浅谈配电网无功优化补偿

浅谈配电网无功优化补偿
浅谈配电网无功优化补偿

浅谈配电网无功优化补偿

[摘要] 无功优化补偿问题主要考虑在负荷给定情况下,补偿设备最佳投入位置和投入容量。本文综合考虑了电能损耗、补偿设备投资费用等因素,以经济效益最大化为目标,建立了配电网无功优化补偿的数学模型。在此基础上通过灵敏度分析,选取高补偿效益的位置进行补偿,进一步采用结合灵敏度分析的遗传算法在补偿点上进行补偿容量的优化规划。

[关键词] 配电网无功优化补偿灵敏度分析遗传算法

引言

在电力系统无功规划方面,国内外学者己做了大量工作,归纳起来主要有两个方面:一是使规划中所建立的数学模型尽量反映实际情况,即目标函数和多种约束条件接近电力系统运行情况;二是针对大规模优化问题在求解过程中遇到的求解时间长、易产生局部最优解和“维数灾”等问题进行改进,提出了线形规划法、非线形规划法、Tabu搜索法、灵敏度分析以及近年来提出的模拟退火算法、遗传算法[1]、神经网络法等算法。

在电力系统中,无功补偿的原则是“就地补偿”,即在配电网的末端进行补偿,以减少无功流动引起的损耗,但实现起来有困难。目前的状况是在配网高压侧(即110kV或35kV变电站)集中补偿居多,中压侧分散补偿很少,因此在10kV 配电线路末端实施无功补偿己日益迫切。但配网中节点很多,分布多呈辐射状,这种多节点、多约束的无功优化规划给大规模的计算带来了困难。为此,本文提出一种综合考虑电能损耗和无功补偿投资的目标函数,并考虑在不同负荷的运行方式下,应用结合灵敏度分析的遗传算法求解配电网无功补偿,以获得较优的规划方案。

1.无功优化的数学模型

本文建立以网损最小、考虑负荷节点电压质量的同时兼顾无功补偿设备的投资为最少的配电网无功综合优化的数学模型。故目标函数为:

(1-1)

式中:nl为系统总支路数;l为补偿节点总数:△Pi为支路i的有功网损;SCi为第i个无功补偿器的补偿容量;k1, k2分别为有功网损费用(元//MW)和无功补偿器费用(元/Mvar)的比值。

约束条件:

(1-2)

(1-3)

配电网无功优化的分时段控制策略

配电网无功优化的分时段控制策略 发表时间:2019-03-28T09:08:38.737Z 来源:《电力设备》2018年第29期作者:王龙飞 [导读] 摘要:随着我国用电规模越来越大,对于电网的可靠性和安全性提出了各种的要求。 (国网重庆市电力公司江津供电分公司重庆市 402260) 摘要:随着我国用电规模越来越大,对于电网的可靠性和安全性提出了各种的要求。配电网无功优化的分时段控制策略的提出可以改善电压情况,可以有效降低电力能源消耗和保障电压的安全稳定,是未来发展的重要趋势。本文在此对于无功优化的分时段控制方法做了一定的探索,从而更好促进我国电力行业的发展。 关键词:电力行业;配电网无功优化;分时段控制策略 背景: 电力行业的发展对于企业行业的发展起着积极的促进作用,在近几年我国电力行业取得了很大的发展,各种电力技术被广泛应用于我国电力行业,其中配电网无功优化的分时段控制策略可以有效的降低能源消耗,同时能够保障配电网安全可靠性的运行,符合我国可持续发展的原则,是未来配电网重点发展的技术之一。因此无功功率成为了行业研究的重点领域,本文重要是从负荷曲线,将负荷曲线划分不同的阶段进行研究,从而制定最佳的控制策略,在不同的阶段采取不同的策略,从而更好提高供电网络的安全性和可靠性。 1.配电网无功优化的模型 1.1负荷曲线的分段 大多数配电网模型都是在已知的负荷曲线的条件下进行研究的,因为很容易获得负荷曲线,通过分析负荷曲线模型可以分析出当前网络的负荷水平以及负荷曲线的变化趋势以及对于补偿调压动作的限制次数。对于符合曲线分段模型来说,如何划区间对于研究制定重要,划分不同的区间往往制定的策略是存在着很大的区别。但是在分段时要明确自己的目标,采取分时段模型就是通过调整配电网中无功功率的流动来有效降低电网中的有功功率,因此优化目标是有功功率,而无功功率就是变量。在划分去见识是要以无功功率的变化曲线为变量曲线进行有效划分,同时在划分过程中要兼顾无功曲线的变化情况,尽量保持有功曲线和无功曲线在大体走向上保持一致。在理论上,满足无功设备工作的前提下,往往区间划分越细,目标函数的优化效果越好,从而使得有功功率越小。 图1:典型日负荷曲线 如上图1所示的日负荷曲线的无功功率在1天之内的变化情况不大,因此可以将负荷曲线分成简单的两段即可,比如可以这样分15:30~7:30为第一段,7:30~ 15:30为第二段,为了提高分时控制的精度也可以分为3段、4段或甚至是5段。 分段区间和复合点在确定之后,下一步就需要明确各个分段区间的计算方法了,然后根据每一段的优化方法之后,通过将这些段最优的方法进行累加求和就可以得到我们设计的最佳的损耗形势,从而到了这一天最小的运行方案,然后在进行有针对性的控制,从而获得这一天的最佳控制方案,使得有功功率得到最小值。 对于我们要优化的第s段区间来说,可以先假设这区间一共有个典型负荷点要参与优化计算当中,那么这一段的优化区间的目标函数就可以表示为如下的函数表达式,如公式1所示。其中对于两点之间的有功功率本文使用两点之间的有功功率的平均值来近视代替。公式中表示的是两个负荷点之间的时间间隔,而表示的是区间的划分总数。 2.配电网无功优化控制算法 在获得分段区间和目标优化函数和约束条件之后,就可以选择相应的优化算法进行求解过程。本文主要采用的加强的遗传算法,这种算法是在模拟退火的遗传算法(MAGA)的基础上加以改进,同时把前推回推法计算配电网潮流的方法有机结合在其中,构成了我们最终

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

配电网无功补偿

配电网无功补偿 发表时间:2018-04-16T09:30:22.227Z 来源:《电力设备》2017年第31期作者:田金文展瑞磊段其岳 [导读] 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。 (国网阳谷县供电公司山东聊城 252300) 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。在这个过程中,将有各种新技术、新设备发展起来,未来的无功补偿技术将会更加合理和经济有效。 关键词:无功功率产生;无功补偿现状;发展趋势 一、配电网无功功率的产生 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输、配电线、变压器中的流动会增加有功功率损耗,产生电压降落。 二、低压配电网无功补偿的含义及现状 低压配电网中的无功补偿是对低压配电网中的无功功率进行补偿的措施,旨在提高低压配电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压配电网的供电环境。低压配电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压配电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性和电能质量。 目前低压电网无功补偿普遍采取在配电房集中补偿、分散就地补偿和个别补偿三种方式。无功信号的采集使用单相信号,利用三相电容器进行三相共补:现在控制信号采集一般在单相上进行,这种方式不能满足三相负荷量在同一时间不同变化要求。三相共补偿方式适用于负荷主要是使用三相负载的地方,如工业开发区的工业用电。多采用集中补偿和就地补偿,即随机补偿。但对于当前的负载主要为居民用户,由于电源接入点不同和用电负荷不同,三相负荷很可能不平衡,各相无功需量也不同,采用这种补偿方式会在不同程度上出现过补或欠补。无功控制物理量多用电压、功率因数、无功电流,投切方式为:循环投切、编码投切。这种策略没有考虑电压的平衡关系与区域的无功优化。使用电容器容量大,且由多个电容器并列分组进行循环投切,投切开关多采用交流接触器,其缺点是响应速度较慢,在投切过程中会对电网和交流接触器的接点产生冲击涌流,影响电网质量降低交流接触器使用寿命。现价段低压配电网的无功补偿都不具备配电监测功能,依靠人为操作普遍存在时效性差的缺点,从而影响它的经济性和全安性。 三、无功补偿的作用 (一)提高用电户的功率因数,提高用电设备的利用率,降低用电成本; (二)装设静止无功补偿器还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等还能避免高次谐波引起的附加电能损失和局部过热。 (三)减少供电网络的有功损耗,提高线路的供电能力; (四)合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力; (五)在动态的无功补偿装置上,配置自动补偿调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性; 四、无功补偿发展方向 为适应当前社会发展,满足用电户负荷类型的要求和用电负荷的需求,提高补偿精度,减少欠补偿和过补偿情况发生,要做好低压电网的无功补偿从以下方法进行: (一)补偿方式 1、固定补偿与动态补偿相结合 随着新技术,新设备的应用和发展,负载类型越来越复杂,电网对无功要求也越来越高,用电户要求的供电可靠性不断提高,因此单纯的固定补偿已经不能满足要求,新的动态自动无功补偿技术能较好地适应负载变化。 2、稳态补偿与快速跟踪补偿相结合 稳态补偿与快速跟踪补偿相结合的补偿方式是未来发展的一个趋势。主要是针对大型的钢铁冶金等企业,工艺复杂、用电量大、负载变化快、波动大,充分有效地进行无功补偿,不仅可以提高功率因数、降损节能,而且可以充分挖掘设备的工作容量,充分发挥设备能力,提高工作效率,提高产量和质量,经济效益大。 3、三相共补与分相补偿相结合 随着人们的生产水平不断提高,大量的家用电器进入家庭,且多为单相用电设备,电网中三相不平衡的情况越来越多,导致控制开关跳闸情况频发,三相共补同投同切已无法解决三相不平衡的问题,而全部采用单相补偿则投资较大,目前还不能普及。因此根据负载情况充分考虑经济性的共分结合方式在新的经济条件下日益广泛应用。 (二)采用先进的投切开关种类 1、过零触发固态继电器 其特点是动态响应快,在投切过程中对电网无冲击、无涌流,寿命较长,但有一定的功耗和谐波污染,目前运用比较普遍。 2、无涌流电容投切器 无涌流电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,优点无涌流、不发热、节能、安全、寿命长。目前正在逐步推广应用,是无功补偿设备的发展趋向。 3、智能复合开关 复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,既实现了快速投切,又降低了功耗。目前主要由于成本及可靠性原因应用较少。

配电网无功补偿方式的优化选择

配电网无功补偿方式的优化选择 发表时间:2011-12-31T10:12:35.030Z 来源:《时代报告》2011年11月下期供稿作者:邹雪莲 [导读] 电力系统无功分布是否合理,关系到电能质量的优劣,还影响电网运行的安全性和经济性。 邹雪莲 (重庆工贸职业技术学院,重庆 408000) 中图分类号:TM769 文献标识码:A 文章编号:1003-2738(2011)11-0278-01 摘要:本文根据目前配电网中无功补偿的实际情况,简要分析了配电网中无功补偿装置在调节电压、降低电能损耗中所起的作用,提出了配电网中几种无功补偿方式,进行了经济技术优化比较,提出了相应的优化选择方式。 关键词:配电网;无功补偿;优化选择 一、概述 随着国民经济的高速发展和人民生活水平的提高,人们对电力的需求日益增长,电网负荷的不断增加,改变了网络结构和电源分布,造成无功分布的不合理,甚至出现局部地区无功严重不足、电压水平普遍较低的情况。电力系统无功分布是否合理,关系到电能质量的优劣,还影响电网运行的安全性和经济性。合理的无功补偿点的选择以及补偿方式的选择,能够有效地维持系统的电压水平,提高系统的电压稳定性,降低有功网损。因此,解决好配电网络无功补偿的问题,对电网的运行安全和降损节能有着重要的意义。 二、无功补偿的原则 无功补偿的原则:全面规划,合理布局,分级补偿,就地平衡。 1.总体平衡与局部平衡相结合:既要满足全网的总无功平衡,又要满足分线、分站的无功平衡。 2.集中补偿与分散补偿相结合:要求既要在变电站进行大容量集中补偿,又要在配电线路、配电变压器和用电设备处进行分散补偿,目的是做到无功就地平衡,减少其长距离输送。 3.高压补偿与低压补偿相结合:以低压补偿为主,这和分散补偿相辅相成。 4.降损与调压相结合针对线路长,分支多,负荷分散,功率因数低的线路。这种线路最显著的特点是:负荷率低,线路损失大,若对此线路补偿,可明显提高线路的供电能力。 5.供电部门的无功补偿与用户补偿相结合:由于无功消耗大约60%在配电变压器中,其余的消耗在用户的用电设备中,若两者不能很好地配合,可能造成轻载或空载时过补偿,满负荷时欠补偿,使补偿失去了它的实际意义,得不到理想的效果。 三、无功补偿装置在调节电压、降低电能损耗中所起的作用 无功补偿的作用主要有以下几点:提高系统及负载的功率因数,降低设备容量,减少功率损耗,稳定受电端及电网的电压,提高供电质量。 1.功率因数补偿,提高电压质量。 工农业生产的用电设备多为电磁结构,功率因数较低,一般都会低于0.7以下,导致电网电压降低。加装并联电容器补偿装置就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流失的无功功率,降低网损,从而改善电压质量; 2.无功补偿调压,提高电压质量。 变电站10KV母线无功集中补偿,主要是平衡输电网的无功功率,提高系统终端变电站的母线电压,补偿主变和高压线路的无功损耗。变电站10KV母线无功集中补偿容量和投切控制方式应考虑到满足主变自身的无功损耗和就近向配电线路前端输送无功,为主变有载调压维持系统电压稳定提供保障。 四、配电网无功补偿方案及其经济技术优化比较 1.变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用并联电容器组结合变压器有载调压共同调节。利用九区图配合调节来进行电压无功控制,是一种变电站电压无功控制的有效方法。然而操作上较为麻烦,因为由于限值需要随不同运行方式进行相应的调整,会在某些区上产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2.低压集中补偿方式。 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿,通常采用微机控制的低压并联电容器柜,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。 3.杆上补偿方式。 采用 10kV户外并联电容器安装在架空线路的杆塔上进行无功补偿,以提高配电网功率因数,达到降损升压的目的。由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行:补偿点宜少、杆上补偿不设分组投切、补偿容量不宜过大、保护方式应简化。 杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的长配电线路,但是因负荷经常波动而该补偿方式是长期固定补偿,故其适应能力较差,应积极开发应用电容器组能自动投切的杆上无功补偿技术。 4.用户终端分散补偿方式。 直接对用户末端进行无功补偿,将最恰当地降低配电网的损耗和维持配电网的电压水平的有效措施。对于企业和厂矿中的电动机,应

配电网无功功率优化研究

配电网无功功率优化研究 摘要 配电网的无功功率的有效优化与合理控制既能提高电力系统运行时的电压质量,也能有效减少网损,节约能源,是保证电力系统安全经济运行的重要措施,对电网调度和规划具有重要的指导意义。 无功优化的核心问题主要集中在数学模型和优化算法两方面,其中数学模型问题是根据解决问题的重点不同来选取不同的目标函数;而优化算法的研究则大量集中在提高计算速度、改善收敛性能上。本文选取有功网损最小作为数学模型的目标函数,数学模型的约束条件有各节点的注入有功、无功功率的等式约束和各节点电压、发电机输出无功功率、可调变压器变比、并联补偿电容量、发电机机端电压均在各自的上下限之内的不等式约束,优化方法采用遗传算法。设计和编制了牛顿拉夫逊直角坐标matlab 潮流计算程序以及遗传算法无功优化的matlab潮流计算程序。通过IEEE30节点系统的算例分析,得出基于遗传算法的无功优化能有效降低系统网损、提高电压水平,验证了该算法在解决多变量、非线性、不连续、多约束问题时的独特优势,并指出了该算法的不足之处以及如何改善。 关键词:牛顿拉夫逊法,无功优化,遗传算法

Research of Reactive Power Optimization Distribution Network ABSTRACT Reactive power with reasonable optimization and control of Power system can not only improve the stability of power system, but also effectively reduce network losses and save energy. It ensures the safety and economic operation of power systems and improve the voltage quality. It is important for planning departments on grid reactive power scheduling. Reactive power optimization focuses on mathematical models and optimization algorithms. The mathematical model is selected depending on the focus of problem-solving. Optimization algorithm is concentrated in improving the calculation speed and improve the convergence performance. This paper selects the active power loss minimum objective function as a mathematical model, the constraints of mathematical model are each node of the injected active and reactive power equality constraint and the node voltage and reactive power of generator output, adjustable transformer ratio, parallel capacitance compensation, the generator terminal voltage within the respective upper and lower limits of the inequality constraints, optimization method using genetic algorithms. Design Cartesian coordinate Newton Raphson power flow calculation method and genetic algorithm matlab calculate the reactive power optimization procedures. Through a numerical example of the IEEE 30 node system, we can draw reactive power optimization based on genetic algorithm can effectively reduce system loss and improve voltage level and verify the algorithm have unique advantages to solve multivariable, nonlinear, discontinuous, multi-constraint problem. Key words: Newton Raphson method; reactive power optimization; genetic algorithm

电网无功补偿和电压调节

电网无功补偿和电压调节 无功对于电网系统设计来说,肯定是非常非常重要的了,这块其实内容很多,就做一个简单的梳理总结,有一些工程实践中的认识,希望可以互相印证。 无功对应电压,有功对应频率,应该是一个比较普遍大概的认识,当然没错。所以无功补偿和电压调节是密不可分的,也是调度考核的重要指标。 一、无功补偿概述和原则 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。 电力系统的无功补偿与无功平衡是保证电压质量的基本条件,首先是一些重要原则当然很多是国网的原则,虽说要摆脱国网思路束缚,但是有些好东西还是要保留。 分层分区补偿原则:有鉴于经较大阻抗传输无功功率所产生的很大无功功率损耗和相应的有功功率损耗,电网无功功率的补偿安排宜实行分层分区和就地平衡的原则。所谓的分层安排,是指作为主要有功功率大容量传输即220--500 kV电网,宜力求保持各电压层间的无功功率平衡,尽可能使这些层间的无功功率串动极小,以减少通过电网变压器传输无功功率时的大量消耗;而所谓分区安排、是指110k V及以下的供电网,宜于实现无功功率的分区和就地平衡。 电压合格标准: 500kV母线:正常运行方式时,最高运行电压不得超过系统额定电压的+10%;最低运行电压不应影响电力系统同步稳定、电压稳定、厂用电的正常使用及下一级电压调节。 发电厂和500kV变电所的220kV母线:正常运行方式时,电压允许偏差为系统额定电压0~+10%;事故运行方式时为系统额定电压的的-5%~+10%。 发电厂和220kV变电所的110kV~35kV母线:正常运行方式时,电压允许偏差为相应系统额定电压-3%~+7%;事故后为系统额定电压的的±10%。 带地区供电负荷的变电站和发电厂(直属)的10(6)kV母线:正常运行方式下的电压允许偏差为系统额定电压的0~+7%。 无功补偿配置原则:各电压等级变电站无功补偿装置的分组容量选择,应根据计算确定,最大单组无功补偿装置投切引起所在母线电压变化不宜超过电压额定值的 2.5%,并满足主变最大负荷时,功率因数不低于0.95。

试论10kV配电网无功功率平衡及优化补偿

试论10kV配电网无功功率平衡及优化补偿 无功功率平衡 在电力系统中,无功功率同有功功率一样必须保持平衡,负载所需要的感性无功功率jQL由电网中无功电源发出的容性无功功率-jQc来提供补偿。无功功率平衡应根据就地平衡的原则进行就地补偿,避免大量的无功功率作远距离传输。无功补偿应根据分级就地平衡和便于调整电压的原则进行配置。集中补偿与分散补偿相结合,以分散补偿为主;高压补偿与低压补偿相结合,以低压补偿为主;调压与降损相结合,以降损为主;并且与配电网建设改造工程同步规划、设计、施工、同步投运。 2无功对电压和线损的影响 2.1无功对电压的影响 (1)无功与电压损耗的关系 当电网传输功率时,电流将在线路、变压器阻抗上产生电压损耗△〖WTBX〗U。其关系式如下: △U=(PR+QX)/UN (1) 当线路安装无功补偿容量为Q c的并联电容器补偿装置后,线路电压损耗为 △U=〔PR+(Q-QC)X〕/UN (2) 并联电容器补偿装置投入运行所引起的静态电压升高,即 △U-△U=QCX/UN (3) 式中△U-电压损耗,V

P-线路传输的有功功率kW Q-线路传输的无功功率kvar QC-补偿投入的电容器容量kvar UN-线路额定电压kV R、X为线路电阻、电抗ZK) 从上式中可见,无功功率的变化,将引起电压降的变动,由于安装并联电容器,就地平衡无功功率,限制无功功率在电网中传输,相应地减少了线路的电压损耗,提高了配电网的电压质量。 (2)电压调整 10kV配电线路存在电压过低或偏高问题,其原因除了电网结构不合理和导线过细外,主要是无功功率不足或过剩。系统的无功功率对电压影响极大,无功功率不足,将引起电网电压下降,而无功过剩将引起电网电压偏高。无功功率平衡是维持及保证电网电压质量的基础,必须采取有效的调压措施,以提高电压水平。合理调整变压器分接头,是提高电网电压水平的一种调压手段。 2.2无功对线损的影响 在电网运行中,因大量非线性负载的投运,它们除要消耗有功功率外,还要消耗一定的无功功率,负荷电流通过线路、变压器将会产生功率与电能损耗。由电能损耗公式可知,当线路或变压器输送的有功功率和电压不变时,线损与负荷功率因数的平方成反比。功率因数越低,电网所需无功就越多,线损就越大。当cos=0.7时,无功功率和有功功率在电

配电网无功优化研究

配电网无功优化研究 发表时间:2018-01-26T15:18:18.023Z 来源:《防护工程》2017年第27期作者:董冠男 1 李龙妹1 王薇2 [导读] 在电力系统运行中,无功功率补偿一直是配电网安全、经济运行的重要因素。 1.国网朝阳供电公司辽宁朝阳 122000; 2.锦州供电公司辽宁锦州 121000 摘要:在电力系统运行中,无功功率补偿一直是配电网安全、经济运行的重要因素。在确保安全可靠的同时又要科学利用和优化配置系统资源,来降低运行损耗,提高供电电能质量。本文介绍了配电网无功功率补偿原理、方法,以及无功功率特性,并针对一个10 kV配电系统,通过采用电力电容器对系统进行并联无功功率补偿。 关键词:无功优化;配电网;无功补偿 1引言 电力系统的无功优化是电力系统科学管理的重要手段和内容,是利用科学的方法计算出发电机、调相机、无功补偿装置(包括补偿电容和电抗器等)、可调变压器等无功电压的可利用资源的有效组合配置,寻求在其设备性能约束条件下的最佳运行点和最佳效益点,以实现最合理投资和运行状态,满足电网电压合格率最高,系统运行损耗最小的运行要求。无功优化及规划也是提高电网运行水平和规划管理水平、指导管理人员工作的科学依据和不可缺少的工具之一。 2配电网无功功率优化补偿原理 2.1 无功补偿的原理 无功功率在电网中的流动,对电网的安全、经济运行了有着重要的影响。要保证电网的安全、经济运行,降低电网损耗,总是希望电网的无功最好不流动,即所谓的理想状态,或者尽量少流动,特别要避免无功功率通过输电线路远距离流动,实现系统的无功平衡。 所谓无功平衡,就是指在电网运行的每一时刻,系统中各无功电源所发出的总无功功率要与系统所有的无功负荷及无功功率损耗相平衡。具体用公式表示为 无功补偿就是根据交流电路中,无功功率是由电压和电流间的相位差异产生的这一特点,利用电容和电感相反的相位特性进行补偿。无功补偿分为感性补偿和容性补偿,感性补偿是利用并联电抗器等无功补偿装置,对容性负荷发出的无功功率加以吸收,一般在高电压或超高压输电网中采用,用以吸收输电线路产生的充电功率;容性补偿是利用并联电容器等无功补偿装置,提供感性负荷需要的无功功率,使由电源输送的无功功率减少.从而避免了无功补偿装置所发出的无功功率通过输电线路远距离输送。并联电容器的补偿原理可以由图3-1说明。 2.2 无功补偿装置 从目前国内外无功补偿装置的应用情况看,无功补偿装置主要有同步调相机、并联电容器和静止补偿器等三种。 1)同步调相机 同步调相机是特殊运行状态下的同步电机,可视为不带有功负荷的同步发电机或是一种不带机械负载的同步发电机。它可以过励磁运行,也可以欠励磁运行,运行状态根据系统的需要来调节。 2)并联电容器 并联电容器的结构比较简单,主要由芯子、油箱和出线三部分织成。它的作用就在于重负荷时发出感性无功,补偿负荷所需,以减少输送感性无功而在线路上产生的电压降落,提高负荷端电压。 3)静止补偿器 静止补偿器是近年来发展起来的一种动态无功功率补偿装置。通常由电容器、饱和电抗器或线性电抗器、滤波器、晶闸管和专用调节器等静止设备组成,利用可控硅开关来分别控制电容器组与电抗器的投切,这样它的性能完全和同步调相机一样。 2.3 无功补偿方式 电网无功补偿主要有三种方式:集中补偿、分散补偿、就地补偿。最有效的方法是就地补偿。 就地补偿:将电容器直接安装于电动机等用电设备附近,与用电设备的供电回路相并联,对系统最末端的电动机等用电设备所消耗的无功功率进行就地补偿,以提高配电系统的功率因数,此方式最有效。 3 无功功率特性与其他参数关系 各种用电设备中,除了相对很小的白炽灯,照明负荷只消耗有功功率,为数不多的同步电机可发出一部分无功功率外,其余大多数用电设备都要消耗无功功率。因此,无论是工业或农业用户都以滞后的功率因数运行,其值约为0.6~0.9。下图3.1为某地区无功功率变化规律示意图,从图中可看出,无功负荷在一天中变化是较大的。

电气系统无功补偿

在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。 电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同步调相机和静止无功补偿装置辅以适当的调节控制,是比较理想的支撑电压的无功补偿设备。近年来,国内外均注重静止补偿装置的应用。 2配电网的无功补偿与电压调整 以相位补偿和保证用户用电电压质量为主。 2.1相位补偿亦称功率因数补偿 用电电器多为电磁结构,需要大量的励磁功率,致使用户的功率因数均为滞相且较低,一般约为0.7左右。励磁功率——滞相的无功功率在配电网中流动,不仅占用配电网容量,造成不必要的损耗,而且导致用户电压降低。相位补偿是以进相的无功补偿设备(如并联电容器)就近供给用户或配电网所需要的滞相无功功率,减少在配电网中流动的无功功率,降低网损,改善电压质量。中国对大电力用户要求安装无功补偿装置,补偿后的功率因数不得低于0.9。 2.2电压调整

10kV 配电网无功优化自动化控制系统设计分析

10kV 配电网无功优化自动化控制系统设计分析 从某种程度上来说,无功优化自动化控制的主要工作原理是在电网当中进行并联电容器等无功补偿设备安装以后,通过这些设备来进行感性电抗所消耗的无功功率达到供给,进而使得线路所输送的无功功率得到很大程度的降低,进而有效地降低电能的损耗。因此,对于有效地提高电力系统运行的稳定性与确保其正常稳定运行具有着非常重要的作用。从经济效益来看,是一项投资金额少,经济效益好的降损节能的科学技术措施。 标签:无功优化;10kV配电网;自动控制;系统设计 1 关于10kV配电网无功优化自动化控制系统的发展与简介 随着我国综合国力的不断加强,科学技术水平也得到了很大程度的提高,人们也开始对10kV配电网的无功补偿技术进行了大力的研究,也取得了一定的成效。目前我国的变电站调度自动化(SCADA)系统已经得到了较为广泛的应用,因此,通过SCADA系统提供的有限的线路运行参数以及补偿电容器运行现场的电压来自动控制电容器的投切,进行动态补偿。从当前应用较为广泛的无功优化自动化系统来看,其重要地位的是运行于调度中心上位机,发挥着补偿器综合协调远程投切控制的重要作用。由于变电站每条馈线可能同时运行多台补偿器,这些补偿器之间相互独立,不存在信息交换,所以上位机无功优化自动化控制系统需要结合线路运行的聚义状况,协调各个补偿器进行运行。 2 10kV配电网中无功优化自动化控制系统设计的应用实践 2.1 确定补偿点以及补偿容量 通常情况下,10kV配电网有功损耗主要是由有功电流与无功电流产生,通过在线路上面安装补偿电容器,能够在很大程度上降低无功电流。因此,补偿节点与补偿容量的确定是相当重要的一个内容,这是确保能够达到预期目标的重要内容,当前,相对而言比较有效的一种方式就是基于非节点的补偿算法,也就是通过遗传算法并行寻优的特征,进而得到最佳补偿位置与补偿容量。 2.2 确定补偿的具体位置 需要注意的是,10kV无功补偿装置的位置确定也是相当重要的一项工作,其对于预期目标的正常实现有着非常重要的影響。所以,在安装地点位置确定的过程当中必须要遵循无功就地平衡的原则,应该把减少主干线上的无功电流作为工作的重点,根据作者的讲演,一条线路上面,如果安装一台无功补偿柜,通常情况下,其安装位置是在线路负荷的三分之二的地方,积极采取有效地措施,科学合理的进行无功补偿容量的配置,合理地确定电容器装设的地点,可以有效的提高电压的质量,使得线路损耗得以大幅度地降低。

无功补偿

电网无功功率分析与补偿器的研究 由于无功补偿对电网安全、优质、经济运行具有重要作用,因此无功补偿是电力部门和用户共同关注的问题。合理选择无功补偿方案和补偿容量,能有效提高系统的电压稳定性,保证电网的电压质量,提高发输电设备的利用率,降低有功网损和减少发电费用。本文按照电网无功补偿的基本原则是,重点介绍了输配电网中各种无功补偿的原理及方法,以达到改善功率因数、调整电压及补偿参数等作用。另介绍了电网电压调整的几种方法 前言 目前世界范围内掀起环境保护的热潮,电力系统是一种特定的环境,在输配电网中出现的无功功率,是电网本身的运行规律所决定,但同时它给电网运行带来了许多麻烦。无功功率是一种既不能作有功,但又会在电网中引起损耗,而且又是不能缺少的一种功率,所以在电网中要加入无功功率补偿的装置,同时对电网电压进行调整,达到电网利用效率最大化。 二、输配电网的无功补偿 2.1输电网的无功补偿 电网无功补偿的基本原则是:按电压分层,按电网分区,就地平衡,避免无功功率的远距离输送,以免占用线路输送容量和增加有功损耗。输电网多数无直供负载,一般不为调压目的而设置无功补偿装置。参数补偿多用于较长距离的输电线路。具体补偿方法如下:2.1.1电抗器补偿 电抗器是超高压长距离输电线路的常用补偿设备,用以补偿输电线路对地电容所产生的充电功率,以抑制工频过电压。电抗器的容量根据线路长度和过电压限制水平选择,其补偿度(电抗器容量与线路充电功率之比)国外统计大多为70-85,个别为65,一般不低于60。电抗器一般常设置在线路两湍,且不设断路器。 2.1.2串连电容补偿 串联电容用来补偿输电线路的感抗,起到缩短电气距离提高稳定性水平和线路的输电容量的作用。串联电容器组多为串、并联组合而成,并联支数由线路输送容量而定,串联个数则由所需的串联电容补偿度(串联电容的容抗与所补偿的线路感抗之比)而定。串联电容补偿一般在50以下,不宜过高,以免引起系统的次同步谐振。输电网中因阻抗不均而造成环流时,也可用串联电容来补偿。日本在110kV环网中就使用了串联电容补偿。 2.1.3中间同步或静止补偿 在远距离输电线路中间装设同步调相机或静止补偿装置,利用这些装置的无功调节能力,在线路轻载时吸收线路充电功率,限制电压升高;在线路重载时发出无功功率,以补偿线路的无功损耗,支持电压水平,从而提高线路的输送容量。中间同步或静止补偿通常设在线路中点,若设在线路首末端,则调节作用消失。 输电网的电压支撑点与调压输电网与受电地区的低一级电压的电网相联的枢纽点,常设置有载调压变压器或有相当调节与控制能力的无功补偿装置,或者二者都有,以实现中枢点调压,使电网的运行不受或少受因潮流变化或其他原因形成的电压波动的影响,在电网发生事故时起支撑电压的作用,防止因电网电压剧烈波动而扩大事故。电压支撑能力的强弱,除与补偿方法和补偿容量大小有关外,更与补偿装置的调节控制能力和响应速度有关。并联电容器虽是常用而价廉的补偿设备,但其无功出力在电压下降时将按电压的平方值下降,不利于支撑电压。大量装设并联补偿电容器反而有事故发生助长电网电压崩溃的可能性。采用同

配电网无功优化及无功补偿技术 张群

配电网无功优化及无功补偿技术张群 发表时间:2018-03-05T14:42:53.730Z 来源:《基层建设》2017年第33期作者:张群 [导读] 摘要:随着社会经济的快速发展,人们用电量的增加,接入电源和输配电线路越来越多,加大了电力系统的负荷,使电力运行中常有无功功率产生,电力系统的无功优化和无功补偿是提高系统运行,电压减小,网损提高,系统稳定水平的有效手段。 国网江西省电力公司大余县供电分公司江西省大余县 341500 摘要:随着社会经济的快速发展,人们用电量的增加,接入电源和输配电线路越来越多,加大了电力系统的负荷,使电力运行中常有无功功率产生,电力系统的无功优化和无功补偿是提高系统运行,电压减小,网损提高,系统稳定水平的有效手段。为了作好降损节能的作用,改善电能的质量,提高输变电设备的有功出力,使电气设备在最佳经济状态下用运行,使有限的电力更好的为社会主义建设事业服务,因此做好无功优化和无功补偿工作势在必行。 关键词:配电网;无功优化;无功补偿 随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性,而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。无功优化计算是在系统网络结构和系统负荷给定的情况下,通过调节控制变量使系统在满足各种约束条件下网损达到最小。通过无功优化不仅使全网电压在额定值附近运行,而且能取得可观的经济效益,使电能质量系统运行的安全性和经济性完美的结合在一起,因而无功优化的前景十分广阔。无功补偿可看作是无功优化的一个子部分,即它通过调节电容器的安装位置和电容器的容量,使系统在满足各种约束条件下网损达到最小。 1. 配电网无功优化的目的及意义 无功补偿是指在配电系统中安装并联电容器等容性设备。这些设备可供给感性负荷所消耗的部分无功功率,对电网中的无功功率进行补偿,从而降低线路的电能损耗并提高系统的功率因数,改善电网的运行条件。提高功率因数有着重要的意义,它可以提高设备出力,降低电网中输电线路上的有功损耗和电能损耗,同时还可以降低配电系统的线损电压,减少电压波动,改善供电质量。无功优化是指在电力系统运行期间,调度人员如何在有功功率分配这一条件下,利用无功控制手段来调整系统的无功潮流分布,使得电力系统既能满足各种约束条件,又能实现系统有功损耗最小等预定目标。电能的质量及其生产的经济性是供电部门高度重视的问题,开展无功优化工作将在工程实践中产生重要的作用和显著的经济效益。 2. 配电网无功补偿的基本原理 无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。 3. 配电网无功优化的方法 由于无功优化模型的处理不同以及优化目标函数的选择不同,所使用的优化方法也有差异。目前主要两大类优化方法:一类传统的优化算法,这类算法从某个初始点出发,按照一定的轨迹不断改进当前解,最终收敛于最优解。这类优化算法主要有线性规划法、非线性规划法、混合整数规划法、动态规划法;该类方法经历了三个阶段,第一是仅考虑等式约束的基于拉格朗日函数的等网损微增率准则,该准则概念清楚、简捷快速,在电力系统运行调度和方式制订上作用显著,尤其是凭经验进行的决策;第二是考虑不等式约束的各类优化算法,如梯度类算法、线性规划法、二次规划法及混合整数规划法等;第三是障碍函数类算法,如内点法,该类算法具有计算速度与求解问题规模不大相关等特殊优点,因而成为优化研究领域的一个热点。 另一类是智能优化算法,它们从一个初始解群体开始,按照概率转移原则,采集某种方式自适应地搜索最优解人工智能算法是一种以一定的直观基础而构造的算法。近年来,基于对自然界和人类本身的有效类比而获得启示的智能算法在电力系统无功优化中的应用受到了人们的关注,具有代表性的有人工神经网络、粒子群算法、模拟退火法、遗传算法等。智能方法是无须解析表达就能进行优化的方法,包括具有不同智能程度的一系列搜索优化算法。它们以一个初始解群开始,按照概率转移原则,采用某种方式搜索最优解。以遗传算法、模拟退火法等为代表的智能搜索算法,对于搜索空间基本上不需要什么限制性假设,因而具有全局寻优能力,弥补了传统数学规划方法的不足,在电力系统无功优化中得到了成功的应用。 4. 配电网无功补偿及经济技术优化 4.1变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿,补偿装置包括并联电容器、同步调相机、静止补偿器等,这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。为了实现变电站的电压控制,通常采用并联电容器组结合变压器有载调压共同调节。利用电压九区图控制法配合调节来进行电压无功控制,是一种变电站电压无功控制的有效方法。然而操作上较为麻烦,因为由于限值需要随不同运行方式进行相应的调整,会在某些区上产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而电压九区图控制法没有相应的判断。因此,现行电压九区图控制法的调节效果还有待进一步改善。 4.2低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿,通常采用微机控制的低压并联电容器柜,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。 4.3杆上补偿方式 采用10kV户外并联电容器安装在架空线路的杆塔上进行无功补偿,以提高配电网功率因数,达到降损升压的目的。由于杆上安装的并

相关文档
最新文档