_德氏乳杆菌发酵生产乳酸工艺条件优化

_德氏乳杆菌发酵生产乳酸工艺条件优化
_德氏乳杆菌发酵生产乳酸工艺条件优化

微生物发酵工艺优化研究进展

龙源期刊网 https://www.360docs.net/doc/2711800493.html, 微生物发酵工艺优化研究进展 作者:张锐 来源:《海外文摘·学术》2017年第03期 摘要:近些年,在有关技术领域中微生物的发酵技术已得到了非常广泛的应用,特别在医药行业内应用此种技术十分普遍。微生物科技发展非常快,因此,人们也有不断深入的研究微生物的发酵工艺。为此,本文对影响微生物发酵的培养条件和培养基进行了分析,又对优化微生物发酵工艺的办法进行了讨论研究,为微生物工程的发展提供参考价值。 关键词:发酵工艺;微生物;培养条件;工艺优化;培养基 中图分类号:TQ920.6 文献标识码:A 文章编号:1003-2177(2017)03-0058-02 1 微生物发酵受培养基的影响 微生物在进行生长、代谢时,培养基能供给微生物发酵所需要的能量与营养物质,对合成发酵产物的效率和产品的质量保障来讲有着重要意义。在进行微生物发酵时,因其发酵条件与菌种的差异和不同的发酵阶段,需要培养基的成分也不同。一般情况下,微生物生长需要的营养要素有生长因子,碳源,无机盐和氮源四类。 1.1 选择氮源与碳源作发酵的培养基 氮源为微生物提供含氮的有机物与蛋白质,并且,还是合成含氮产物的参与者。氮源主要是有机氮源与无机氮源两种,如豆粉,氨盐,蛋白胨与硝酸盐等。碳源能够为微生物提供能量来源,形成产物和构建细胞。碳源的形式有油脂,多糖,单糖,天然复合物,双糖等,如豆油,葡萄糖,淀粉与蔗糖等。选择发酵的培养基中要有均衡的碳源与氮源比,确保其菌体能够正常生长,而且还有利于合成产物的速率。 1.2 无机盐对发酵培养基的影响 微生物的生长和生成的代谢产物都与无机盐有关重要关系。微生物在进行生长代谢时,构成的辅酶中有磷的参与,它是构成微生物生长,代谢的重要因素。有些菌种的发酵产物中包含磷酸根,因此在进行培养基发酵时,添加很多的磷酸盐,这利于产物快速合成。在微生物发酵中钙离子对细胞的生理状况起到了调节作用,例如,使细胞膜的通透性降低,维持细胞状态等。很多酶都用镁来作催化剂。微生物生长所需微量元素有很多,如,钴,铁,锌,锰等。经研究证明,枯草芽孢杆菌的生长中需要锰离子的参与,在发酵培养基中添加适量的氯化锰,可以提升枯草芽孢杆菌生成的发酵物中抑菌物质的活性。 2 微生物发酵受培养条件的影响

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

脂肪酶产生菌发酵条件的优化

绵阳师范学院 本科生毕业论文(设计) 题目脂肪酶产生菌M-6-2发酵条件的优化专业生物技术 院部生命科学与技术学院 学号0811420218 姓名杜长蔓 指导教师李俊刚 答辩时间2012年5月 论文工作时间:2011 年7 月至2012 年5 月

脂肪酶产生菌M-6-2发酵条件的优化 学生:杜长蔓 指导老师:李俊刚 摘要:本文对绵阳师范学院微生物实验室筛选和鉴定的产脂肪酶细菌 M-6-2的生长动力学和产酶动力学进行了研究;通过单因素实验和正交试验,对脂肪酶产生菌M-6-2 摇床发酵产脂肪酶的培养基组成和培养条件进行优化,得出较佳的产酶培养基组成配方为:1.5%淀粉+0.5%酵母膏为碳源、4.5%豆饼粉 +1.5%硝酸铵为最佳的氮源、0.05%磷酸氢二钠和0.15%硫酸镁;最优的发酵条件为:初始pH7.5,接种量1.5 %,装液量20ml/250ml,发酵温度35℃,在转速180r/min 下,培养16h,经过优化后发酵液脂肪酶酶活力最高可达到15.60 U/ml,较优化前提高了49.57%。脂肪酶产生菌M-6-2与国内文献报道的产脂肪酶细菌相比产酶活力高。对该菌株发酵条件进行优化后,为生产性试验打下了基础。 关键词:脂肪酶产生菌M-6-2;脂肪酶;发酵条件;优化;正交试验;

Lipase to produce bacteria M-6-2 Optimization of fermentation conditions Undergraduate: Du Changman Supervisor: Li Jun Gang Abstract: In this paper, Laboratory screening and identification of lipase production by bacteria in the M-6-2 growth kinetics and enzyme production kinetics were studied; through single factor experiments and orthogonal test, the lipase to produce bacteria M-6-2 shaker fermentation lipase medium composition and culture conditions were optimized to come to a better enzyme production medium composition formula: 1.5% starch and 0.5% yeast extract as carbon source, 4.5% of the soybean powder and 1.5% ammonium nitrate for the best source of nitrogen, 0.05% disodium hydrogen phosphate and 0.15% magnesium sulfate. Optimal fermentation conditions were: initial pH 7.5, 1.5% of the inoculum size, liquid volume 20ml/250ml, fermentation temperature 35 ° C, in the speed 180r/min next, cultured 16h After optimization of the fermentation broth lipase activity can reach 49.57% to 15.60 U / ml, compared to before optimization. Lipase to produce bacteria M-6-2 and reported in China in the production of lipase bacteria compared to the high activity of enzyme production. Of the strain fermentation conditions optimized, laid the foundation for the production of test. Key words: Lipase producing strain M-6-2;lipase ;fermentation conditions; optimization ;orthogonal test

乳酸的生产方法

乳酸的生产方法 发酵法 发酵法的主要途径是糖在乳酸菌作用下,调节pH值5左右,保持大约50或60dm;C发酵三到五天得粗乳酸。 发酵法的原料一般是玉米、大米、甘薯等淀粉质原料(也有以苜蓿、纤维素等作原料,有研究提出厨房垃圾及鱼体废料循环利用生产乳酸的)。乳酸发酵阶段能够产酸的乳酸菌很多,但产酸质量较高的却不多,主要是根霉菌和乳酸杆菌等菌系。不同菌系其发酵途径不同,可分同型发酵和异型发酵,实际由于存在微生物其它生理活动,可能不是单纯某一种发酵途径。 发酵法分同型发酵和异型发酵。 合成法 合成方法制备乳酸有乳腈法、丙烯腈法、丙酸法、丙烯法等,用于工业生产的仅乳腈法(也叫乙醛氢氰酸法)和丙烯腈法。 (1)乳腈法 乳腈法是将乙醛和冷的氢氰酸连续送入反应器生成乳腈(或直接用乳腈作原料),用泵将乳腈打入水解釜,注入硫酸和水,使乳腈水解得到粗乳酸。然后再将粗乳酸送人酯化釜,加入乙醇酯化,经精馏、浓缩、分解得精乳酸。美国斯特林化学公司及日本的武藏野化学公司均采用此法合成乳酸。 (2)丙烯腈法

丙烯腈法是将丙烯腈和硫酸送入反应器中水解,再把水解物送人酯化反应器中与甲醇反应;然后把硫酸氢铵分出后,粗酯送入蒸馏塔,塔底获精酯;再将精酯送入第二蒸馏塔,加热分解,塔底得稀乳酸,经真空浓缩得产品。 (3)丙酸法 丙酸法以丙酸为原料,经过氯化、水解得粗乳酸;再经酯化、精馏、水解得产品。该法原料价格较贵,仅日本大赛路公司等少数厂家采用。反应如下:CH3CH2COOH Cl2-→CH3CHClCOOH NaOH—→CH3CH(OH)COOH NaCl 酶化法 (1)氯丙酸酶法转化 东京大学的本崎[6]等研究利用纯化了的L-2-卤代酸脱卤酶和DL-2-卤代酸 脱卤酶分别作用于底物L-2-氯丙酸和DL-2-氯丙酸,脱卤制得L-乳酸或D-乳酸。L-2-卤代酸脱卤酶催化L-2-氯丙酸,而DL-2-卤代酸脱卤酶既可催化L-2-氯丙酸,又可催化L-2-氯丙酸生成相应的旋光体,催化同时发生构型转化。 (2)丙酮酸酶法转化 从活力最高的乳酸脱氢酶的混乱乳杆菌DSM20196菌体中得到D-乳酸脱氢酶,以无旋光性的丙酮酸为底物可得到D-乳酸。 工业生产乳酸方法主要是发酵法和合成法。发酵法因其工艺简单,原料充足,发展较早而成为比较成熟的乳酸生产方法,约占乳酸生产的70以上,但周期长,只能间歇或半连续化生产,且国内发酵乳酸质量达不到国际标准。化学法可实现

年产10万吨乳酸发酵车间设计

长江大学 发酵工厂设计课程设计 题目名称:年产10万吨乳酸发酵车间设计 学院(系):生命科学学院 专业班级: 学生姓名: 指导教师: 课程设计日期:2010年11月18日-2010年12月10日

目录 引言 1发酵工厂总平面设计方案……………………………………………………………… 1.1 工厂的选址……………………………………………………………………… 1.2 工厂总平面设计方案 2生产工艺流程设计 2.1 生产工艺概述 2.2 操作要点说明 2.3 酸奶质量标准 3设计计算说明 3.1 物料平衡计算 3.2 水平衡计算 3.3 热量平衡计算 3.4 无菌空气平衡计算 3.5 班产量计算与人员安排 3.6 设备的选型与校核计算 4车间设备布置设计 4.1 车间布置说明 4.l 车间布置图纸(平面图、立面图、主要设备图) 总结

年产10万吨乳酸发酵车间设计 学生: 指导老师: 民以食为天,食以乳为先。牛乳自古以来即被人类饮用,牛乳的组成最为接近人乳,含有人体所需要的全部营养成分,营养最为均衡,在人们的膳食结构中具有其他食品无法替代的地位和作用。由鲜牛乳发酵成的酸乳由于其丰富的营养、特殊的风味、爽滑的质构和良好的生理功能,备受人们青睐。联合国粮农组织(FAO)、世界卫生组织(WHO)与国际乳品联合会(IDF)于1977年对酸乳作出如下定义:酸乳,即在添加(或不添加)乳粉(或脱脂乳粉)的乳(杀菌乳或浓缩乳)中,由保加利亚乳杆菌和嗜热乳酸链球菌进行乳酸发酵制成的凝乳状产品,成品中必须含有大量的、相应的活性微生物。通常根据酸乳成品的组织状态来进行分类,具体可分为凝固型酸乳(发酵过程在包装容器中进行,从而使成品因发酵而保留其均匀一致的凝乳状态)、搅拌型酸乳(成品先发酵后灌装而得,发酵后的凝乳已在灌装前和灌装过程中搅碎而成黏稠且均匀的半流动状态)和饮用型酸乳(类似搅拌型酸奶,但包装前凝块被分散成液体)。饮用酸乳制品对身体有很多益处,乳中许多成分具有很高的营养价值,而且微生物菌群产生的许多代谢产物对人体也极为有益。⑴营养作用:牛奶中乳糖经乳酸菌发酵,其中20%~30%被分解为葡萄糖和半乳糖。前者进一步转化为乳酸或其他有机酸,这些有机酸有益于身体健康;后者被人吸收利用,可参与幼儿脑苷脂和神经物质的合成,并有利于提高乳脂肪的利用率。牛奶中的蛋白质经发酵作用后,乳蛋白变成微细的凝乳粒,易于被人消化吸收。酸奶中的磷、钙和铁易被吸收,有利于防止婴儿佝偻病和老人骨质疏松病。牛奶中的脂肪经乳酸菌作用后,发生解离或酯键被破坏,易于被机体吸收。发酵过程中,乳酸菌还会产生人体所必需的维生素 B 1、维生素B 2 、维生素B 6 、维生素B 12 、烟酸和叶酸等营养物质。⑵缓解乳糖不耐 症:乳酸菌产生的乳糖酶能降解牛奶中的乳糖,因此乳糖不耐症患者饮用酸奶就不会出现饮用牛奶时发生的乳糖不耐症,如腹胀、腹痛、肠道痉挛、下泻等。⑶整肠作用:人体肠道内存在有益菌群和有害菌群。在人体正常情况下,前者占优势;当人患病时,有害菌群占优势。饮用酸奶可以维持有益菌群的优势。⑷抑菌

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

发酵工艺条件的优化修订稿

发酵工艺条件的优化集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

发酵工艺条件的优化 发酵优化对于搞发酵的工作者而言是非常必需的,下面结合其他战友的一些经验之谈引出此专题,希望大家踊跃讨论,以其提高发酵水平和解决实际问题。 发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。 注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!!!谢谢大家的参与!!!!!!!!!一. 好氧发酵1. PH 工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化 二. 厌氧工艺的优化三.固体发酵的工艺优化四.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的P H,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化

发酵工艺重点

第一章绪论 发酵的定义:通过微生物的生长和代谢活动,产生和积累人们所需代谢产物的一切微生物培养过程。 发酵工程:是指利用微生物的生长繁殖和代谢活动来大量生产人们所需产品过程的理论和工程技术体系。 微生物发酵产品分为(按发酵类型):微生物菌体细胞、酶制剂和酶调节剂、微生物代谢产物(包括初级代谢产物和次级代谢产物)以及微生物转化、工程菌发酵产物等。发酵培养方法:表面培养发酵法和深层培养发酵法。 液体深层培养法的基本工艺过程:菌种选育、孢子制备、种子制备、发酵培养、发酵液预处理、提取精制、成品检验、成品包装。 第二章菌种选育工业发酵三个技术领域:菌种选育、发酵工艺(上游工程)和分离提取工艺(下游工程)。 菌种选育在发酵生产上的目的:提高发酵产量、改进菌种性能、产生新的发酵产物、去除多余的组分。 微生物突变的修复:光修复、切补修复、重组修复、SOS修复系统、DNA聚合酶的校正作用。 菌种选育的方法:自然选育、诱变育种、杂交育种、基因工程育种、原生质体育种。自然选育(natural screening ):是指利用微生物在一定条件下产生自发突变的原理,通过分离、筛选排除衰退型菌株,从中选出维持或高于原有生产菌株的过程,以达到稳定或提高生产的目的。 菌种退化:菌种在长期的传代保存过程中,由于自发突变使菌种变得不纯,生产能力下降。原因有菌种遗传特性的改变、经诱变剂处理后的退化变异、菌种生理状况的改变(培养条件)。 自然选育的一般过程:单孢子悬浮液的制备、分离出单菌落、单菌落传斜面、摇瓶初筛、菌种保藏、摇瓶复筛、放大试验。 诱变育种(mutation breeding )是利用物理或化学诱变剂处理均匀分散的微生物细胞群体,促进其突变率大幅提高,然后采用简便、高效的筛选方法,从中选出少数具有优良性状的突变菌株。主要

泡菜发酵工艺

泡菜发酵工艺综述 王瑜蒙万川 一、泡菜营养分析 泡菜是以微生物乳酸菌主导发酵而生产加工的的传统生物食品,富含以乳酸菌为主的功能益生菌群及其代谢产物,风味优雅、清香脆嫩,营养丰富,既可满足不同口味、又可增进食欲、帮助消化,促进健康。泡菜含有维生素A、B1、B2、C、钙、磷、铁、胡萝卜素、辣椒素、纤维素、氨基酸、蛋白质等多种营养成分。大量V c和胡萝1-素,能起抗癌作;泡菜中的纤维素对便秘和大肠癌有预防和抑制作用,还可降低胆固醇,预防高血压,动脉硬化等成人循环系统病症;泡菜中的辣椒、蒜、姜、葱等刺激性作料可起到消炎杀菌,促进消化酶分泌的作用[1];泡菜发酵过程中产生的有机酸、酒精和酯等物质,能以其独特的风味和颜色增进食欲[2];泡菜中含有大量的乳酸菌(约6300万个/mL),被人体吸收后,能促进胃肠道蠕动和胃蛋白酶的分泌,并抑制人体消化道内有害菌的繁殖,使肠道内微生物分布正常化,有助于对食物的消化、吸收[3];乳酸菌代谢产生的有机酸可使肠道内的渗透压增高,水分分泌亢进,粪便中水分增高而缓解便秘。另外据研究,泡菜还可以降低血液中氨基酸含量,防止脑溢血、心肌梗塞;降低肝中脂肪和血液中胆固醇含量,预防动脉硬化[4];使皮肤细胞角质层变薄,减少皮肤的紫外线酸化作用,有效防止皮肤老化;抑制癌细胞生长[5]等。 二、泡菜发酵过程 2-1发酵初期:蔬菜刚入坛时,其表面带入的微生物,主要以不抗酸的大肠杆菌和酵母菌等较为活跃,它们进行异型乳酸发酵和微弱的酒精发酵,发酵产物为乳酸、乙醇、醋酸和二氧化碳等。由于有较多的二氧化碳产生,气泡会从坛沿水槽内的水中间歇性地放出,使坛内逐渐形成嫌气状态。此时泡菜液的含酸量约为0.3%~0.4%,是泡菜初熟阶段,其菜质咸而不酸、有生味。 2-2发酵中期:由于初期乳酸发酵使乳酸不断积累,pH下降,嫌气状态形成,乳酸杆菌开始活跃,并进行同型乳酸发酵。这时乳酸的积累量可达到0.6%~0.8%。pH为3.5~3.8。大肠杆菌、腐败菌、酵母菌和霉菌的活动受到抑制。这一期间为泡菜完全成熟阶段,泡菜有酸味而且清香。 2-3发酵后期:在此期间继续进行的是同型乳酸发酵,乳酸含量继续增加,可达1.0%以上。当乳酸含量达到1.2%以上时,乳酸杆菌的活性受到抑制,发酵速度逐渐变缓甚至停止。此阶段泡菜酸度过高、风味不协调。从乳酸的含量、泡菜的风味品质来看,在初期发酵的末期和中期发酵阶段,泡菜的乳酸含量为0.4%~0.8%,风味品质最好,因此,常以这个阶段作为泡菜的成熟期。 三、泡菜发酵工艺的探究分析 3-1发酵温度:通过研究发现分别以15℃、25℃、35℃发酵榨菜泡菜时,温度与发酵进程的影响成正相关关系,72小时内35℃的产酸量为25℃的1.3倍,15℃的3倍。以榨菜泡菜0.5%酸度值为成熟标准的话,35℃的泡菜24小时内就可以发酵成熟,而25℃则需48小时,15℃的在72小时内都无法达到成熟的标准。在试验中随着盐量的增加,发酵速率与产酸量均降低,食盐的渗透压对发酵速率与发酵进程的影响较显著。除成熟度与发酵速率基本一致外.盐量高低对泡菜质地的影响未见明显差异[6]。 3-2盐水浓度:盐水(质量浓度分别为18.67g/l,28.00g/l,37.33g/l)发酵白菜的过程中,泡菜液的细菌总数往往在第4天出现峰值,而后呈下降趋势,最后平稳。而对于乳酸菌,前6 d发酵的菌数量呈上升趋势,第6天以后乳酸菌数处于平衡状态。用各种质量浓度食盐的处理中,食盐质量浓度越高,乳酸菌数越少,质量浓度为37.33g/l的盐使乳酸菌的数量明显减少;在泡菜发酵时加入9.33g/ml的食盐和23.33 g/ml的蒜时,泡菜中的有害菌少、

乳酸发酵工艺流程

工艺流程:淀粉 水解反应 葡萄糖 预处理 液仓 淀粉乳 盐酸(酸化)调配 预热(85℃~90℃) 均质(300~500KPa) 杀菌(100℃,10min) 冷却(50℃左右) 菌种保藏菌种活化菌种扩培接种 发酵(终点) 冷却(15℃~20℃) 溶解杀菌混合

氮源、中和剂(碳酸钙)分离 提纯 乳酸成品 保持冷链贮存或销售 4.2.1.2 操作要点说明 (1)预处理 净化可以除去原料中的杂质,使淀粉达到最高的纯净度。 (2)水解 淀粉是葡萄糖以ɑ-1,4-糖苷键连接起来的多聚体,在催化剂存在和适宜温度等条件下,易于水解成葡萄糖、麦芽糖、糊精等单体或低聚物。合理控制水解,尽可能减少副反应发生,则是糖化工艺所要控制的关键。 (3)预热 预热一方面可以杀菌,而且由于适当加热,可以使葡萄糖液化,并完全去除淀粉和多聚糖的存在,增加产品的稳定性。预热温度控制在85℃~90℃。 (4)均质 均质主要是使原料充分混合均匀,阻止分层,提高葡萄糖的稳定性和稠度,并保证单体均匀分布,从而获得质地细腻、口感良好的产品。均质压力控制在300~500KPa。 (5)杀菌 杀菌目的在于杀灭原料中的杂菌确保乳酸杆菌的正常生长和繁殖,钝化原料中的天然抑制物。杀菌温度控制在100℃,保温10min进行杀菌。 (6)冷却 冷却主要是为接种的需要。经过热处理的糖乳需要冷却到一个适宜的接种温度,此温度控制在50℃左右。

(7)接种 接种是造成糖乳受微生物污染的主要环节之一,因此严格注意操作卫生,防止细菌、酵母、霉菌、噬菌体及其他有害微生物的污染。接种时充分搅拌,使发酵菌与原料混合均匀。 (8)发酵 发酵温度控制在50℃左右,从而为微生物代谢提供最适的温度环境,发酵时间24h,且期间不搅拌。 发酵终点判定:发酵时罐口敞开,让CO 自由逃逸。当残糖降到1g/1时, 2 就识为发酵已经完成,再测定pH 时即可停止发酵。 (9)冷却 冷却目的是抑制乳酸菌的生长、降低酶的活性、防止产酸过度、使糖液逐渐凝固、降低和稳定CO 析出的速度。将发酵乳迅速降温至15℃~20℃。 2 (10)混合 将经溶解和杀菌的氮源、中和剂与发酵乳进行混合。 (11)分离提纯 由于乳酸在发酵过程中加入碳酸钙,因此,发酵最终的醪液悬乳酸与碳酸钙形成的乳酸钙,以水和形式存在。根据这一特性,采取相应的过滤介质和方法,即离子交换脱盐转酸方式及其分离提纯工艺。 (12)灌装和冷藏 采用相应灌装机进行灌装后的成品置于0℃~5℃冷藏12h~24h,进行后熟。

乳酸发酵技术

乳酸发酵技术 一实验目的 1.了解乳酸菌的生长特性和乳酸发酵的基本原理; 2. 学习酸乳的制作方法。 二实验原理 牛乳中的乳糖在酸奶菌种(保加利亚乳杆菌:嗜热链球菌=1:1)的乳糖酶的作用下,首先分解为葡萄糖和半乳糖两种单糖,然后这两种糖经乳酸发酵生成乳酸,使牛乳酸度增加,酪蛋白产生沉淀。酸奶经过均质、消毒、发酵等过程加工而成的。酸乳的品种很多,根据发酵工艺的不同分为凝固型酸乳和搅拌型酸乳两大类。凝固型酸乳在接种发酵菌株后,立即进行包装,并在包装容器内发酵、成熟。搅拌型酸乳先在发酵罐中接种、发酵,发酵结束后再进行无菌罐装并后熟。 三设备、仪器、材料(一)设备与仪器1.高压蒸汽灭菌锅2.超净工作台 4.恒温水浴锅 5.酸度计6.均质机 7.培养箱 8.塑料杯 9.三角瓶 (二)材料 1.市售酸乳 2.全脂奶粉 3.市售白糖 4. 食用果胶 3.调味培养基1 酸乳1000mL,50度糖浆l00mL,32波美度菠萝汁50mL,乳化发酵牛奶香精0.6 mL,乳化菠萝香精1.0 mL。调味培养基2酸乳300mL,50度糖浆220mL,食用柠檬酸1.5g,耐酸型食用CMC1.5g,乳化发酵牛奶香精0.8 mL,乳化草莓香精1.0 mL,用饮用水定容为1000mL。三实验步骤 1.基料配制:将全脂乳粉、蔗糖和水以10:5:70的比例混匀,作为制作饮料的基料。为了增加干物质含量,可用以下3种方法进行处理:将牛乳中水分蒸发l0%~20%,相当于物质增加1.5~3%;添加浓汁牛乳(如炼乳、牦牛乳或水牛乳等);按质量的0.5%~2.5%添加脱脂乳粉。 2.扩大培养:将分离到的嗜热乳酸链球菌、保加利亚乳杆菌用上述培养基进行扩大培养。 3.添加稳定剂:在基料中添加0.10~0.5%的明胶、果胶或琼脂作稳定剂,可提高酸乳的稠度和黏度,并可防止酸乳中乳清的析出。根据口味和营养需要,适当添加甜味剂及维生素。 4.均质:用均质机在55~70℃和20MPa下将基料均质。 5.巴氏杀菌:通常在90℃下保持5 min。 6.牛乳冷却:牛乳经巴氏杀菌后用水冷却,至40~45℃时接种。 7.接种:将培养好的嗜热乳酸链球菌、保加利亚乳杆菌及其等量混合菌液以2~3%(分别接种3%和5%)的接种量分别接人上述培养基料中,摇匀,或用灭过菌的玻棒搅拌均匀。接种量、发酵时问和温度对酸乳质量影响很大,应严格控制。保加利亚乳杆菌生长较快,经常会占优势;若酸度过高,会产生过多的乙醛,导致酸乳产生辛辣味。 8.灌装和发酵凝固型酸乳的生产:接种后应立即分装到已灭菌的一次性塑料杯中,以保鲜膜封口;将接种后的酸乳置于40℃恒温箱中培养至凝乳块出现(约3~4h),然后转入4℃冰箱中后熟24h以上),pH值为4~4.5,凝块均匀细腻,无乳清析出,色泽均匀,元气泡,获得较好妁口感和特有风味。 搅拌型酸乳的生产:直接在发酵罐中接种,接种后继续搅拌3min,使发酵菌种与含乳基料混合均匀,然后置于发酵室,每隔一定时间测定发酵液的pH值,当pH值为4.5~4.7 对停止发酵,冷却后启动搅拌,添加调味培养基1进行调配。将调配好的酸乳放入冰箱中 24h后,即可饮用。若要制作酸乳饮料,可用经过后酵的酸乳来调配,向其中添加调味培养基2进行调配。 调配后用均质机在55~70℃和20MPa下均质,灌装、封口后,85℃、30min水浴消毒,冷却后即可饮用和保存(4℃下可保存6个月)。 四、数据处理方法 发酵结束后,品尝酸乳在香味和口感上的异同,测定pH值;品尝时若出现异味,表明酸乳污染了杂菌,测定pH值;进行大肠菌群的检测实验。 项目有无乳清分离硬度口感酸度 【思考题】1.为何要用巴氏消毒?2.酸乳发酵过程中为什么会引起凝乳?

乳酸发酵工艺流程

乳酸发酵工艺流程 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

工艺流程:淀粉 水解反应 葡萄糖 预处理 液仓 淀粉乳 盐酸(酸化)调配 预热(85℃~90℃) 均质(300~500KPa) 杀菌(100℃,10min) 冷却(50℃左右) 菌种保藏菌种活化菌种扩培接种 发酵(终点) 冷却(15℃~20℃) 溶解杀菌混合 (碳酸钙)分离

提纯 乳酸成品 保持冷链贮存或销售 4.2.1.2 操作要点说明 (1)预处理 净化可以除去原料中的杂质,使淀粉达到最高的纯净度。 (2)水解 淀粉是葡萄糖以ɑ-1,4-糖苷键连接起来的多聚体,在催化剂存在和适宜温度等条件下,易于水解成葡萄糖、麦芽糖、糊精等单体或低聚物。合理控制水解,尽可能减少副反应发生,则是糖化工艺所要控制的关键。 (3)预热 预热一方面可以杀菌,而且由于适当加热,可以使葡萄糖液化,并完全去除淀粉和多聚糖的存在,增加产品的稳定性。预热温度控制在85℃~90℃。 (4)均质 均质主要是使原料充分混合均匀,阻止分层,提高葡萄糖的稳定性和稠度,并保证单体均匀分布,从而获得质地细腻、口感良好的产品。均质压力控制在300~500KPa。 (5)杀菌 杀菌目的在于杀灭原料中的杂菌确保乳酸杆菌的正常生长和繁殖,钝化原料中的天然抑制物。杀菌温度控制在100℃,保温10min进行杀菌。 (6)冷却 冷却主要是为接种的需要。经过热处理的糖乳需要冷却到一个适宜的接种温度,此温度控制在50℃左右。 (7)接种 接种是造成糖乳受微生物污染的主要环节之一,因此严格注意操作卫生,防止细菌、酵母、霉菌、噬菌体及其他有害微生物的污染。接种时充分搅拌,使发酵菌与原料混合均匀。

发酵工艺放大的优化

发酵工艺放大的优化 摘要 发酵工艺的优化有多种目的,通过优化以期增加成品的产量,但优化过程必须遵循药品生产质量管理规范(G M P)原则、有效利用现有的设备并符合预期的最终生产规模。经基因修饰超量产生重组蛋白的微生物具有优势,绝大多数工艺仅采用三类菌种,即大肠杆菌、酿酒酵母和巴氏毕赤酵母。本文概括了作者为保证生物制药发酵工艺放大方法的有效性所设计的一些基本原理。 关键词 优化 发酵工艺 表达 放大 在项目可行性策略分析中包括发酵工艺的优化,一旦证明所选菌种可用于生产,优化工作即已开始,表明已经构建出了表达系统,至少从理论上应该将表达系统视为已优化系统。在进行漫长而又昂贵的优化工作之前,建立稳定的菌株非常重要,至少需要保持从细胞库建立到大规模发酵(包括预培养)所需代次的稳定。以质粒为基础的表达系统有时不稳定,有几个参数能够影响质粒的分离不稳定性。每种质粒的稳定性各不相同,这取决于宿主菌株,高度的不稳定性与低拷贝数质粒有关。插入的DNA大小影响质粒的稳定性:质粒越大越不稳定。培养条件(如温度、培养基组成和生长速率等)也能改变质粒的稳定性。对数生长期后期质粒丢失非常明显,基因表达期间质粒的不稳定性增加,经常应用抗生素来稳定质粒。由质粒编码补偿宿主的营养缺陷比用抗生素调节更为合适,然而营养缺陷型菌株培养基的制备非常繁琐。插入p ar B(hok sok)基因座可以稳定质粒,通过质粒的分离能杀死丢失质粒的细胞。另一种情况是将插入的DNA片段整合到宿主染色体中,常见的例子是巴氏毕赤酵母构建体,但基因整合后会降低基因表达水平。 生产菌株和表达载体的选择将取决于是组成型表达还是诱导型表达。表达产物是在胞质区室还是分泌到外周培养液中。如果菌株是从本实验室外获得的,必须对原始菌株来源和克隆步骤的质控文件进行评估,并需获得具有资质的质量保证部门批准后才能使用。 应优化目的基因的密码子使用以促进其在选定微生物中的表达。必须立即通过摇瓶培养进行表达水平筛选,从而发现能够高水平表达重组蛋白的克隆。 培养条件的优化 优化的主要目的是尽可能地提高产量,该过程可从实验室规模的纯化工艺开始,采用最少量的现有质控工具来定量和评估产品质量。发酵程序影响杂质类型,进而严重影响下游加工(D SP)的功效。同样,发酵条件能够决定目的蛋白是以可溶性形式还是以不溶性形式存在,这进一步影响D SP和纯化产品的质量和产量。在高产菌株中,超量产生也能造成某些因子耗竭,而这些因子对于维持蛋白质的良好构象是必需的。因此,发酵条件的优化必须与提纯工艺的优化同步进行,因为它们之间彼此相互影响。发酵工艺和D SP开发人员之间的交流质量是工艺放大成功的关键。 参考文献 1 L usso P et al.V accine,2002;20(15):196421967 2 N ardese V et al.N at Struct B i o l,2001;8:61126153 L usso P et al.V iro logy,2000;273:2282240 (2002210225收稿) — 1 6 — 2003年 第26卷 第2期

相关文档
最新文档