骤 Revised final draft November 26, 2020

1、角度测量(angleobservation) (1)功能:可进行水平角、竖直角的测量。 (2)方法:与经纬仪相同,若要测出水平角∠AOB,则: 1)当精度要求不高时: 瞄准A点——置零(0SET)——瞄准B点,记下水平度盘HR的大小。 2)当精度要求高时:——可用测回法(methodofobservationset)。 操作步骤同用经纬仪操作一样,只是配置度盘时,按“置盘”(HSET)。 2、距离测量(distancemeasurement) PSM、PPM的设置——测距、测坐标、放样前。 1)棱镜常数(PSM)的设置。 一般:PRISM=0(原配棱镜),-30mm(国产棱镜) 2)大气改正数(PPM)(乘常数)的设置。 输入测量时的气温(TEMP)、气压(PRESS),或经计算后,输入PPM的值。 (1)功能:可测量平距HD、高差VD和斜距SD(全站仪镜点至棱镜镜点间高差及斜距) (2)方法:照准棱镜点,按“测量”(MEAS)。 3、坐标测量(coordinatemeasurement) (1)功能:可测量目标点的三维坐标(X,Y,H)。 (2)测量原理任意架仪器,先设置仪器高为0,棱镜高是多少就是多少,棱镜拿去直接放在已知点上测高差,测得的高差为棱镜头到仪器视线的高差,当然,有正有负了,然后拿出计算器用已

知点加上棱镜高,再加上或减去(因为有正有负)测得的高差就是仪器的视线高啊,因为仪器高为0,所以这个数字就是你的测站点高程,进测站点把它改成这个数字就行了,改完测站点了一般情况下都要打一下已知点复核一下。。。 若输入:方位角,测站坐标(,);测得:水平角和平距。则有: 方位角: 坐标: 若输入:测站S高程,测得:仪器高i,棱镜高v,平距,竖直角,则有: 高程: (3)方法: 输入测站S(X,Y,H),仪器高i,棱镜高v——瞄准后视点B,将水平度盘读数设置为——瞄准目标棱镜点T,按“测量”,即可显示点T的三维坐标。 4、点位放样(Layout) (1)功能:根据设计的待放样点P的坐标,在实地标出P点的平面位置及填挖高度。 (2)放样原理 1)在大致位置立棱镜,测出当前位置的坐标。 2)将当前坐标与待放样点的坐标相比较,得距离差值dD和角度差dHR或纵向差值ΔX和横向差值ΔY。 3)根据显示的dD、dHR或ΔX、ΔY,逐渐找到放样点的位置。

全站仪放样误差

摘要:随着社会经济和科学技术不断发展,测绘技术水平也相应地得到了迅速提高。测绘作业手段也有了一个质的飞越,测绘仪器设备由过去的光学经纬仪,逐渐地过渡到半站仪,接着又推出了全站仪,随着仪器设备不断地创新,测绘野外作业的劳动强度逐渐减轻,工作效率不断得到提高。本论文对全站仪在施工中放样精度进行了探讨。 关键词:全站仪;放样;估计精度 目前,随着科学技术的发展,全站仪已经相当普及而且不断向智能化方向发展,全站仪以其高度自动化和准确快捷的定位功能在目前工程测量中广泛应用。许多新技术运用到全站仪的制造和使用当中,如无反射棱镜测距、目标自动识别与瞄准、动态目标自动跟踪、无线遥控、用户编程、联机控制等。为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在施工测量放样中的误差及其注意事项进行探讨。 1仪器精度的选择 为了能够满足施工中测量精度,应该严格按照有关规范和设计技术文件规定的测角和测距精度要求匹配的原则进行仪器选用: mβ/(ρ)≈mS/S或mγ/ρ≈ms/S 式中mβ、mγ为相应等级控制网的测角中误差、方向中误差,(″);ms为测距中误差,m;S 为测距边长,m;ρ为常数,ρ=206265″。 例如:使用的测距仪标称精度为±(5mm+5×10-6S),平均测距长度S为按500m计,按照精度匹配原则有:mγ=ms/S×ρ=5P500000×206265=2″,因此,当使用的测距仪标称精度为±(5mm+5×10-6S)时,应选用测角精度为2″级经纬仪。 2全站仪在施工放样中坐标点的精度估算 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: Mp=± (1) 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测角精度以及外界的影响等。 由式(1)可得S2=[(M2P-m2s)×ρ2]/m2β (2) 顾及s2=(Xi-XA)2+(Yi-YA)2 因此(Xi-XA)2+(Yi-YA)2=(M2p-m2s)/(mβ/ρ)2 (3) 式(3)表明,对一定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站A。因此对每一个放样控制点A,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 3全站仪三角高程的精度估算 设仪器高为i,棱镜高度为l,测距仪测得两点间的斜距为 S,竖直角α,则AB两点的高差为: hAB=Ssinα+i-l (4) 式(4)是假设的水平面来起算的,实际上,高程的起算面是平均海水面。因此,在较长距离测量时要考虑地球曲率和大气折光对高差的影响,在高差计算中加两差改正,即: hAB=Ssinα+i-l+h球+h气=Ssina+i-l+s2/(2R)-k2s/(2R) (5) 式中R为地球曲率半径,取6371km,h球、h气为大气折光系数。一般来说,两差改正很小,当两点间的距离小于400m时,可以不考虑。 由式(5)可知:

全站仪三角高程测量方法

应用全站仪进行三角高程测量的新方 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 一、三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A 点对B点的高差H AB即可由H B=H A+H AB得到B点的高程H B。 此主题相关图片如下: 图中:D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高

HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtanа) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差h AB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则h AB=V+i-t 故 H B=H A+Dtanа+i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 二、三角高程测量的新方法 如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: H A=H B-(Dtanа+i-t) (2) 上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知: H A+i-t=H B-Dtanа=W(3) 由(3)可知,基于上面的假设,H A+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。 这一新方法的操作过程如下: 1、仪器任一置点,但所选点位要求能和已知高程点通视。 2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。)

全站仪校正方法

全站仪校正方法 1,长气泡:首先将气泡平行于两脚螺旋,假设为0度方向,再调平。再旋转90度使气泡垂直于第三个脚螺旋再调平。然后回到0度位置看是否居中,如不居中照之前方法重来,再90度方向看是否居中,如不平如前一样。要是这两方向都平就旋转至180度方向。看气泡是否居中,是则不用校,不是则要校。其方法如下(首先看差多少,再确定差的一半距离。再通过调校正螺丝使其改正一半。在调的时候始终把握这样一个观念气泡在那边就那边高,校正螺丝是顺时针升高,逆时针降低。只把握住这点不管校正螺丝在左边还是右边都可照此做。上面做完之后回到0度位置。看是否居中,如不居中照以上方法重来。) 2,圆气泡:这项是在长气泡完好的基础上做的,首先将长气泡调平,这里是指各方向都已平了。然后看圆气泡是否居中,如不是则通过调气泡下面三颗螺丝将其调平。当然这里面有经验,总之在保证各螺丝既紧又能使其居中。一般哪边高就调哪颗。 3,对中器:这项相对以上要难点。书上说是首先要将仪器调平,但经验告诉不必这么做,因为我们这是在校对中器。将仪器架好之后,我们假设0度方向,把对中器对准地面一个目标,目标越小越好。最好是自己做个十字点。然后旋转180度,看是否对中,如不是则要校。这是只说全站及电经,光经比较难而且实用性不大。首先打对中器护盖看到四颗螺丝。再看对中器的十字丝或者小圆点在地面目标的哪边。例如在上边就松上面那颗螺丝,紧下面那颗。在这里请注意,也只是改一半,调到差距一半即可。同理左边就松左边紧右边。其它方向按此理推。然后旋转至0度位置看是否居中,如不是照止方法重做。(注意,一般几个螺丝都会动才行。但基本方法都是如此。但这只针对于对中器是正镜才这样调,倒镜反之。国产仪器及日本仪器都是这样的。) 4,2C值校正:首先将仪器整平,在20米外贴一十字丝。先在盘左照准目标再置0,再旋转180度盘右照准目标读数,正常情况是180度正负15秒。如不是就要校正,最好是这样多做几次以确定误差到底有多大,然后通过水平微动改误码差一半,这时十与目标不重合,十字丝在目标左边就松左边紧右边,反之松右边紧左边。再回到盘左按之前方法重来。反复几次看误差是否达到允许范围。(这是水平角} 5,I角校正:仪器调平,打开补偿器,这中是针对于有补偿器的全站及电子经纬仪的。这类仪器都是自动校正的,只需我们按步骤做就行。盘左照准目标读垂直角,再盘右位置读垂直角。然后盘左加盘右看是否是360正负15秒。如不是则需校正。方法如下: 关机然后电源加F1开机,(电源和F1同时按下,但电源只按将近不到1秒钟就行,F1不放)进入仪器校正模式,按F1垂直角校正,千万不要按F2。再过0盘左照准目标按回车, 盘右照准目标按回车,校正完毕。自己再按最先的方法再做几次看是否在允许范围内。 一台仪器如全站其校正指标共十项,但条件限制一般野外只能校正五项,以上方法也不一定全对,但很多是经验之谈。望共同学习。

全站仪进行高程测量的几个方法

全站仪进行高程测量的几个方法的探讨 王晓涛 摘要:全站仪在公路工程施工中的使用越来越普遍,利用全站仪测量高程,在施工中越来越受到关注。根据工程施工中的实践,总结出全站仪测量高程的几种方法,使全站仪三角高程测量精度进一步提高,提高了施测速度与准确性。 关键词:全站仪高程测量方法 在现有公路工程施工中,高程测量传统方法是水准测量、三角高程测量。两种方法各有利弊,水准测量是一种直接测量高程的方法,测量高差的精度较高,但受地形的影响大,转站多,施测速度慢。随着全站仪在公路施工广泛普及应用,用全站仪测量高程越来越受到施工测量人员的青睐。现就全站仪测量高程的几种方法结合施工过程中的实践,对传统方法和新方法 探讨一下。 一、利用三角高程测量的传统方法: D V t а i hAB HA HB 高程基准面 图中: D :为A、B两点间的水平距离 а:为A点观测B点时的垂直角 i 为测站点的仪器高 t :为棱镜高 HA:为A点高程 HB:为B点高程 V :为全站仪望远镜和棱镜之间的高差(V=D×tgа) 传统方法步骤: 在已知高程点A点架设仪器,量取仪器高i、棱镜高t,输入全站仪测得AB之间的平距D, 则HB高程为: HB=HA+D×tgа+i-t ① 此方法以水平面为基准面,只有当A、B两点的距离较近时,测量质量才比较准确,当距离远时还必须要考虑到地球曲率、大气折光对距离的影响。在人员量取仪器高、棱镜高时,量取数据误差大、精度不高,影响测量精度的误差来源比较多。而且传统方法进行高程测量,仪器必须架设在已知高程的点位上,必须量取仪器高、棱镜高。对要测点如果不通视的无法 施测,有一定的局限性。 二、利用新方法高程测量 内蒙古二赛一级公路二合同段地处平原微丘,线路全长61.343km,地势平坦。一些GPS高程控制点离路线较远,最远的有1.4km,这些都加大水准点复测以及施工过程中的水准点加密的工作量。由于施工工期紧、测量人员有限,采用新的全站仪测量高程,提高了施测速度 及精度,满足了工程进度的需要。 基本原理:

全站仪在数字测图中的误差来源

全站仪在数字测图中的误差来源 摘要:随着空间技术的成熟,测绘技术手段向信息化测绘阶段过渡,遥感与动态GPS(RTK)在测量工作中的运用也越来越多。但不可忽视的是,全站仪因其操作简单、全数字显示、双轴补偿和数据传输等优点,与RTK相比具有购置费用低、效费比高等特点,仍然是测绘工作中广泛采用的仪器。为了充分,合理地发挥它的作用,在了解其性能,使用方法的基础上,也应了解其本身所带来的测量误差大小,这对我们在工作中选择,操作仪器方面是有所帮助的,本文对全站仪测量过程中产生的误差作以估算、分析。 关键词:全站仪;误差;测量 Abstract: with the space technology maturity, surveying and mapping technology to surveying and mapping phase transition information, remote sensing and dynamic GPS (RTK) in the use of the measurement work more and more. But important, tachometer because of its simple operation, and the digital display, dual axle compensation and data transmission and other advantages, compared with RTK with purchase expenses low, cost-effectiveness than higher characteristic, is still widely used in surveying and mapping work the instrument. In order to fully, reasonably play its role in know its performance, based on the method of use, also should understand its itself brings the measurement error size, this to our work in options, and operating instruments is the help, this paper by using produces in the process of the measurement error in the estimation, the analysis. Keywords: tachometer; Error; measurement 前言:全站仪又称全站型电子速测仪,是一种兼有电子测距、电子测角、计算和数据自动记录及传输功能的自动化、数字化的三维坐标测量与定位系统,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。本文分别对这两项误差在测量中的大小进行分析,然后综合两方面的影响对地面点的平面,高程误差进行分析与估算。有必要对全站仪在使用过程中产生的误差大小进行估算。 1 全站仪测图误差分析 全站仪测角误差来源及分析 仪器误差仪器误差是由于仪器制造工艺和仪器检校不完善等原因造成的,如三轴误差,一般可采用适当的观测方法来消除或降低其影响。但在全站仪测图中对点位的观测都是半测回(包括测角和测距),因此要考虑其对测角精度的影响。由于全站仪完全是数字显示,故不考虑读数误差。考虑到半测回测角及实际测量误差来源的复杂性,以全站仪标称精度的2倍作为相应的中误差,即半测回测角中误差为2mβ。

全站仪数字测图在城市测量中的误差估计

全站仪数字测图在城市测量中的误差估计 随着现代高新技术的发展与运用,促使测绘工作正从传统的测绘技术手段向现代数字测绘 过渡,全站仪在现代测绘工作中的应用比例也越来越大。因此,有必要对全站仪在使用过程 中的误差产生及大小做分析 全站仪是全站型电子速测仪的简称,它集电子经纬仪、光电测距仪和微电脑处理器于一 体,因此,它也兼具经纬仪的测角误差和光电测距仪的测距误差性质。本文分别对这两项误 差在城市测量中的大小进行分析,然后综合两方面的影响对地面点的点位误差进行分析与估 算。最后单独分析全站仪的高程误差。一、全站仪测图点位中误差分析 1、全站仪测角误差分析检验合格的全站仪水平角观测的误差来源主要有:①仪器本身的误差(系统误差)。这种误差一般可采用适当的观测方法来消除或减低其影响,但在全站仪测图中对角度的观测都是半测回,因此,这里还是要考虑其对测角精度的影响。分析仪器本身误差的主要依据是其厂家对仪器的标称精度,即野外一测回方向中误差M标,由误差传播定律知,野外一测回测角中误差M1测=M标,野外半测回测角中误差M半测= M1测=2M标。②仪器对中误差对水平角精度的影响,仪器对中误差对水平角精度的影响在《测量学》教材中有很详细的分析其公式为M中=ρe/×SAB/S1S2其中e为偏心距,熟练的仪器操作人员在工作中的对中偏心距一般不会超过3mm,这里取e=3mm。S1在这里取全站仪测图时的设站点(图根点)至后视方向是(另一通视图根点)之间的距离,S2取全站仪设站点至待测地面点之间的规范限制的最大距离。由公式知,对中误差对水平角精度的影响与两目标之间的距离SAB成正比,即水平角在180时影响最大,在本文讨论中只考虑其最大影响。③目标偏心误差对水平角测角的影响,《测量学》教材推导出的化式为m偏=ρ/2×√(e1/S1)2+(e2/S2)2,S1、S2的取法与对中误差中的取法相同,e1取仪器设站时照准后视方向的误差,此项误差一般不会超过5mm,取e1=5mm,e2取全站仪在测图中的照准待测点的偏差。因为常规测图中棱镜中心往往不可能与地面点位重合,偏差为棱镜的半径R=50mm,固取e2=50mm因为对中误差与目标偏心误差均为“对中”性质的误差,就对中本身而言,它是偶然性的误差,而仪器一旦安置完毕,测它们就会同仪器本身误差一样同时对测站上的所有测角发生影响,根据误差传播定律,则测角中误差Mβ=。下面就以上分析,根据《城市测量规范》中给出的各比例测图,图根控制测量与各比例测图测距限值,通过计算得出下表: 比例emm e1mm e2mm S1mm S2mm M中M偏"M标"M测"Mβ" 2 4 50.4 1:500 3 5 50 80 150 8. 4 49.5 5 10 51.2 2 4 30.2 1:1000 3 5 50 150 250 4.7 29.6 5 10 31. 6 1:2000 3 5 50 250 400 2.8 18.5 2 4 19.1

全站仪高程测量新方法

全站仪高程测量新方法 [导读]:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。 摘要:使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已经显示出了局限性。经过长期的工作实践,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时毎次测量时还不必量取仪器高、棱镜高。该法使三角高程测量精度进一步提高,施测进度更快。 关键词:全站仪测量三角高程新方法 1引言 在长江下游丘陵地区测量过程中,全站仪测量技术被广泛应用,全站仪三角高程测量也得到普遍应用。传统的测量方法是水准测量、三角高程测量。两种方法虽然各有特色,但都存在着不足。水准测量是一种直接测高法,测定高差的精度是校高的,但水准测量受地起伏的限制,外业工作量大,施测速度校慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度校快。在大比例地形图测绘、线型工程、管网工程等工程测量中广泛应用。但精度校低,且每次测量都得量取仪器高、棱镜高,比校繁锁,而且增加了误差来源。随着全站仪的广泛使用,使用棱镜配合全站仪测量高程的方法越来越普及,传统的三角高程测量方法已径显示出了局限性。我们经过长期实践和摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任意置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。该方法使三角高程测量精度进一并提高,施测速度更快。 2三角高程测量的传统方法 设A、B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。 D为A、B两点间的水平距离;α为在A点观测,B点时的垂直角;i为测站点的仪器高;t为棱镜高;HA 为A点高程,HB为B点高程V为全站仪望远镜和棱镜之间的高差(V=Dtanα); 首先我们假设A、B两点相距不太远,可以将水准面看成水平面,也不考虑大气折光的影。为了确定高差HAB,可在A点架设全站仪、在B点竖立棱镜,观测垂直角α,并直接量取仪器高i和棱镜高t,若A、B两点间的水平距离为D,则HAB=V+i-t,故 HB=HA+Dtanα+i-t(1) 这就是三角高程测量基本公式,但它是以水平面为基准和视线成直线为前提的。因此,只有当A、B两点间的距离很短时,才比较准确。当A、B两点距离较远时,就必须考虑地球弯曲和大气折光的影响。这里不叙述如何进行球差和气差的改正,只就三角高程测量新方法的一般原理进行闸述。从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:a全站仪必须架设在已知高程点上;b要测出待测点的高程,必须量取仪器高和棱镜高。 3三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上同时又,在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图所示,假设B点的高程为已知,A点的高程为未知,这里要通过全站仪测定其他待测点的高程。首先由式(1)可知:HA=HB-(Dtanα+i-t)(2) 上式除了Dtanα即V的值可以用仪器直接测出外,i、t都是未知的。但有一点可以确定,即仪器一旦置好,i值也将随之不变,同时选取棱镜作为反射,假定t值也固定不变。从式(2)可知: HA+i-t=HB-Dtanα=W(3) 由式(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的,而且可以计算出它的值W。 这一新方法的操作过程如下: a、仪器任意置点,但所选点位要求能和已知高程点通视。 b、用仪器照准已知高程点,测出V的值,并算出W的值(此时与仪器高程测定有关的常数如测站点高程、仪器高、棱镜高均为任意什值。施测前不必设定)。 c、将仪器测站点高程重新设定为W、仪器高和棱镜高设为0即可。 d、照准待测点测出其高程。

全站仪测高差

使用全站仪快速测量巷道高差的方法求算待定点的高程时,只要测定两点间的高差,根据一个已知点高程,就可以推算出待定点的高程,这一测量过程称为高程测量。高程测量的实质就是高差测量。高程测量的常用方法有水准测量和三角高程测量。水准测量是利用水准尺配合水准仪提供水平视线来测定两点间高差的方法。水准测量具有较高的精度,因此是高程测量中最主要的方法。 一、水准测量原理 如下图所示,已知高程点A的高程为H A,欲求待定点B的高程H B。当两点相距较近时,在A、B两点中间安置一台水准仪,在A、B两点分别铅直竖立底部为零的水准尺,利用水准仪提供的水平视线在两尺上分别读得视线截尺读数a和b,由下图可知A、B两点间的高差为: h AB=a-b 则B点的高程为H B=H A+h AB a—已知高程点A上的水准尺读数,称为后视读数; b—待求高程点B上的水准尺读数,称为前视读数; A—为已知点,称为后视点;

B—为待测高程点,称为前视点。 用文字表示,高差=后视读数-前视读数。高差计算规定是后视读数减前视读数,为此高差有正负之分,高差为正(a>b时),即前视读数小,表示前视点比后视点高;高差为负(a<b时),即前视读数大,表示前视点比后视点低。 — 以上安置一次仪器测定两点高差的施测过程称为水准测量的基本 原理。 二、高程计算方法 测量工作中,根据不同的需要,高程的计算一般有两种方法,高差法和视线高法 1、高差法 利用两点间的高差计算未知点高程的方法,称为高差法。从上图中可以得出计算公式:H B=H A+h AB 或H B = H A +(a-b) 2、视线高法也称仪高法 当安置一次仪器,根据一个后视点的高程,需要测定多个前视点的高程时,利用仪器高程来计算多个未知点高程的方法,称为视线高法,也称为仪器高法。从上图中可以得出各未知点高程的计算公式为:视线高程:H i=H A+a B点高程:H B=H i-b 用文字表示,前视点高程等于仪高减去前视读数。仪高法是计算次仪高,就可以简便地测算几个前视点的高程。因此,当安置一次仪器时,同时需要测出数个前视点的高程时,使用仪高法是比较简便的。 三、水准仪测高差的缺点

全站仪三角高程测量方案优化设计

全站仪三角高程测量方案优化设计 论文:应用全站仪进行三角高程测量的新方法_建筑设计 关键字:全站仪三角高程测量新方法发布时间:08-29 10:54 应用全站仪进行三角高程测量的新方法 张英杰 摘要:使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 关键词:全站仪三角高程测量新方法 1引言 在工程的施工过程中,常常涉及到高程测量。传统的测量方法是水准测量、三角高程测量。水准测量是一种直接测高法,测定高差的精度是较高的,但水准测量受地形起伏的限制,外业工作量大,施测速度较慢。三角高程测量是一种间接测高法,它不受地形起伏的限制,且施测速度较快。广泛应用,但精度较低,且每次测量都得量取仪器高,棱镜高。麻烦而且增加了误差来源。 随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。 2 三角高程测量的传统方法 如图一所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+ hAB得到B点的高程HB。

图一 图中: D为A、B两点间的水平距离 а为在A点观测B点时的垂直角 i为测站点的仪器高,t为棱镜高 HA为A点高程,HB为B点高程。 V为全站仪望远镜和棱镜之间的高差(V=Dtan а) 首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t 故 HB=HA+ Dtanа+ i-t (1) 这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点: 1、全站仪必须架设在已知高程点上 2、要测出待测点的高程,必须量取仪器高和棱镜高。 3 三角高程测量的新方法 如果我们能将全站仪像水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知: HA=HB-(Dtanа+i-t) (2)

测量员全站仪操作培训非常经典

测量员全站仪操作培训非常经典

测量员全站仪操作培训 项目部为更好的推进项目测量工作,保证项目测量成果和质量,规范项目测量的管理,提高测量精度和效率,特制定本培训计划。大家都知道,独木不成林,好的测量工作离不开每一个测量员的积极参与,只有大家团结起来,才能将工程建设的更加美好! 测量员岗位职责 1)应遵守先整体后局部、高精度控制低精度的原则; 2)实地测设工作要坚持科学、简捷,精度要合理、相称的工作原则;在测量精度满足工程需要的前提下,力争做到省工、省时、省费用。3)坚持计算工作和测量作业步步有校核的工作方法,随时消除误差,避免误差积累; 4)严格按规程作业,观测误差必须小于限差;5)检查、校核与放线测设分开的原则; 6)认真积累原始资料,做好观测记录,及时总结经验教训,不断提高测设水平。 全站仪测量放样的要点: 测量或者放样时,必须长视定短视,即对准后

视视距一定要长于所放样点位到仪器的距离。已知边长越长,放样边长越短,误差越小;反之就大。 施工队所使用测量仪器标称精度均满足铁路施工测量规范要求,仪器均要经国家计量部门授权的检定单位检测定并在核定有效期内、方可使用。 棱镜杆使用之前一定要校核棱镜杆的垂直度。 所使用的棱镜必须和全站仪配套,在测量过程中应经常使用三段法对棱镜常数进行测量和改正。 施工测量中转点必须采用护桩和混凝土保护,每次测量前和测量完成后均应对控制点进行检核。并定期和不定期的对转点进行检查。 全站仪操作及注意事项: 1. 各类测量设备检定有效期到期必须送有关的检定单位检定,检定证书复印件必须报送公司测量组备案;本着谁使用谁送检的原则。 2. 全站仪测量前,要有相应的仪器年检合格证书。未经检测合格的仪器不得应用于施工现场。

全站仪在测量中的误差分析

全站仪在测量中的误差分析 刘松----------兰渝铁路LY12标 摘要:随着社会经济和科学技术不断发展,测绘技术水平也相应地得到了迅速提高。测量放样仪器的更新大幅度的提高了放样精度,根据全站仪的工作原理,分析全站仪坐标放样误差产生的原因及其改正方法,以此提高测量精度,保证工程质量。 关键词:全站仪、精度、放样、误差 伴着十二五时期经济发展的指导思想,铁路、高速公路建设在我国迅速发展,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们分部桥梁施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差M P由测距边边长S(m)、测距中误差m s(m)、水平角中误差m β(″)和常数ρ=206265″共同构成,其精度估算公式为: M P =±√m s 2 +(Smβ/ρ)2 (1) 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测角精度以及外界的影响等。 由式(1)可得S2 =[(M P2-m s 2)×ρ2]/mβ2 (2) 又有s2=(X O-X A)2+(Y O-Y A)2 所以有 (X O-X A)2+(Y O-Y A)2 = (M p2-m s 2)/(mβ/ρ)2 (3) 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程H A,只要知道A点对B点的高差H AB即可由H B=H A±H AB得到B点的高程H B。

相关文档
最新文档