4.5 线性系统的结构分解和零极点相消

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

第六章线性定常系统的综合

第六章 线性定常系统的综合 注明:*为选做题 6-1 已知系统状态方程为: 100100230110101100011x x u y x ?-???? ? ?=--+ ? ? ? ?-???? ??= ??? 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3. 5-2 有系统: ()2100111,0x x u y x ? -????=+ ? ?-????= (1) 画出模拟结构图。 (2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。 5-3* 设系统的传递函数为: (1)(2)(1)(2)(3) s s s s s -++-+ 试问可否用状态反馈将其传递函数变成: 1(2)(3) s s s -++ 若能,试求状态反馈阵,并画出系统结构图。 5-4 是判断下列系统通过状态反馈能否镇定。 210402105,00200517050A b -???? ? ?- ? ? ? ?==- ? ?- ? ? ? ?-???? 5-5* 设系统状态方程为: 010000010100010001101x x u ????? ? ?- ? ?=+ ? ? ? ?-???? (1) 判断系统能否稳定。 (2) 系统能否镇定。若能,试设计状态反馈使之稳定。

5-6* 设计一前馈补偿器,使系统: 1112()11(1)s s W s s s s ?? ?++ ?= ? ?+?? 解耦,且解耦后的极点为-1,-1,-2,-2. 5-7* 已知系统: 100100230110101100011x x u y x ?-???? ? ?=--+ ? ? ? ?-???? ??= ??? (1) 判别系统能否用状态反馈实现解耦。 (2) 设计状态反馈使系统解耦,且极点为-1,-2,-3. 5-8 已知系统: ()01000110x x u y x ? ????=+ ? ?????= 试设计一状态观测器,使观测器的极点为-r,-2r(r>0). 5-9* 已知系统: ()21001110x x u y x ? -????=+ ? ?-????= 设状态变量2x 不能测取,试设计全维和降维观测器,使观测器极点为-3,-3. 5-10* 已知系统: ()010000100001100x x u y x ????? ? ?=+ ? ? ? ?? ???= 设计一降维观测器,使观测器极点为-4,-5.画出模拟结构图。 5-11* 设受控对象传递函数为31s : (1) 设计状态反馈,使闭环极点配置为13,2--± (2) 设计极点为-5的降维观测器。 (3) 按(2)的结果,求等效的反馈校正和串联校正装置。

零极点对系统的影响

MATLAB各种图形 结论 1对稳定性影响 ○1增加零点不改变系统的稳定性; ○2增加极点改变系统的稳定性,不同的阻尼比下即使增加的是平面左侧的零点系统也有可能不稳定。 2对暂态性能的影响 ○A增加的零点离虚轴越近,对系统暂态性影响越大,零点离虚轴越远,对系统的影响越小。 分析表1可以发现,增加零点会对系统的超调量、调节时间、谐振峰值和带宽产生影响,且增加的零点越大,对系统的暂态性能影响越小。当a增加到100时,系统的各项暂态参数均接近于原系统的参数。增加的极点越靠近虚轴,其对应系统的带宽越小。同时还可以发现,时域中的超调量和频域中的谐振峰值在数值上亦存在一定的关系。具体表现为超调量减小时,谐振峰值也随之减小。 ○B增加的极点离虚轴越近,对系统暂态性影响越大,极点离虚轴越远,对系统的影响越小。 ①增加零点,会使系统的超调量增大,谐振峰值增大,带宽增加。 ②增加极点,会使系统的超调量减小,谐振峰值减小,带宽减小。 ③增加的零极点离虚轴越近,对系统暂态性影响越大;零极点离虚 轴越远,对系统的暂态性影响越小。 3 对稳态性能的影响 ①当增加的零极点在s的左半平面时,不改变系统的类型,使系统 能跟踪的信号类别不变,但跟踪精度会有差别。 ②当增加的零点在s的虚轴上时,系统的型别降低,跟踪不同输入 信号的能力下降。 ③当增加的极点在s的虚轴上时,系统的型别升高,跟踪不同输入 信号的能力增强。

1、绘制G1(s)的根轨迹曲线(M2_1.m) %画G1(s)的根轨迹曲线 n=[1,0]; %分子 d=[1,1,2]; %分母 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色rlocus(n,d); %画G1(s)根轨迹曲线title('G1(s)的根轨迹'); %标题说明 2、绘制G1(s)的奈奎斯特曲线(M2_2.m) %画G1(s)的奈奎斯特曲线 figure1 = figure('Color',[1 1 1]); %将图形背景改为白色for a=1:10 %a取1,2,3……10,时,画出对应的奈奎斯特曲线G=tf([1/a,1],[1,1,1]); nyquist(G); hold on end title('G1(s)的奈奎斯特曲线'); %标题说明

绘制离散系统零极点图.

绘制离散系统零极点图:zplane() 滤波器 绘制离散系统零极点图:zplane() zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜 色来表示。 zplane(B, A) 输入的是传递函数模型,则函数将首先调用root 函数以求出它们的零极点。 [H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。如果有重零极点,它还包括显示在其右上方 的文本句柄。 例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是 wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减 为60dB 程序设计如下: wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=100 00Hz; rp=0.5; rs=60; wp=[wp1,wp2]; ws=[ws1,ws2]; [n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs); [num,den]=ellip(n, rp, rs, wn, 'stop'); [H, W]=freqz(num, den); figure; plot(W*Fs/(2*pi), abs(H)); grid; xlabel('频率/Hz'); ylabel('幅值'); figure; impz(num, den); figure; grpdelay(num, den); figure; zplane(num, den); FREQZ 是计算数字滤波器的频率响应的函数

高阶系统闭环零极点对系统特性地影响

现代工程控制理论 实验报告 实验名称:高阶系统闭环零极点对系统特性的影响

目录 一、实验目的 (3) 二、实验原理 (3) 1、高阶系统动态性能分析 (3) 2、系统的零极点的分布对系统的影响如下: (4) 三、实验过程 (4) 1、绘制增加极点前后系统y1,y2的阶跃响应曲线。 (4) 2、绘制增加零点前后系统y1,y3的阶跃响应曲线。 (6) 3、绘制增加远离虚轴的偶极子前后系统y1和y4的阶跃响应曲线 (7) 4、绘制增加靠近虚轴的偶极子前后系统y1和y5的阶跃响应曲线 (8) 四、实验结果及分析 (10) 1、绘制增加极点前后系统y1,y2的阶跃响应曲线。 (10) 2、绘制增加零点前后系统y1,y3的阶跃响应曲线。 (10) 3、绘制增加远离和靠近虚轴的偶极子前后系统的阶跃响应曲线 (10) 4、通过以上理论分析和仿真验证可得到以下结论: (10) 五、实验中存在问题 (11)

一、 实验目的 1、 增加或减少闭环零极点及闭环零极点的位置来研究高阶系统 的动态性能指标。 2、 学习用工程软件MATLAB 通过编程来绘制系统的阶跃响应曲 线。 3、 研究系统的零极点及偶极子对系统控制特性的影响。 二、 实验原理 1、高阶系统动态性能分析 高阶系统的闭环传递函数的一般形式可表示为: 11110111)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++???++++???++==---- (n ≥m ) 表示成零极点形式后,为: ∏∏==++=n i i m j j p s z s K s G 11) ()( 式中:-z i (i=1,2,...,m)---闭环传递函数的零点 -p j (j=1,2,…,n)---闭环传递函数的极点。 假设系统闭环零极点都互不相同,且均为单重的。 则单位阶跃响应的拉氏变换为:

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

零极点对系统的影响

增加零极点以及零极点分布对系统的影响一般说来,系统的极点决定系统的固有特性,而零点对于系统的暂态响应 和频率响应会造成很大影响。以下对于零极点的分布研究均是对于开环传递函 数。 零点一般是使得稳定性增加,但是会使调节时间变长,极点会使调节时间变短,是系统反应更快,但是也会使系统的稳定性变差。在波特图上反应为,增加一个零点会在幅频特性曲线上增加一个+20db/10倍频的曲线,幅频曲线上移,增加一个极点,会在幅频特性曲线上增加一个-20db/10倍频的曲线,幅频曲线下移。 在s左半平面增加零点时,会增加系统响应的超调量,带宽增大,能够减小系统的调节时间,增快反应速度,当零点离虚轴越近,对系统影响越大,当零点实部远大于原二阶系统阻尼系数ξ时,附加零点对系统的影响减小,所以当零点远离虚轴时,可以忽略零点对系统的影响。从波特图上来看,增加一个零点相当于增加一个+20db/10倍频的斜率,可以使的系统的相角裕度变大,增强系统的稳定性。 在s右半平面增加零点,也就是非最小相位系统,非最小相位系统的相位变化范围较大,其过大的相位滞后使得输出响应变得缓慢。因此,若控制对象是非最小相位系统,其控制效果特别是快速性一般比较差,而且校正也困难。对于非最小相位系统而言,当频率从零变化到无穷大时,相位角的便变化范围总是大于最小相位系统的相角范围,当ω等于无穷大时,其相位角不等于-(n-m)×90o。非最小相位系统存在着过大的相位滞后,影响系统的稳定性和响应的快速性。 在s左半平面增加极点时,系统超调量%pσ减小,调整时间st(s)增大,从波特图上看,s左半平面增加一个极点时,会在幅频特性曲线上增加一个-20db/10倍频的曲线,也就意味着幅频特性曲线会整体下移,导致相角域度减小,从而使得稳定性下降。当极点离原点越近,就会增大系统的过渡时间,使得调节时间增加,稳定性下降,当系统影响越大当极点实部远大于原二阶系统阻尼系数ξ时,附加极点对系统的影响减小,所以当极点远离虚轴时可以忽略极点对系统的影响。 在s右半平面增加极点会导致系统不稳定。 最小相位系统 从传递函数角度看,如果说一个环节的传递函数的极点和零点的实部全都小于或等于零,则称这个环节是最小相位环节.如果传递函数中具有正实部的零点或极点,或有延迟环节,这个环节就是非最小相位环节. 对于闭环系统,如果它的开环传递函数极点或零点的实部小于或等于零,则称它是最小相位系统.如果开环传递函中有正实部的零点或极点,或有延迟环节,则称系统是非最小相位系统.因为若把延迟环节用零点和极点的形式近似表达时(泰勒级数展开),会发现它具有正实部零点. 最小相位系统具有如下性质: 1,最小相位系统传递函数可由其对应的开环对数频率特性唯一确定;反之亦然. 2,最小相位系统的相频特性可由其对应的开环频率特性唯返航一确定;反之亦然. 3,在具有相同幅频特性的系统中,最小相位系统的相角范围最小.

零点分布对系统的影响

燕山大学 课程设计说明书 课程名称:数字信号处理 题目:零点分布对系统的影响 学院(系):电气工程学院 年级专业: 2011级检测技术与仪器二班 学号: 学生姓名: 指导教师:王娜 教师职称:讲师

电气工程学院《课程设计》任务书 课程名称:数字信号处理课程设计 基层教学单位:仪器科学与工程系指导教师:学号学生姓名(专业)班级设计题目15、零点分布对系统的影响 设 计技术参数 2 1 19425 .0 6.1 1 1 ) ( - -+ - = z z z H 2 1 1 29425 .0 6.1 1 3.0 1 ) ( - - - + - - = z z z z H 2 1 1 39425 .0 6.1 1 8.0 1 ) ( - - - + - - = z z z z H 2 1 2 1 49425 .0 6.1 1 8.0 6.1 1 ) ( - - - - + - + - = z z z z z H 设 计要求(1)画出零极点分布图,并判断系统是否稳定 (2)求输入为单位阶跃序列时系统的响应,并判断系统稳定性 参考资料数字信号处理方面资料MATLAB方面资料 周次前半周后半周 应完成内容收集消化资料、学习MA TLAB软件, 进行相关参数计算 编写仿真程序、调试 指导教师签字基层教学单位主任签字 说明:1、此表一式四份,系、指导教师、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

目录 摘要 (1) 1 课题总体描述 (2) 2 设计原理 (2) 2.1离散系统的零极点 (2) 2.2系统稳定性、特性分析 (3) 2.2.1稳定性的概念 (3) 2.2.3系统零点的位置对系统响应的影响 (4) 3 MATLAB绘图分析 (5) 4 增加零点对系统稳定性的影响 (6) 4.1 零极点分布图及分析 (6) 4.2单位阶跃响应图及分析 (9) 5 总结 (16) 6 心得体会 (16) 参考文献 (17)

信号与系统_——零极点及稳定性响应

实验七、系统极零点及其稳定性 三、已知下列传递函数H(s)或H(z),求其极零点,并画出极零图。 1. b=[3 -9 6]; a=[1 3 2]; zplane(b,a) 2. b=[1]; a=[1 0]; zplane(b,a)

3. b=[1 0 1]; a=[1 2 5]; zplane(b,a)

4. b=[1.8 1.2 1.2 3]; a=[1 3 2 1]; zplane(b,a) 五、求出系统的极零点,判断系统的稳定性。 5、先求出分子分母多项式系数 >> syms s >> zs=100*s*(s+2)^2*(s^2+3*s+2)^2; >> expand(zs) ans = 100*s^7+1000*s^6+4100*s^5+8800*s^4+10400*s^3+6400*s^2+1600*s >> syms s >> ps=(s+1)*(s-1)*(s^3+3*s^2+5*s+2)*((s^2+1)^2+3)^2; >> expand(ps) ans = -32-80*s-48*s^2+8*s^4-16*s^3+28*s^6+20*s^5+44*s^7+30*s^8+s^13+8*s^11+23*s^9+3*s^12 +11*s^10 再求出极零点 b=[100 1000 4100 8800 10400 6400 1600 0]; a=[1 3 8 11 23 30 44 28 20 8 -16 -48 -80 -32];

[z,p]=tf2zp(b,a) 求解结果: z = -2.0005 + 0.0005i -2.0005 - 0.0005i -1.9995 + 0.0005i -1.9995 - 0.0005i -1.0000 + 0.0000i -1.0000 - 0.0000i p = 1.0000 0.7071 + 1.2247i 0.7071 - 1.2247i 0.7071 + 1.2247i 0.7071 - 1.2247i -1.2267 + 1.4677i -1.2267 - 1.4677i -0.7071 + 1.2247i -0.7071 - 1.2247i -0.7071 + 1.2247i -0.7071 - 1.2247i -1.0000 -0.5466 极点不是都在左半平面,因此系统不稳定。 6、clear all; clc; num=conv([1 -1.414 1],[1 1]); den=conv([1 0.9 0.81],[1 -0.3]); [z,p]=tf2zp(num,den) zplane(z,p); z = -1.0000 0.7070 + 0.7072i 0.7070 - 0.7072i

零点与极点计算和分析

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要 进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

线性定常系统的综合

第六章 线性定常系统的综合 6-1 已知系统状态方程为: ()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????= 试设计一状态反馈阵使闭环系统极点配置为-1,-2,-3. 解: 由()100102301010100x x u y x ? -???? ? ?=--+ ? ? ? ?????=可得: (1) 加入状态反馈阵()0 12K k k k =,闭环系统特征多项式为: 32002012()det[()](2)(1)(2322)f I A bK k k k k k k λλλλλ=--=++++-+--+- (2) 根据给定的极点值,得期望特征多项式: *32()(1)(2)(3)6116f λλλλλλλ=+++=+++ (3) 比较()f λ与*()f λ各对应项系数,可得:0124,0,8;k k k === 即:()408K =

6-2 有系统: ()2100111,0x x u y x ? -????=+ ? ?-????= (1) 画出模拟结构图。 (2) 若动态性能不能满足要求,可否任意配置极点? (3) 若指定极点为-3,-3,求状态反馈阵。 解(1) 模拟结构图如下: (2) 判断系统的能控性; 0111c U ?? =?? -?? 满秩,系统完全能控,可以任意配置极点。 (3)加入状态反馈阵01(,)K k k =,闭环系统特征多项式为: ()2101()det[()](3)22f I A bK k k k λλλλ=--=+++++ 根据给定的极点值,得期望特征多项式: *2()(3)(3)69f λλλλλ=++=++ 比较()f λ与*()f λ各对应项系数,可解得:011,3k k == 即:[1,3]K =

(完整版)现代控制理论试卷和答案解析总结

2012年现代控制理论考试试卷 一、(10分,每小题1分)试判断以下结论的正确性,若结论是正确的, ( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。 ( √ )2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现。 ( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 ( √ )4. 对线性定常系统x Ax =&,其Lyapunov 意义下的渐近稳定性 和矩阵A 的特征值都具有负实部是一致的。 ( √ )5.一个不稳定的系统,若其状态完全能控,则一定可以通过状态反馈使其稳定。 ( × )6. 对一个系统,只能选取一组状态变量; ( √ )7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关; ( × )8. 若传递函数1()()G s C sI A B -=-存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的; ( × )9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的; ( × )10. 状态反馈不改变系统的能控性和能观性。

二、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。(10分) 解:(1)由电路原理得: 1 1 2 2 12 1 111 2 22 11 1 11 L L c L L c c L L di R i u u dt L L L di R i u dt L L du i i dt c c =--+ =-+ =- 22 2 R L u R i = 11 22 1 11 1 2 22 1 01 1 00 11 L L L L c c R i i L L L R i i u L L u u c c ?? --?? ???? ?? ?? ???? ?? ?? ???? ?? =-+?? ???? ?? ?? ???? ?? ?? ???? ?? ?? - ???? ?????? ?? ?? g g g

传递函数零极点对系统性能的影响

现代工程控制理论实验报告 学生姓名:??任课老师:???? 学号:??班级:

实验三:传递函数零极点对系统性能得影响 一、实验内容及目得 实验内容: 通过增加、减少与改变高阶线性系统得零极点,分析系统品质得变化,从中推导出零极点与系统各项品质之间得关系,进而总结出高阶线性系统得频率特性。 实验目得: (1)通过实验研究零极点对系统品质得影响,寻找高阶线性系统得降阶方法,总结高阶系统得时域特性。 (2)练习使用MATLAB语言得绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化得高阶线性系统得响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出得影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下得响应曲线。 (2)在不引入对偶奇子得前提下,加入非负极点,绘出多组线性系统在阶跃信号下得响应曲线。 (3)引入对偶奇子,绘出多组线性系统在阶跃信号下得响应曲线。

(4)探究系统稳定条件下单调曲线、振荡曲线得形成与零极点之间得关系. 三、实验结果分析 1、研究极点对系统品质得影响 (1)改变主导极点,得到得输出曲线如下: 将系统品质以表格方式列于下方。 主导极点-1、5 -0、5 -0、25

从两张图片中不难发现,在极点都就是负数得条件下,当主导极点出现较小变动时,整条输出曲线会出现很大得变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标得变化速率随着主导极点离原点得距离减小而增大。衰减率则出现轻微得先增大后减小得趋势,猜测在主导极点由负半轴向原点靠近得过程中,衰减率存在极值。 将两幅图片中发现得规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零得条件下,主导极点得代数值越小,系统得准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到得输出曲线如下:

电路零极点的影响

请问电路中极点与零点的产生与影响 电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗? 它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过 这两条之路后可以互相抵消还是什么?? 极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么? 产生振荡还是什么?? 请大家指教一下。 (不能这么简单的理解 其实电路的每个node都有一个极点 只是大部分的极点相对与所关心的频率范围太大而忽略了 运放中我们一般关心开环的0dB带宽那么>10*带宽频率的极点我们就不管了 因为它们对相位裕度贡献太小而被忽略; 只要输入和输出之间有两条通路就会产生一个零点: 同样的高于所关心频率范围的零点也不用管 一个在所关心频率范围内的零点需要看是左半平面还是右半平面的 左半平面的零点有利于环路稳定右半平面的则不利 具体的看拉扎维的书吧写的还是蛮详细的看不懂就多看几遍 自己做个电路仿下) 好问题,希望彻底了解的人仔细解答。我也同样疑惑。 但是我总觉得极点,零点并不能单单的说是由于前馈,反馈,或者串联并联一个电容产生的。产生的原因还是和具体的电路结构相关联的。 比如一个H(s)的系统和一个电容并联或串联在输入输出之间,谁能说他一定产生一个极点或零点呢?这因该和H(s)的具体形式有关。 3大书上说的应该大多针对的是运放结构,它的结构具有特殊性。具有以点盖全的嫌疑。 还请达人细说。 一般的说,零点用于增强增益(幅度及相位),极点用于减少增益(幅度及相位),电路中一般零点极点是电容倒数的函数(如1/C)。 当C变大时,比如对极点来说,会向原点方向变化,造成增益减少加快(幅度及相位)~一般运放电路的米勒效应电容就时这个原理,当增益迅速下降倒-3dB时,其他的零点极点都还没对系统增益起到啥作用(或作用很小,忽略了),电路就算七窍通了六窍半了~你就可以根据自己的需要补上带宽,多少多大的裕度就KO了 极点是由于结点和地之间有寄生电容造成的,零点是由于输入和输出之间有寄生电容造成的,一般输入和输出之间的零极点考虑多一点,主要是因为输入输出有较大的电阻,造成了极点偏向原点. 个人的一点理解 极点决定的是系统的自然响应频率,通常在电路中就是对地电容所看进去的R和对地电容C共同决定的。 零点是由于在输入输出间存在两条信号路径,两个信号路径强度相消即可,通常在电路中表现为反馈或前馈通路。 一个电路中有多少个极点和多少个零点取决你的器件模型, 因为一般人们只观点几个低频极点(最多到3吧),所以将高频极点忽略了,

线性定常系统的瞬态响应

实验报告 课程名称:自动控制原理实验 实验名称:线性定常系统的瞬态响应和稳定性分析专业班级: 姓名: 学号:

实验二 线性定常系统的瞬态响应和稳定性分析 一、实验目的 1.通过二阶、三阶系统的模拟电路实验,掌握线性定常系统动、静态性能的一般测试方法。 2.研究二阶、三阶系统的参数与其动、静态性能间的关系。 二、实验原理 1.二阶系统 图2-1为二阶系统的方块图。由图可知,系统的开环传递函数 G(S)= ) 1S T (S K )1S T (S K 111+= +τ,式中K=τ1K 相应的闭环传递函数为 1 12 121T K S T 1S T K K S S T K )S (R )S (C + += ++= ………………………① 二阶系统闭环传递函数的标准形式为 )S (R ) S (C =n 2n 2n 2S 2S ω+ξω+ω ………………………② 比较式①、②得:ωn = 1 1 1T K T K τ= ………………………③ ξ=1 KT 21= 1 1K T 2 1τ ………………………④ 图中τ=1s ,T 1=0.1s 图2-1 表一列出了有关二阶系统在三种情况(欠阻尼,临界阻尼、过阻尼)下具体参数的表达式,以便计算理论值。 图2-2为图2-1的模拟电路,其中τ=1s ,T 1=0.1s ,K 1分别为10、5、2.5、1,即当电路中的电阻R 值分别为10K 、20K 、40K 、100K 时系统相应的阻尼比ξ为0.5、2 1、1、1.58, 它们的单位阶跃响应曲线为表二所示。

表一: 一种情况 各参数 0<ξ<1 ξ=1 ξ>1 K K=K 1/τ=K 1 ωn ωn=τ11T /K =1K 10 ξ ξ 1 1T K 21 τ=1 1K 2K 10 C(t p ) C(t p )=1+e —ξπ/ 2 1ξ- C(∞) 1 Mp% Mp= e —ξπ/ 2 1ξ- t p(s) t p=2 n 1ξ -ωπ t s(s) t s= n 4 ξω 表二:二阶系统不同ξ值时的单位阶跃响应 R 值 ξ 单位阶跃响应曲线 10K 0.5 20K 2 1 40K 1

零极点-1

电路中经常要对零极点进行补偿,想问,零点是由于前馈产生的吗?它产生后会对电路造成什么样的影响?是说如果在该频率下,信号通过这两条之路后可以互相抵消还是什么? 极点又是怎么产生的呢?是由于反馈吗?那极点对电路的影响又是什么?产生振荡还是什么? 请大家指教一下。 1 大经典里面都有讲,好好看看吧。 2 你说的是razavi,gary,allen的吗? 3 好问题,希望彻底了解的人仔细解答。我也同样疑惑。 但是我总觉得极点,零点并不能单单的说是由于前馈,反馈,或者串联并联一个电容产生的。产生的原因还是和具体的电路结构相关联的。 比如一个H(s)的系统和一个电容并联或串联在输入输出之间,谁能说他一定产生一个极点或零点呢?这因该和H(s)的具体形式有关3大书上说的应该大多针对的是运放结构,它的结构具有特殊性。具有以点盖全的嫌疑。 4 一般的说,零点用于增强增益(幅度及相位),极点用于减少增益(幅度及相位),电路中一般零点极点是电容倒数的函数(如1/C)。 当C变大时,比如对极点来说,会向原点方向变化,造成增益减少加快(幅度及相位)一般运放电路的米勒效应电容就时这个原理,当增益迅速下降倒-3dB时,其他的零点极点都还没对系统增益起到啥作用(或作用很小,忽略了),电路就算七窍通了六窍半了,你就可以根据自己的需要补上带宽,多少多大的裕度就KO了。 5 极点是由于结点和地之间有寄生电容造成的,零点是由于输入和输出之间有寄生电容造成的,一般输入和输出之间的零极点考虑多一点,主要是因为输入输出有较大的电阻,造成了极点偏向原点。 5 个人的一点理解: 极点决定的是系统的自然响应频率,通常在电路中就是对地电容所看进去的R和对地电容C共同决定的。 零点是由于在输入输出间存在两条信号路径,两个信号路径强度相消即可,通常在电路中表现为反馈或前馈通路。

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

传递函数零极点对系统性能的影响

现代工程控制理论实验报告 学生:任课老师: 学号:班级:

实验三:传递函数零极点对系统性能的影响 一、实验容及目的 实验容: 通过增加、减少和改变高阶线性系统 21.05 (s+s+1)(0.5s+1)(0.125s+1) 的零极点,分析系统品质的变化,从中推导出零极点和系统各项品质之间的关系,进而总结出高阶线性系统的频率特性。 实验目的: (1)通过实验研究零极点对系统品质的影响,寻找高阶线性系统的降阶方法,总结高阶系统的时域特性。 (2)练习使用MATLAB语言的绘图功能,提高科技论文写作能力,培养自主学习意识。 二、实验方案及步骤 首先建立MATLAB脚本文件,使其能够绘出在阶跃输入下特征多项式能够变化的高阶线性系统的响应曲线。之后在以下六种情况下绘出响应曲线,分别分析其对系统输出的影响。 (1)改变主导极点,增减、改变非主导极点,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。 (2)在不引入对偶奇子的前提下,加入非负极点,绘出多组线性系统在阶跃信号下的响应曲线。

(3)引入对偶奇子,绘出多组线性系统在阶跃信号下的响应曲线。 (4)探究系统稳定条件下单调曲线、振荡曲线的形成与零极点之间的关系。 三、实验结果分析 1、研究极点对系统品质的影响 (1)改变主导极点,得到的输出曲线如下: 将系统品质以表格方式列于下方。

从两图片中不难发现,在极点都是负数的条件下,当主导极点出现较小变动时,整条输出曲线会出现很大的变化。 从表格中可以发现当主导极点由负半轴向原点靠近时,超调量、稳定时间逐渐增大,而且这两项指标的变化速率随着主导极点离原点的距离减小而增大。衰减率则出现轻微的先增大后减小的趋势,猜测在主导极点由负半轴向原点靠近的过程中,衰减率存在极值。 将两幅图片中发现的规律总结如下: (1)主导极点对系统品质有很大影响。 (2)在极点都小于零的条件下,主导极点的代数值越小,系统的准确性越好、快速性也越好。 (2)增减、改变非主导极点,得到的输出曲线如下:

相关文档
最新文档