collagen cryogel crosslinked by dialdehyde starch

collagen cryogel crosslinked by  dialdehyde starch
collagen cryogel crosslinked by  dialdehyde starch

Collagen Cryogel Cross-Linked by Dialdehyde Starch

Changdao Mu,Fang Liu,Qingsu Cheng,Hongli Li,Bo Wu,Guangzhao Zhang,Wei Lin*

Introduction

Collagen is a primary component of extracellular matrices of mammalian connective tissues including skin,tendon,cartilage,bone,and ligament.[1]In comparison with its hydrolysate (gelatin)and other biopolymers,collagen exhibits better biodegradability,biocompatibility,weak antigenicity,and unique ?bril-forming properties.Thus,collagen has found applications in the cultivation sub-

stratum for various cells,the arti?cial skin and the renal artery embolization,etc.[2,3]Generally,physically formed collagen gel exhibits poor mechanical properties,therefore,they are often cross-linked by UV light irradiation,multi-valent metal ions,formaldehyde,or glutaraldehyde.[4,5]UV treatment is non-toxic,but it only modi?es the surface instead of the bulk of the collagen.[6]Chemical cross-linkers such as aldehyde do not alter the triple helical conformation or biological function of collagen,[7]but such cross-linked collagen often suppresses cell growth,enhances in?am-matory response and calci?cation due to the side effect of hydrolyzed low-molecular-weight aldehydes.[8–10]Accordingly,biocompatible collagen gel with improved mechanical strength is desired for their load-bearing applications.

Dialdehyde starch (DAS)is a biodegradable and toxico-logically acceptable crosslinking agent.It is also abundant,stable,and economic in comparison with other polysac-charides.DAS has been used for crosslinking soy pro-tein,[11,12]egg white protein,[13]and wheat protein [14]

to

Full Paper

C.D.Mu,F.Liu,Q.S.Cheng,H.L.Li,W.Lin

Department of Pharmaceutics and Bioengineering,National Engineering Laboratory for Clean Technology of Leather

Manufacture,Sichuan University,Chengdu,Sichuan,610065,China

E-mail:wlin@https://www.360docs.net/doc/2b12794365.html, B.Wu,G.Z.Zhang

Hefei National Laboratory for Physical Sciences at Microscale,Department of Chemical Physics,University of Science and Technology of China,Hefei,Anhui,230026,China

A 3D spongy collagen cryogel was prepared using DAS as the cross-linker.FTIR and CD studies demonstrate that crosslinking is achieved through the reaction of the DAS aldehyde groups with the free amino groups in collagen without affecting the triple helix of collagen.SEM demonstrates that the cryogel has a heteroporous structure with interconnecting pores.DSC measure-ments reveal that the cryogels have improved thermal stability in comparison with pure collagen.Moreover,the ESR shows that the water uptake of the cryogel decreases with DAS content.Evaporation tests indicate that the cryogel can hold moisture for a long time.Since both collagen and DAS are nontoxic and the resultant cryogel is blood-compatible,the cryogel is expected to be useful,e.g.,as wound

dressing.

improve their mechanical properties,water vapor perme-ability,and moisture content.On the other hand,cryogel has been prepared from freezing-thawing of polymer solutions or polymer dispersions.[15]The polymeric cryogels often have unique sponge-like morphology with inter-connecting macropores,high mechanical strength,as well as an ability to maintain three-dimensional structure.Thus, they are useful in immobilization of cells and enzymes, controlled drug release,polymeric scaffolds,chromato-graphic separations,and preparation of heterogeneous catalysts.[16]So far,most cryogels are prepared from synthetic polymers,cryogels from biopolymers are expected to be more promising for biological and medical applications.[17]

In the present study,we have prepared a collagen cryogel cross-linked by DAS.The structure,morphology,and thermal stability of the cryogel have been characterized by Fourier-transform infrared(FTIR)spectroscopy,circular dichroism(CD),differential scanning calorimetry(DSC) and scanning electron microscopy(SEM).The swelling behavior,evaporative water loss,water vapor transmission rate(WVTR),and blood compatibility of the cryogel have also been examined.Our aim is to develop a gel which can be used in wound dressing or other related ?elds.

Experimental Part

Extraction of Collagen

The details of preparation of type I collagen can be found in ref.[18]In brief,collagen used in this study was isolated form adult bovine Achilles tendon using acetic acid.After dry milling and degreasing, the collagen was extracted with0.5M acetic acid at48C for2days under stirring and salted out with0.75M NaCl.The collagen was redissolved in0.5M acetic acid and salted out again.Then,the solution was centrifuged under refrigeration and further dialyzed against deionized water at48C for at least2days until a constant conductivity.The collagen with a typical?brillar structure of Type I collagen has been veri?ed by atomic force microscopy(AFM) measurement in our laboratory.

Puri?cation of Dialdehyde Starch

DAS from a controlled periodate oxidation of starch,which leads the ring with vicinal hydroxyls to open and form two aldehyde groups.Here,DAS(Batch#:065K1602)purchased from Sigma was dissolved in deionized water at758C for4h under constant stirring and?ltered to remove the undissolved bulk aggregates.Then the solution was frozen and lyophilized yielding a white cotton-like material.[19]The degree of oxidation or the percentage of dialdehyde units in the puri?ed oxystarch measured by quanti-tative alkali consumption[20]was%61%.The weight-average molar mass(M w)of the DAS determined by static laser light scattering was3.5?106gámolà1,the polydispersity index(PDI)estimated from the line width in dynamic laser light scattering was2.22.[21] The laser light scattering measurements were conducted on a commercial laser light scattering(LLS)spectrometer(ALV/DLS/ SLS-5022F).

Preparation of Collagen/DAS Cryogel

After a DAS solution with concentration%0.1–10mgámLà1was freshly prepared,it was mixed with an aqueous collagen solution of 6.0mgámLà1.The mixture was stirred at48C for1h,degassed to remove the bubbles,and then poured into a sealed mold and frozen atà158C for72h.The frozen specimen was thawed at 258C yielding a cryogel.[16]The DAS/collagen weight ratios were1:500,1:100,1:70,1:40,1:10,and0:100(pure collagen), respectively.The?nal concentration of each collagen solution was kept at3.0mgámLà1.For comparison,the corresponding mixtures with the same DAS/collagen ratios were also prepared and incubated at48C to examine the temperature effect on the gel formation.

FTIR Measurements

The FTIR spectra of lyophilized pure collagen and cryogels were obtained on KBr pellet performed on a FTIR spectrophotometer (MAGNA IR560,Nicolet).All spectra were recorded with the resolution of4cmà1in the range400–4000cmà1.

CD Spectra Measurements

Cryogel samples for CD measurements were prepared as described above and molded in a plate-like quartz cell of1mm inner thickness (i.e.light path)so that they can be measured in situ.The CD spectra from190to250nm were recorded at258C under nitrogen atmosphere on a J-810CD spectropolarimeter(Jasco),with an average of3scans at a speed of20nmáminà1.A reference spectrum was also recorded using the same solvent(pure water)and cuvette. The resulting spectra were obtained after subtracting the reference spectrum and expressed in terms of molar ellipticity(E m)at the wavelength l in nm,[22]E m?u l/ncd(degácmà2ádmolà1),where u l is the CD signal in mdeg,n the number of amino acid residues in the protein chain,c the molar concentration of the collagen solutions, and d is the path length in centimeter.

DSC Measurements

The thermal stability of the lyophilized collagen cryogel was assessed with DSC-60(Shimadzu)over a temperature range of20to 2108C.The samples were sealed in aluminum pans and heated at a constant rate of58Cáminà1in nitrogen atmosphere with an empty aluminum pan as the reference.The endothermal peak tempera-ture was taken as denaturation temperature(T d),and the onset of the transition peak was denoted as the starting denaturation temperature(T s)hereafter.

Collagen Cryogel Cross-Linked by Dialdehyde Starch

SEM Observation

The surface and cross-section morphologies of cryogel were observed directly by a scanning electron microscope(SSX-550, Shimadzu)without sputter coating by conducting matter.The cryogel sample was?rst frozen in liquid nitrogen and then lyophilized atà478C.It was then cut into0.5?0.5?0.2cm3slabs with a scalpel before the measurement.

Swelling Properties Test

The swelling capacity studies were performed at room temperature by immersing the weighed lyophilized samples of2?2?0.4cm3in pH?7.4phosphate-buffered saline(PBS)buffer.After the swollen cryogel was?shed out,the water on its surface was wiped with ?lter paper.The cryogel was weighed,and then put back to PBS bath at regular interval until equilibrium.The mass swelling ratio(SR), de?ned as the weight ratio of absorbed water and the dried gel,is calculated by SR(gágà1)?(W s–W d)/W d,where W d is the weight of dry cryogel,and W s is the weight of swollen cryogel.The equilibrium swelling ratio(ESR)is the ratio after equilibrium swelling.The experimental plot was obtainedfrom average of three samples.

Measurement of the Evaporation of Water from Cryogel

Wet cryogel was equilibrated in distilled water for1h and weighed before being maintained at378C and40%relative humidity in an incubator(Blue-Pard LHS-100CH).The water evaporation rate was estimated by measuring the sample weight at consecutive regular intervals.The percentage weight remaining(WR)of cryogel was calculated by WR(%)?(W r/W i)?100,where W i is the initial weight of wet gels,and W r is the WR of gels.The percentage water loss(WL)can be calculated by WL(%)?100–WR(%),accordingly. WVTR Measurements

The WVTR de?ned as the steady?ow of water vapor per unit area of surface in unit time at a speci?ed humidity and temperature was evaluated according to the American Society for Testing and Materials(ASTM)standard.[23]The lyophilized cryogel membrane was placed on the mouth of a cylindrical plastic bottle(4cm diameter and9cm high)containing exact amount of silica gel (%50.0g).The bottle was screwed by a Te?on lid with a hole of 3.2cm diameter to allow water vapor to permeate through,and then kept in an incubator(GoTech GT-7500-E)at378C and40% relative humidity.Water vapor transport(WVT)through the membrane was monitored by measuring the change of the assembly weight as WVT(g)?W tàW i’,where W i’is the initial total weight of bottle,sample and silica gel in grams,and W t is the weight of the assembly in grams after time t.The WVTR was then obtained by WVTR(gámà2ádà1)?Slope?24/s A,where Slope was obtained from the?tting plot of WVT(g)versus time(h),A is the testing area of the cryogel membrane in m2,and here it equals the area of the hole.Blood Compatibility Evaluation

Hemolytic potential of the cryogels was measured spectrophoto-metrically following a procedure reported before.[24]0.1mL of rabbit blood anticoagulated with sodium citrate was added to 7.5mL of PBS buffer in10mL Eppendorf(Ep)tube containing0.01g of lyophilized cryogels.A separate sample of100%hemolysis induced only by7.5mL of0.1%Na2CO3solution was used as a positive control,and0%hemolysis in PBS without cryogel added as a negative control.All the tubes were incubated in a thermostatted water bath at378C for1h,followed by centrifugation at300rpm for5min.The optical density(OD)of the supernatant solution was then measured at545nm in a UV-Vis spectrometer(Perkin-Elmer Lamda25).The percentage hemolysis was calculated according to hemolysis(%)?(OD tàOD n)?100/(OD pàOD n),where OD t,OD n, and OD p denote the OD values of test,negative,and positive samples,respectively.

Results and Discussion

Formation and Characterization of the Cryogel Aldehyde derivates from natural polysaccharides such as dextran dialdehyde and oxidized chondroitin sulfate have been employed to cross-link gelatin which is the denatured collagen.[25,26]It is generally accepted that the crosslinking is predominantly due to Schiff’s base formation between the e-amino groups of lysine or hydroxylysine side groups of gelatin and the available aldehyde of polysaccharides.In our preliminary experiments,we have examined DAS/ collagen mixtures at a temperature of48C.None of the mixtures could form cross-linked gels in3days or even longer time.This is quite different from gelatin which can form hydrogels with cross-linker at48C in24h.[25,26] However,when the mixture was frozen atà158C for 72h and thawed at room temperature,we obtained spongy-like cryogels(Figure1).Note that only collagen solution cannot form a cryogel on the same conditions.The water trapped in the gel can be squeezed out easily upon slight compression(Figure1a,b).However,when the gel is put back into an aqueous solution,the compressed cryogel can recover nimbly without any sacri?ces of integrity and structure.Besides,the cryogel can be prepared in any desirable shape such as cylinder,cuboid,and disk. Depending on the DAS content and the sample thickness, the cryogel can be varied from semi-transparent(Figure1c) to non-transparent(Figure1d).

Clearly,the crosslinking in the frozen state is more readily than that at a positive temperature.It is reported that there is a pronounced acceleration of chemical reaction in the cryotropic gelation of thiol-containing derivatives of linear polyacrylamide(SH-PAAm).[27]Lozinsky suggest that it is due to the cryoconcentration effect.[16]Namely, polymers retain suf?cient mobility in non-frozen liquid microphase(NFLMP)for participation in intermolecular

C.D.Mu et al.

interactions when the bulk of solvent is crystallized,and the so-called NFLMP normally exists over a fairly broad range of negative temperatures below the freezing point of solvent. In our experiments,because of a lower polymer concentra-tion(<1%)and less reactive groups on collagen molecules, the crosslinking is dif?cult at above48C,so no apparent gelation is observed though some collagen molecules may be cross-linked forming soluble hyperbranched structure. To clear about the mechanism,we have investigated the structure of collagen in the cryogel.

Figure2shows the FTIR spectra of collagen before and after the crosslinking.As revealed before,[28]the intact collagen has a special triple helix conformation in which three polypeptide chains are supercoiled around a common axis.It is also characterized by the four major amides in IR spectra.[29,30]The bands3350,3081,1650,and1540cmà1 are denoted as A,B,I and II,respectively.Generally,the amide A and B bands are mainly associated with the stretching vibrations of NàH groups.The amide I bands are originated from C?O stretching vibrations coupled to NàH bending vibrations.The amide II band arises from the NàH bending vibrations coupled to CàN stretching vibrations. After the formation of the cryogel,neither the position nor the intensity of amide I band at around1650cmà1related to the triple helix conformation changes,indicating the collagen triple helix in the cryogel is not destructed.[31] While the intensity of amide A and B bands markedly decrease with the increasing DAS content,indicating that the amount ofàNH2group in collagen decreases and likely transforms into C?N groups by Schiff’s base formation between e-amino groups of lysine or hydroxylysine side groups of collagen and the aldehyde groups in DAS.[26]In other words,intermolecular or intramolecular C?N lin-kages of collagen via DAS bridges occurs(Figure3). However,the peak at about1660cmà1for C?N(Schiff’s base)[32]was not observed in our experiments.This is because the stronger amide I bands masks the band.

The CD spectra of pure collagen and the cryogels are given in Figure4.It is known that the denaturation of collagen or its triple helix structure destruction results in a red shift of the negative band and disappearance of the positive band.[18,33,34]Here,the absent negative bands are due to a higher protein concentration since the absorbance of such a negative band was beyond the limit of detection in collagen solution at the same concentration(3.0mgámLà1). Nevertheless,that the positive band at%227nm for the cryogels is attributed to a collagen fold-on domain[35]is nearly the same as that for pure collagen,clearly indicating that the triple helical conformation in the cryogels does not change by the crosslinking.This agrees well with previous FTIR results.Considering that the low immunogenicity and good bioactivities of collagen are maintained by its integral triple helix structure,[36]the cryogels containing collagen

Collagen Cryogel Cross-Linked by Dialdehyde Starch

Figure1.Photographs of the cryogels:(a)in initial state;(b)in

compressed state;(c)the DAS/collagen weight ratio is1:100;

(d)the DAS/collagen weight ratio is1:10.

Wavenumber / cm-1

T

(

%

)

Figure2.FTIR spectra of cryogels with the DAS/collagen weight

ratios0:100(pure collagen),1:100,and1:10,respectively.

Figure3.Schematic illustration for the reaction of collagen with

DAS.

with triple helices are expected to be developed into a biocompatible material.

Figure 5shows the DSC thermographs of collagen and collagen/DAS cryogels with different weight ratios.The broad endothermal peak of pure collagen from %30to 1608C,associated with the transformation from crystalline triple helix to amorphous random coil,[37]indicates that collagen is somewhat hydrated.It can be seen that the addition of DAS causes denaturation temperature (T d )to increase 10–158C.Moreover,the starting denaturation temperature (T s )increases from 30to 608C,so a narrower peak is observed.The facts indicate that the crosslinking leads the collagen gel to be stiffer,[38]and in turn the thermal stability is improved.Further increasing the DAS content leads T d to decrease (Table 1).This is likely due to the incomplete reactivity of excessive DAS in the cryogel.The improvement in thermal stability is important for devel-oping collagen into tissue engineering materials.Morphological Structure of the Cryogel

Figure 6shows that the cryogels exhibit heteroporous morphology.This can be observed more clearly in the cross-sectional microphotographs.As described for cryotropic

gelation,[16]the crystallization of the solvent (water)during the freezing leads the collagen and DAS to stay in NFLMP forming the cross-links.After thawing,pores with variable size and geometry are resulted in the cryogel bulk.Thus,the crystals of the frozen water act as pore-forming agents (porogens).Clearly,the cryogel morphology is related to the feed ratio of DAS to collagen.In Figure 6,?brous surface structures are more pronounced at low DAS contents,while the integrally lamellar aggregates appear as DAS increases.

C.D.Mu et al.

E m (

d e g c m 2

d m o l -1

)

nm

Figure 4.Circular dichroism spectra of cryogels with DAS/collagen weight ratios (A)0:100(pure collagen),(B)1:100,(C)1:40and (D)1:10.The samples were measured at 258C under nitrogen atmosphere in the region from 190to 250nm.

Table 1.Denaturation temperature (T d )

of collagen cryogels.

DAS/collagen weight ratio a)T d -C 0:100

88.81:50090.61:10097.11:70102.51:40100.01:1098.1100:0

76.0

a)

The collagen concentration was 3.0mg ámL à1for all cryogels.

Figure 6.Surface and cross-sectional SEM morphologies of the cryogels with DAS/collagen weight ratios (a,a 0)1:100,(b,b 0)1:70,and (c,c 0)1:10.

H e a t f l o w / (m W /m g )

T /o

C

Figure 5.DSC thermographs of cryogels with DAS/collagen weight ratios (A)0:100(pure collagen),(B)1:100,(C)1:70,(D)1:40and (E)1:10.

The thickness of the pore wall increases with the amount of DAS so that the cryogel becomes more solid.Thus,the mechanical strength of collagen gels is expected to increase by the crosslinking with DAS.Meanwhile,the correlation between DAS content and the cryogels network structure implies the different properties of various collagen/DAS cryogels.

The observed high porosity of the cryogels and the interconnected pores ranging from 20to 200m m are most striking,since it is coincidentally preferred by biomaterials.For example,it has been well documented that endothelial cells bind preferentially to scaffolds with pores smaller than 80m m,while ?broblasts preferentially bind to larger pores (>90m m).[39]Such pore size gradient through the scaffold can help oxygen and nutrients to diffuse toward the cells and waste products to drain out of the matrix,whereas the pore interconnectivity can promote cell migration and angiogenesis.Therefore,the collagen/DAS cryogels are potentially useful as scaffolds for the delivery of bioactive molecules.

Physical and Biological Properties

In practice,hydrogels with high water uptake capacity and fast equilibrium swelling are desired because they show a higher permeability and biocompatibility.[40]Figure 7shows the swelling kinetics of the cryogels with different DAS content.The water uptake sharply increases at the initial stage,and then reaches equilibrium swelling in approximately 10min.The ESR re?ects the water uptake ability of the cryogel,which is related to the network structures.Overall,ESR slightly decreases with increasing DAS content.In other words,a more rigid structure is formed as DAS concentration or/and crosslinking density increases because the segments between the cross-linked points are further restricted.As a result,cryogel with higher crosslinking density holds less water than that with lower crosslinking density.A similar behavior has been also observed in gelatin-based hydrogels.[41,42]

The evaporation of water from the cryogel as a function of time is given in Figure 8.It shows that the weight of the

cryogel almost linearly decreases with time within initial 6h and gently changes thereafter.It is well known that the total volume of the liquid absorbed by a gel consists of the solvating solvent bound to the polymer network and the capillary solvent ?lling the macropores which can evaporate easier.The SEM micrographs (Figure 6)show that the latter weighs much more than the former since the internal volume of macropores accounts for most of the cryogel volume.Actually,a large amount of free water in the cryogel is evaporated in the ?rst 6h.In addition,the size of the macropores increases with the DAS content,so that the evaporation rate and the water loss ratio increase with the DAS content.As a whole,the gels can retain more than 60%water even after 12h,implying that they are able to provide a well moist environment for a wound surface which is favorable for healing in wound coverings.On the other hand,the dressing is more bene?cial to wounds with moderate exudates than for dry wounds because of large water loss (48–70%)when exposed to air with a relative humidity of 40%(dry condition)for 24h.It is reported that a commercially available dressing loses about 50%of its bound water after 12h and retaining about 30%water after 24h.This water loss enables the coverings to take up exudates and oedema ?uid from the wound when used in exudating wounds.[43]Our cryogels have similar properties so that they are expected to use for the wounds with heavy exudates.

Figure 9shows the moisture permeability of the cryogels.The property relates to the network structure and available hydrophilic groups on the channel surface.The water vapor transmitted mass linearly increases with time for all the samples within 7h,and WVTR (Table 2)decreases with the increasing DAS content due to a denser structure.Normally,the WVTR should avoid the excessive dehydration and adhering of the dressing to the wound,and a rate of 2000–2500g ám à2ád à1can provide adequate level of moisture without risking wound dehydration.[44]Therefore,the cryogels with suitable crosslinking have reasonable WVTR for wound dressing materials.

Collagen Cryogel Cross-Linked by Dialdehyde Starch

S R / (g /g )

Time / min

Figure 7.Swelling kinetics of the cryogels with different DAS/collagen weight ratios at 258C in PBS buffer (pH ?7.4).

W R (%)

Time / h

Figure 8.Evaporative water losses from the cryogels with differ-ent DAS/collagen weight ratios at 378C and 40%relative humid-ity.

In vitro blood-compatibility for the cryogels was evaluated by measuring the hemolytic potential of the material,or the extent of hemolysis caused by the material when it comes in contact with blood.Figure 10shows that the percentage hemolysis of blood in contact with different samples at 378C for 60min.All the cryogels are non-hemolytic with an extent of hemolysis being lower than the permissible level of 5%.[45]Note that the hemolytic potential of collagen is not optimal,and it can be further improved by suitable crosslinking to reduce the amount of active groups in collagen (àNH 2).However,the excessive DAS with free aldehyde groups may cause hemolysis of blood.

Conclusion

A novel cryogel has been prepared by crosslinking collagen with DAS.The reaction of the aldehyde groups of DAS with the amino groups of collagen is responsible for the crosslinking.The collagen triple helix is not destructed by the crosslinking and cryogenic treatment.In comparison with pure collagen,the cryogel exhibits improved thermal stability.The cryogels have a spongy-like network structure with interconnected heteroporous pores.They also show nimble equilibrium swelling property,reasonable evapora-tive water loss and moisture permeability,and good blood compatibility.The collagen cryogel is expected to be used in wound dressing,tissue engineering scaffold,and other ?elds.

Acknowledgements:The ?nancial support of National Natural Science Foundation (NNSF )of China (20704028),Ministry of Education (NCET-06-0788),Sichuan Youth Science &Technology Foundation (06ZQ026-027)and Ministry of Science and Technology of China (2007CB936401)is gratefully acknowledged.

Received:September 16,2009;Revised:October 28,2009;Published online:January 18,2010;DOI:10.1002/mame.200900292

Keywords:biomaterials;collagen;crosslinking;cryogel;dialde-hyde starch

[1]K.Y.Lee,D.J.Mooney,Chem.Rev.2001,101,1869.[2]C.H.Lee,A.Singla,Y.Lee,Int.J.Pham.2001,221,1.

[3]C.L.Z.Riccetto,G.L.Novaski,P.C.R.Palma,M.Dambros,M.

Thiel,B.D.C.Vidal,Urology 2006,67,851.

[4]R.Gayatri,A.K.Sharma,R.Rajaram,T.Ramasami,Biochem.

Bioph.Res.Co.2001,283,229.

[5]M.T.Sheu,J.C.Huang,G.C.Yeh,H.O.Ho,Biomaterials 2001,

22,1713.

[6]A.Sionkowska,Polym.Degrad.Stab.2000,68,147.

[7]N.N.Fathima,B.Madhan,J.R.Rao,B.U.Nair,T.Ramasami,

Int.J.Biol.Macromol.2004,34,241.

[8]M.W.Dunn,K.H.Stenzel,A.L.Rubin,T.Miyata,Arch.

Ophthalmol-Chic.1969,82,840.

[9]K.J.Wu,C.Y.Wang,H.K.Lu,Arch.Oral Biol.2004,49,305.[10]M.W.Dunn,T.Nishihara,K.H.Stenzel,A.W.Branwood,A.L.

Rubin,Science 1967,157,1329.

[11]J.W.Rhim,A.Gennadios,A.Hand,C.L.Weller,M.A.Hanna,

J.Agric.Food Chem.2000,48,4937.

[12]J.W.Rhim,A.Gennadios,C.L.Weller,C.Cezeirat,M.A.Hanna,

Ind.Crop.Prod.1998,8,195.

[13]A.Gennadios,A.Handa,G.W.Froning,C.L.Weller,M.A.

Hanna,J.Agric.Food Chem.1998,46,1297.

[14]K.Arun,I.J.Chatter,J.Polym.Sci.,Part A 1965,3,3857.[15]V.I.Lozinsky,Russ.Chem.Rev.2002,71,489.

C.D.Mu et al.

Table 2.WVTR of collagen cryogels.

DAS/collagen weight ratio Slope WVTR g áh à1

g ám à2ád à1

00.1093688.81:1000.0953227.81:10

0.067

2272.6

0:11:1001:701:101:5

2

4

H a e m o l y s i s (%)

DAS/Collagen (w/w)

Figure 10.Hemolytic potential of the cryogels with different DAS/collagen weight ratios at 378C for 60min.

W V T / g

Time / h

Figure 9.WVT mass versus time for the cryogels with different DAS/collagen weight ratios at 378C and 40%relative humidity.The collagen membrane (DAS/collagen 0:100)was used as con-trol.Symbols and solid lines denote experimental data,and dashed lines are ?tting curves for calculating slope.

[16]V.I.Lozinsky,I.Y.Galaev,F.M.Plieva,I.N.Savina,H.Jungvid,

B.Mattiasson,Trends Biotechnol.2003,21,445.

[17]B.Xu,Langmuir2009,25,8375.

[18]C.D.Mu,D.F.Li,W.Lin,Y.W.Ding,G.Z.Zhang,Biopolymers

2007,86,282.

[19]E.L.Jackson,C.S.Hudson,J.Am.Chem.Soc.1937,59,2049.

[20]B.T.Hofreiter,B.H.Alexander,I.A.Wolff,Anal.Chem.1955,

27,1930.

[21]B.Chu,Z.L.Wang,J.Q.Yu,Macromolecules1991,24,6832.

[22]B.Wu,C.D.Mu,G.Z.Zhang,W.Lin,Langmuir2009,25,11905.

[23]ASTM-E96-00.ASTM international,West Conshohocken

2000.

[24]R.K.O’leary,W.L.Guess,J.Pharm.Sci.1968,57,12.

[25]E.Schacht,B.Bogdanov,A.V.D.Bulcke,N.D.Rooze,React.

Funct.Polym.1997,33,109.

[26]S.Dawlee, A.Sugandhi, B.Balakrishnan, https://www.360docs.net/doc/2b12794365.html,barre, A.

Jayakrishnan,Biomacromolecules2005,6,2040.

[27]V.I.Lozinsky,T.O.Golovina,D.G.Gusev,Polymer2000,41,

35.

[28]B.B.Doyle,E.G.Bendit,E.R.Blout,Biopolymers1975,14,

937.

[29]https://www.360docs.net/doc/2b12794365.html,zarev,B.A.Grishkovsky,T.B.Khromova,Biopolymers

1985,24,1449.

[30]N.P.Camacho,P.West,P.A.Torzilli,R.Mendelsohn,Biopo-

lymers2001,62,1.

[31]K.J.Payne,A.Veis,Biopolymers1980,27,1749.[32]Q.Yang,F.D.Dou,B.R.Liang,Q.Shen,Carbohydr.Polym.2005,

59,205.

[33]Y.B.Feng,G.Melacini,J.P.Taulane,M.Goodman,J.Am.Chem.

Soc.1996,118,10351.

[34]D.D.Jenness,C.Specher,W.C.Johnson,Biopolymers1976,15,

513.

[35]K.Xu,I.Nowak,M.Kirchner,Y.J.Xu,J.Biol.Chem.2008,283,

34337.

[36]Z.Ruszczak,Biomaterials2008,55,1595.

[37]K.Pietrucha,Int.J.Biol.Macromol.2005,36,299.

[38]C.J.A.L.Mentink,M.Hendriks,A.A.G.Levels,B.H.R.

Wolffenbuttel,Clin.Chim.Acta2002,321,69.

[39]S.van Vlierberghe,https://www.360docs.net/doc/2b12794365.html,udde,P.Dubruel,B.Masschaele,A.

Cosijns,I.de Paepe,P.J.S.Jacobs,Biomacromolecules2007,8, 331.

[40]J.R.Quintana,N.E.Valderruten,I.Katime,Langmuir1999,15,

4728.

[41]A.Pourjavadi,M.Kurdtabar,Eur.Polym.J.2007,43,877.

[42]L.B.Peppas,R.S.Harland,‘‘Absorbent polymer technology’’,

Elsevier,Amsterdam1990.

[43]B.Kichofen,H.Wokalek,D.Scheel,H.Ruh,Biomaterials1986,

7,67.

[44]D.Queen,J.D.S.Gaylor,J.H.Evans,J.M.Courtney,W.H.Reid,

Biomaterials1987,8,367.

[45]X.H.Wang,D.P.Li,W.J.Wang,Q.L.Feng,F.Z.Cui,Y.X.Xu,

X.H.Song,M.van der Werf,Biomaterials2003,24,3213.

Collagen Cryogel Cross-Linked by Dialdehyde Starch

同方易教安装向导

启动: ●BIOS中必须添加保护卡BIN File,否则无法安装,添加完Bin File会在开机时加载保 护卡。 1.开机左上角会出现保护卡黄色版本号“Rom Star (Build:xxxxxx) ”xx为bin file建 立日期 2.之后会出现搜索服务器界面,BIOS中PXE开启,网线连接时提示“Searching Server F2/F3 forced waiting,ESC to skip” 3.BIOS中PXE关闭或网线无连接时则提示“Network failure, press any key boot form disk! Time left:10” ●点击光盘根目录,驱动自动判断BIOS中保护卡的版本号,并弹出相匹配的驱动安装程 序。 安装: 保护卡分为底层(DOS)驱动安装和windows驱动安装,故不支持静默安装,请按照安装向导提示进行。安装前先装好系统补丁和主板设备驱动再安装保护卡驱动(如装有杀毒软件,安装保护卡驱动前请先退出) 1.进入windows系统,点安装程序中的,,弹出软件安装界面,点击检查版本是否匹配。 2.版本匹配成功,点击下一步继续 选择全新安装 3.弹出修正硬盘大小

安装需要占用磁盘尾部的部分空间来存放保护卡数据,需要用户手动删除最后一个分区 点击确定,弹出保护卡分区界面,新建分区。选择保护类型

分区规划完,选择添加系统,点确定。 ,系统和分区规划完毕,点安装后重启,出现保护卡开机界面。把光标移到第二个系统按钮处,放入系统光盘,安装第二个操作系统。 进入系统,继续安装保护卡安装第二步,安装window保护卡驱动,点击

YC1008数字量输入输出模块使用说明书V1.0

YC1008数字量输入输出模块 使用说明书V1.0 目录 一.模块介绍 二.技术参数 三.模块的型号 四.模块尺寸、模块引脚定义、隔离特性 五.模块使用说明 六.通讯协议 七.模块的MODBUS-RTU协议功能码与数据对应表 版本记录:V1.0 2011-11-20 版本创建 一.模块介绍 YC1008数字量输入输出模块广泛应用于工业控制系统,具有广泛的使用意义。YC1008模块的主要特点如下: 1. YC1008系列模块通过隔离变压器和隔离光耦实现了供电电路、数字量输入、数字量输出、通讯电路的相互隔离,模块具有很强的稳定性和抗干扰能力。 2.单电源供电,隔离在模块内部通过隔离变压器和隔离光耦实现,隔离电压2500V。 3. YC1008系列模块实现8路数字量的输入和8路数字量的输出功能。 4. 通讯接口为RS485或232,通讯波特率等参数可配置,通讯协议为MODBUS-RTU。二.技术参数 供电电源 1. 供电电压:DC12V或DC24V,电源反接保护。 2. 电流消耗:<35mA+继电器功耗。 数字量输入 1. 共有8个数字量输入通道,可以接收多种输入信号:无源开关信号(逻辑0表示断开,逻辑1表示闭合);输入信号可以接集电极开漏(OC)输出信号、接近开关信号;输入信号也可以是有源信号(逻辑0表示3~35V,逻辑1表示0~0.5V表示闭合)。 2. 内部采用隔离变压器和隔离光耦实现了输入信号和电源的隔离,隔离电压2500V。数字量输出 1.8路数字量输出信号。 2.数字量输出通过继电器(常开触点)或集电极开漏输出(OC)两种方式实现。 3.该模块配有两种继电器输出:1) 继电器触点负载容量10A/277V AC;2) 继电器触 点负载容量30A/240V AC。

清华同方电脑还原卡破解的几个方法

清华同方电脑还原卡破解的几个方法 进入bios,清华同方BIOS的通用口令:thtfpc,依次进入--INTEGRATED PERIPHERALS---ONBOARD DEVICE----ONBOARD LAN:CONTROLLER 此项设为ENABLED(集成网卡生效)----ONBOARD LAN:BOOT ROM 此项设为DISABLED(取消还原功能)测试,有效 清华同方还原卡的安装: 第一次安装 1 确定硬盘的type (cmos资料)设定是否正确 2 请将驱动盘放入驱动器中并按enter... * 按[esc]不安装 * 按f1进行自动网络搜寻安装功能. hard disk type size:38162mb cyls:4865 head:255 sector:63 解决这个问题建议最好是挂上个光驱,在出现此画面的时候把同方易教那张光盘放到光驱中,然后按回车键.如果想保存原有的硬盘数据,就选择"简易安装",可以根据屏幕提示操作,后面的就很简单了 1、开启还原卡。进入bios,使用CTRL+F1组合键进入工程模式BIOS图形配置界面。找到Integrated Peripherals选项,使用ONBOARD LAN BOOT ROM选项打开/关闭保护卡功能。保存重启。 2、安装还原卡底层驱动程序(还原驱动程序在附送的绿色光碟里面)。 重启后,会出现“第一次安装”的界面,插入光盘,回车,等搜索完成后会出现“安装设定”的界面,选择“简单安装”,回车,确定。完成后,还原底层驱动安装成功。注:“简易安装”可以保留先有分区信息;“自定义安装”需要格式化所有硬盘分区,保护效果比较好。“简易安装”可以先安装系统,后装还原卡;“自定义安装”必须先装好还原卡再装系统。一般我们选择“简易安装”,安装完成后,重启。 3、安装还原卡上层驱动程序。开机后按F10,进去还原卡设定界面,进入“分区信息”,选择系统分区不还原,保存,重启。进入windows后,在光盘里面找到SETUP文件夹,运行SETUP.EXE。完成后,所有安装完成。 4、如何使用:开机后按F10,可以进行“密码设定”、“参数设定”、“分区信息”、“工具”、“重新分割”等选项目。去除还原是进去“分区信息”,将不还原的分区设置为“不还原”,然后保存,重启。各种功能,各位慢慢研究。 同方易教保护卡网络拷贝、增量拷贝常见问题 1同方易教网络拷贝设置中为什么有3种网络拷贝模式,各有什么差别? 答:A. 同方易教支持三种网络拷贝模式,模式1和模式3为可靠拷贝模式,模式2为快速拷贝模式,模式3属于增强型数据校验网络拷贝(针对某些特殊环境,比如说发现网络拷贝过去接收端的数据有错误或者操作系统起不来),模式2和模式3必须工作在所有机器都安装了同方易教底层驱动的基础上! B. 网络安装接收端请选用模式1

荧光法鉴别纤维

荧光法鉴别纤维 发布日期:2007-1-20 23:11:19 中国纺织检测网 https://www.360docs.net/doc/2b12794365.html,/ ·利用紫外线荧光灯照射纤维,根据各种纤维发光的性质不同,纤维的荧光颜色也不同的特点来鉴别纤维。各种纤维的荧光颜色具体显示: (1)、棉、羊毛纤维:淡黄色 (2)、丝光棉纤维:淡红色 (3)、黄麻(生)纤维:紫褐色 (4)、黄麻、丝、锦纶纤维:淡蓝色 (5)、粘胶纤维:白色紫阴影 (6)、有光粘胶纤维:淡黄色紫阴影 (7)、涤纶纤维:白光青天光很亮 (8)、维纶有光纤维:淡黄色紫阴影。 牛奶纤维纺织品定性 检验方法 发布日期:2007-1-22 9:45:58 中国纺织检测网 https://www.360docs.net/doc/2b12794365.html,/ ·SHCIQH 0003—200l 牛奶纤维纺织品定性检验方法 4.1 红外光谱分析 从红外光谱分析可以知道牛奶纤维中含有N—H,一CH3,,一C≡N,>C=O等基团,牛奶纤维是由从牛奶中提取的氨基酸与丙烯腈接枝而成,但其红外图谱既不同于丝、毛等天然蛋白质纤维,也不同于腈纶。 4.2 切片投影法 用哈氏切片器作该纤维的纵向和横截面切片,置于500倍投影仪中观察结果:纵向有隐条纹,边缘光滑;横截面呈圆形,似合成纤维。 4.3 燃烧法 靠近火焰:熔融并卷曲;接触火焰:卷曲,融化,燃烧;离开火焰:燃烧,有时自灭;燃烧时气味:毛发燃味;残留物特征:黑色状,基本松脆,但有极细微量硬块。 从以上的燃烧特征看,极似真丝等蛋白质纤维。 4.4 熔点法 300%,以下无熔点,同麻、棉等无熔点纤维。 4.5 溶解法

条件和结果见表1。 根据以上试验情况,我们提出以下两种鉴别方法: (1)切片投影法与燃烧法相结合。 纵向无鳞片(区别于羊毛),横截面呈圆形(区别于真丝),燃烧时有蛋白质臭味(区别于化纤、棉、麻等非蛋白质纤维),可确认为是“牛奶纤维”。 该方法的特点是快速、简便。能鉴别目前横截面呈圆形的牛奶纤维。若横截面为非圆形时,则宜用方法(2)。 (2)燃烧法与化学试剂溶解法相结合。 在100%:下用2.5%NaOH溶解30 min,纤维溶胀成冻胶状(区别于羊毛和真丝),燃烧时有蛋白质臭味(区别于化纤、棉、麻等非蛋白质纤维)。 以上方法是对牛奶蛋白纤维的定性分析方法。目前,对于我们生产的牛奶蛋白混纺纱线也有了相应的定量分析方法标准,在这里因篇幅所限不赘述。

纺织纤维及再生纤维的鉴别方法

纺织纤维及再生纤维的鉴别方法 纺织纤维的判别方法 1、手感目测法:此法适用于呈散纤维状态的纺织原料。 (1)、棉纤维比苎麻纤维和其它麻类的工艺纤维、毛纤维均短而细,常附有各种杂质和疵点。 (2)、麻纤维手感较粗硬。 (3)、羊毛纤维卷曲而富有弹性。 (4)、蚕丝是长丝,长而纤细,具有特殊光泽。 (5)、化学纤维中只有粘胶纤维的干、湿状态强力差异大。 (6)、氨纶丝具有非常大的弹性,在室温下它的长度能拉伸至五倍以上。 2、显微镜观察法:是根据纤维的纵面、截面形态特征来识别纤维。 (1)、棉纤维:横截面形态:腰圆形,有中腰;纵面形态:扁平带状,有天然转曲。 (2)、麻(苎麻、亚麻、黄麻)纤维:横截面形态:腰圆形或多角形,有中腔;纵面形态:有横节,竖纹。 (3)、羊毛纤维:横截面形态:圆形或近似圆形,有些有毛髓;纵面形态:表面有鳞片。 (4)、兔毛纤维:横截面形态:哑铃型,有毛髓;纵面形态:表面有鳞片。 (5)、桑蚕丝纤维:横截面形态:不规则三角形;纵面形态:光滑平直,纵向有条纹。 (6)、普通粘纤:横截面形态:锯齿形,皮芯结构;纵面形态:纵向有沟槽。

(7)、富强纤维:横截面形态:较少齿形,或圆形,椭圆形;纵面形态:表面平滑。 (8)、醋酯纤维:横截面形态:三叶形或不规则锯齿形;纵面形态:表面有纵向条纹。 (9)、腈纶纤维:横截面形态:圆形,哑铃形或叶状;纵面形态:表面平滑或有条纹。 (10)、氯纶纤维:横截面形态:接近圆形;纵面形态:表面平滑。 (11)、氨纶纤维:横截面形态:不规则形状,有圆形,土豆形;纵面形态:表面暗深,呈不清晰骨形条纹。 (12)、涤纶、锦纶、丙纶纤维:横截面形态:圆形或异形;纵面形态:平滑。 (13)、维纶纤维:横截面形态:腰圆形,皮芯结构;纵面形态:1~2根沟槽。 3、密度梯度法:是根据各种纤维具有不同密度的特点来鉴别纤维。 (1)、配定密度梯度液,一般选用二甲苯四氯化碳体系。 (2)、标定密度梯度管,常用的是精密小球法。 (3)、测定和计算,将待测纤维进行脱油、烘干、脱泡预处理,做成小球投入平衡后,根据纤维悬浮位置,测得纤维密度。 4、荧光法:利用紫外线荧光灯照射纤维,根据各种纤维发光的性质不同,纤维的荧光颜色也不同的特点来鉴别纤维。各种纤维的荧光颜色具体显示: (1)、棉、羊毛纤维:淡黄色 (2)、丝光棉纤维:淡红色 (3)、黄麻(生)纤维:紫褐色 (4)、黄麻、丝、锦纶纤维:淡蓝色

利用同方还原卡安装教室网络方法和微机房的日常维护技巧

利用同方原卡安装教室网络的方法及微机房的日常维护技巧 马恩辉储成俊 2009.6 摘要:安徽省滁州市2005年与“农远工程”配套的“校校通工程”使用的学生电脑是清华同方超越E220,它主板上集成有同方还原卡。目前校园和教室网络的组建和维护技术虽然很成熟,但是针对“农远工程”项目学校网络环境建设而言大量的书籍和网络文章则显得庞杂、更缺乏针对性强的实战技巧,为了学校“农远管理员”能更好地维护网络教室,本文将详细介绍利用同方还原卡快速合理地安装网络教室的方案和网络教室的日常维护技巧。 关键词:同方还原卡网络教室维护技巧 本文之所以要讲?利用同方原卡安装教室网络的方法以及微机房的日常维护技巧?,是因为?农远项目?学校网络管理中存在以下问题: (1)目前校园和教室网络的组建和维护技术虽然很成熟,但是针对农远工程项目学校网络环境建设而言大量的书籍和网络文章则显得庞杂、更缺乏针对性强的实战技巧。 (2)农远管理员虽也经过培训上岗管理,但是培训中却有很多实际问题没有讲到。例如未讲到在安装有同方还原卡的电脑上如何确保成功地安装操作系统、在无光驱和软驱的情况下如何给网络更换操作系统、用什么方法能简洁快速地开通网上邻居等。 (3)各种硬软件的安装说明书往往讲解得很杂乱,这页见那页绕得你头发晕,甚至该说清的未说清,或者就没给出最合理的解决方案,使你产生误解或费解。例如,同方易教说明书中就没说到在还原卡不移出情况下更换操作系统时还原卡参数设定中开机选择项应选择BIOS项;再如,同方易教说明书中说到:?在windows安装完成后,请以总管模式进入系统,将同方还原卡驱动(即《同方易教》光盘)插入光驱中,参考《同方易教》光盘TOOL目录下的readme.txt文件来制作驱动软盘。双击新制作出来的那张软盘里的SETUP.EXE来安装系统保护程序和IP自动修改选项。?这里又是用光驱又是制作驱动软盘,现在软盘几乎不用了,甚至在安装维护电脑时连光驱都不想用,显然说明书中的这种做法太繁琐太不切实际,是不可取的;又如,在没有安装C盘保护驱动程序时安装系统或软件不须在总管模式下进

纤维鉴别

1、手感目测法:此法适用于呈散纤维状态的纺织原料温下它的长度能拉伸至五倍以上。 (1)、棉纤维比苎麻纤维和其它麻类的工艺纤维、毛纤维均短而细,常附有各种杂质和疵点。 (2)、麻纤维手感较粗硬。 (3)、羊毛纤维卷曲而富有弹性。 (4)、蚕丝是长丝,长而纤细,具有特殊光泽。 (5)、化学纤维中只有粘胶纤维的干、湿状态强力差异大。 (6)、氨纶丝具有非常大的弹性,在室2、显微镜观察法:是根据纤维的纵面、截面形态特征来识别纤维。 2、显微镜观察法:是根据纤维的纵面、截面形态特征来识别纤维 (1)、棉纤维:横截面形态:腰圆形,有中腰;纵面形态:扁平带状,有天然转曲。 (2)、麻(苎麻、亚麻、黄麻)纤维:横截面形态:腰圆形或多角形,有中腔;纵面形态:有横节,竖纹。 (3)、羊毛纤维:横截面形态:圆形或近似圆形,有些有毛髓;纵面形态:表面有鳞片。 (4)、兔毛纤维:横截面形态:哑铃型,有毛髓;纵面形态:表面有鳞片。 (5)、桑蚕丝纤维:横截面形态:不规则三角形;纵面形态:光滑平直,纵向有条纹。 (6)、普通粘纤:横截面形态:锯齿形,皮芯结构;纵面形态:纵向有沟槽。 (7)、富强纤维:横截面形态:较少齿形,或圆形,椭圆形;纵面形态:表面平滑。 (8)、醋酯纤维:横截面形态:三叶形或不规则锯齿形;纵面形态:表面有纵向条纹。 (9)、腈纶纤维:横截面形态:圆形,哑铃形或叶状;纵面形态:表面平滑或有条纹。 (10)、氯纶纤维:横截面形态:接近圆形;纵面形态:表面平滑。 (11)、氨纶纤维:横截面形态:不规则形状,有圆形,土豆形;纵面形态:表面暗深,呈不清晰骨形条纹。 (12)、涤纶、锦纶、丙纶纤维:横截面形态:圆形或异形;纵面形态:平滑。 (13)、维纶纤维:横截面形态:腰圆形,皮芯结构;纵面形态:1~2根沟槽。 3、密度梯度法:是根据各种纤维具有不同密度的特点来鉴别纤维。 (1)、配定密度梯度液,一般选用二甲苯四氯化碳体系。 (2)、标定密度梯度管,常用的是精密小球法。 (3)、测定和计算,将待测纤维进行脱油、烘干、脱泡预处理,做成小球投入平衡后,根据纤维悬浮位置,测得纤维密度。 4、荧光法:利用紫外线荧光灯照射纤维,根据各种纤维发光的性质不同,纤维的荧光颜色也不同的特点来鉴别纤维。各种纤维的荧光颜色具体显示: (1)、棉、羊毛纤维:淡黄色 (2)、丝光棉纤维:淡红色 (3)、黄麻(生)纤维:紫褐色 (4)、黄麻、丝、锦纶纤维:淡蓝色 (5)、粘胶纤维:白色紫阴影 (6)、有光粘胶纤维:淡黄色紫阴影 (7)、涤纶纤维:白光青天光很亮 (8)、维纶有光纤维:淡黄色紫阴影。 5、燃烧法:根据纤维的化学组成不同,燃烧特征也不同,从而粗略地区分出纤维的大类。几种常见纤维的燃烧特征判别对照如下: (1)、棉、麻、粘纤、铜氨纤维:靠近火焰:不缩不熔;接触火焰:迅速燃烧;离开火焰:继续燃烧;气味:烧纸的气味;残留物特征:少量灰黑或灰白色灰烬。 (2)、蚕丝、毛纤维:靠近火焰:卷曲且熔;接触火焰:卷曲,熔化,燃烧;离开火焰:缓慢燃烧有时自行熄灭;气味:烧毛发的气味;残留物特征:松而脆黑色颗粒或焦炭状。 (3)、涤纶纤维:靠近火焰:熔缩;接触火焰:熔融,冒烟,缓慢燃烧;离开火焰:继续燃烧,有时自行熄灭;

同方易教操作指南

同方易教增量版使用指南 同方股份有限公司 thtfpc

前言 ◎欢迎使用同方易教增量版 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ※本手册所有的产品商标与产品名称均属于同方股 份有限公司。 ※本手册所有图形仅供参考,请您以实际软件界面为 准。 ※请您在做安装、移除、修改同方易教增量版操作时, 备份好您的硬盘数据,如果数据丢失,本公司不予 找回。 ※软件版本如有变更恕不另行通知。 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 同方易教增量版广泛应用于学校机房或网吧等局域网环境,成为广大机房管理者的得力助手。它以方便、安全的优势备受系统管理者的青睐。

目录 1.产品介绍 (1) 1.1产品说明 (1) 1.2功能简介 (1) 1.3最低硬件配置 (2) 1.4支持的操作系统 (2) 1.5支持的文件系统 (3) 2.快速开始指南 (4) 2.1安装同方易教增量版 (4) 2.2安装流程图 (5) 2.2.1 安装发送端流程图 (5) 2.2.2 网络克隆接收端流程图 (6) 2.3安装发送端(以﹤全新安装﹥为例) (7) 2.3.1 选择安装方式——全新安装 (7) 2.3.2 安装操作系统及应用软件 (9) 2.3.3 安装同方易教增量版操作系统驱动 (10) 2.3.4 安装完成 (11) 2.3.5 设置发送端网络拷贝信息 (11) 2.4网络克隆接收端 (12) 2.4.1 网络安装接收端底层驱动 (12) 2.4.2 配置接收端信息(IP地址/计算机名) .. 15 2.4.3 传送操作系统数据 (17) 3.增量拷贝—安装、卸载软件,修改系统设置 (20) 3.1增量拷贝的流程图 (20) 3.2实现增量拷贝的前提条件 (21) 3.3增量拷贝全过程 (21) 3.3.1 准备增量数据 (21) 3.3.2 执行增量拷贝 (22)

同方易教常见问题解决

同方易教常见问题解决 1安装操作系统,需要用开放模式进入安装吗? 答: 不用。我们在安装系统时,将系统安装盘放入光驱,引导次序改为光驱引导,在同方易教操作系统引导选单上选择要安装的系统,直接回车即可安装。 2同方易教windows 驱动在何时安装合适? 答: 1) 安装完系统后,装载计算机硬件驱动和应用软件后,再安装各种硬件的windows 驱动。设置好计算机名和IP,DNS等等….,此驱动一旦安装后,系统将会以此时的系统作为还原基准点。 2) 安装完同方易教操作系统驱动之后,重新启动后系统开始保护 3DOS操作系统什么时候开始保护 答: A. 操作系统必须以DOS(大小写均可)才能支持保护DOS B. 一旦DOS保护分区格式化,重启之后就开始保护 4已经安装了同方易教windows 驱动,想要增加软件,是要以开放模式进去安装吗? 答:可以,同方易教可以保护模式下和开放模式下进行增量拷贝 5安装同方易教windows 驱动时提示资料分区未格式化,重启动后为不保护状态? 答:安装同方易教windows 驱动是在所有安装操作及磁盘设定完成后再执行,故要先格式化后再安装。如上情况,用户只需要将资料盘格式化后,重启计算机即可正常。 6备份复原型安装的操作系统,需要安装同方易教windows 驱动吗? 答:不用。因为备份复原性系统是通过手动备份进行的,直接将系统分区克隆到其对应的暂存区。 7为什么用同方易教分区时,可以设置FA T32文件系统,但在安装系统是却无法格式化成FA T32分区?答:WINDOWS系统只支持小于32G分区使用FA T32格式。 8为什么Windows2000看不见137GB以后的分区了 答:Windows2000磁盘驱动最大只能支持137GB的硬盘,如果超过137GB的地方,分区会不可见,所以对于有安装Windows2000操作系统,而且硬盘大于130G的时候,一定要注意引导分区,专属分区,共享分区都必须划分在137GB以前的磁盘空间 9为什么Windows2003在安装完操作系统以后进去只有一个分区呢 答:Windows2003的所有扩展分区需要重新分配盘符,具体操作如下 右键点击”我的电脑”---à选择”管理”-à在左边列表中的”存储”中选择”磁盘管理”-à给每个已分派的分区添加相应的盘符! ***注意:对”未指派”的空间不要去操作 10如何去除Windows登录时的密码验证呢 答: A. 对于Windows2000,选择”开始”-à选择”运行”à在命令行中输入 control userpasswords B. 对于Windows2003/XP,选择”开始”-à选择”运行”à在命令行中输入 control userpasswords2 11在同方易教使用时,如何重新安装其中的一个操作系统(针对保留安装和全新安装情况) 答: 1) 进入F10,点击“增量设置”,将所对应的操作系统的增量支持去掉 2) 到分区设置中将操作系统对应的引导分区的还原方式设置为“不使用” 3) 以开放模式(Ctrl+Enter)进入操作系统,进入控制面板中,点击“添加/删除程序”, 4) 将同方易教的驱动和卸载

DI&DO模块,模拟量采集模块

通过RS485的Modubs RTU协议进行控制 支持4路继电器输出、4路数字量输入、支持2路模拟量输入 RS485接口,9600bps,8位数据为、NONE校验、1位停止位 ZLAN6002 概述 ZLAN6002主要为RS485进行远程数字量、模拟量的输入输出设计的。设备兼容Modbus RTU协议,可以和组态软件、PLC等无缝连接。4路继电器具有5A@AC250V/DC30V特性,可以驱动大电流设备;4路DI 数字量输入可以为干接点或者湿节点;2路AI输入可以为电流量、电压量、电阻类型的温湿度传感器等。 ZLAN6002为各种基于RS485控制的的DI、DO、AI自动化系统提供了简便的设计解决方案。 特点 4路数字量输入,同时兼容无源开关量(干节点)、有源电平(湿节点)。 2路模拟量输入,包括:电流输入:如4~20mA、电压输入:如0~5V,0~10V、电阻:如0~10k或电阻型的温湿度传感器等 4路数字量输出,输出类型为继电器输出(5A@AC250V/DC30V) RS485具有隔离保护电路。 规格 网络界面 IO界面

软件特性 电器特性 机械特性 工作环境 通过Modubs TCP协议、虚拟串口、TCP/UDP进行控制 支持4路继电器输出、4路数字量输入、支持2路模拟量输入 通过网页或者Widnows配置工具配置IP等参数 ZLAN6042

概述 ZLAN6042是为使用Modbus TCP协议进行远程数字量、模拟量的输入输出设计的。用户上位机或者主机只要兼容Modbus TCP协议即可和ZLAN6042配合,包括组态软件、PLC等。4路继电器具有 5A@AC250V/DC30V特性,可以驱动大电流设备;4路DI数字量输入可以为干接点或者湿节点;2路AI输入可以为电流量、电压量、电阻类型的温湿度传感器等。 ZLAN6042为各种需要网络远程控制的DI、DO、AI系统提供了简便的设计解决方案,其统一化的Modbus TCP协议为集成到后台系统提供了很好的兼容性。 特点 4路数字量输入,同时兼容无源开关量(干节点)、有源电平(湿节点)。 2路模拟量输入,包括:电流输入:如4~20mA、电压输入:如0~5V,0~10V、电阻:如0~10k或电阻型的温湿度传感器等 4路数字量输出,输出类型为继电器输出(5A@AC250V/DC30V) ZLAN6042/6032免费配备Windows虚拟串口&设备管理工具ZLVircom,支持虚拟串口,并可以一键式搜索,修改参数。 ZLAN6032内置Web服务器,可通过浏览器控制IO、采集IO和AI电压情况。 ZLAN60426032支持DHCP、DNS、多TCP连接。 规格 网络界面 IO界面 软件特性

同方易教培训讲解方案

同方易教管理系统同方易教管理系统的的使用使用培训培训培训讲解讲解讲解方案方案 同方易教管理系统同方易教管理系统的安装的安装 同方易教安装分为两种类型:微软操作系统简易安装,和多操作系统隔离安装。 在简易安装的情况下,用户磁盘上应该已经安装了微软的操作系统,同方易教会在不破坏任何磁盘已有分区数据的情况下在该操作系统下安装同方易教管理系统。 在多操作系统隔离的模式下,同方易教需要对整个磁盘进行重新的分区规划,可能会破坏一些原有分区。多操作系统隔离安装后,用户可以在磁盘上安装多个操作系统,这些操作系统系统分区相互隔离不能互相访问。如果用户需要在同方易教下使用linux 系列操作系统,那么用户必须选择多操做系统隔离安装。因为同方易教版本不支持Linux 操作系统下的任何维护工具。 ---------在操作的同时叙述 同方易教管理系统同方易教管理系统的进度管理功能的进度管理功能 与传统保护卡不同的是,同方易教管理系统支持多进度。在安装了同方易教管理系统的windows 保护驱动后,用户可以在实模式(引导windwos 之前)或者windwos 之上为系统创建新的进度、删除旧的进度或者还原到以前的一个进度。 所谓进度,就是一个还原点,这个还原点也可以称之为一个磁盘快照,它记录了进度创建时刻当前操作系统的所有软件环境和文件系统状态。所有的进度都是相对独立的,这意味着,用户还原到一个进度,或者删除一个进度的时候都不会影响其他的进度。还原是可逆的。 操作操作::在windwos 上为系统创建新的进度上为系统创建新的进度。。 ---------在操作的同时叙述 打开同方易教管理系统的主界面,右键点击托盘图标输入密码后,弹出易教主界面选择进度管理。 点击创建进度 输入进度名称和进度描述,点击创建,系统将为当前的磁盘软件环境创建一个新的进度。 可以进入恢复进度界面验证进度已经创建。 在windwos 上执行进度还原上执行进度还原。。 ---------在操作的同时叙述 打开同方易教的主界面,右键点击托盘图标输入密码后,弹出易教主界面选择进度管理。

防伪功能纤维产品及应用技术简介

防伪功能纤维产品及应用技术简介 2010-06-13 13:37:50| 分类:默认分类| 标签:防伪功能纤维防伪应用技术纤维产品功能纤维|字号大中小订阅 防伪功能纤维产品及应用技术简介 我公司是新材料科技开发企业,公司拥有世界领先水平的新型功能纤维制造技术。我公司生产的防伪功能纤维具有独特的芯壳结构。是世界上唯一能制造多种类型功能纤维的企业,公司以开发,生产和销售新型功能纤维为主业,同时为用户提供新型功能纤维材料应用技术服务,促进功能纤维材料在各产业领域的应用。 一:防伪功能纤维在防伪产品中的地位 目前在国内广泛使用的三大类防伪技术产品各有优势和缺点,其中以激光全息和功能油墨印刷技术为核心的防伪产品由于技术过时,产品已在各印刷品种滥用,基本没有防伪功能;而目前国内炒作的电话和计算机网络查询防伪方法不仅要求使用通信工具,消费者要承担一定费用,并且查询后代码就会消除,消费者必须将商品购买,反之如果是购买后查询,即使证明是假货也难以退货,消费者承担全部的风险和费用,另一方面,中国大部分地区经济落后,通信资源有限,除非购买价值特别高的商品,一般情况下消费者不会用电话或专门上网查询一包香烟的真假,据中国防伪技术信息中心统计。目前应用电话网络进行防伪查询的商品的查询率仅达0.6%的水平,基本无

人查询,形同虚设,对企业的产品防伪没有实际作用,并且一旦黑客侵入系统,使用企业的潜在风险极大。 近年来,新材料在防伪领域的应用日趋广泛,新型功能纤维材料则是防伪技术产品中的新秀,例如彩色纤维,荧光纤维,磁性纤维等已在美元,丹麦克朗,意大利里拉,人民币,港币,邮票,发票及烟酒防伪包装等产品中得到应用,这种防伪技术已被证明具有良好的防伪造和反复制功能,代表着最高得防伪水平。 二:防伪功能纤维的防伪特征 1.单一性:我公司生产的防伪功能纤维具有独特的芯壳结构,这是目前国内任何一家企业都不能制造的,同时产品制造的主体技术已 在申请中国,美国和欧洲专利。 2. 大众化的识别方法:商品的防伪识别方法是防伪成功与否的重要环节。在中国流通最为广泛的物品是人民币,其采用的检测方法和工具已得到广泛的认知。我公司制造的防伪功能纤维的特征之一就是借用人民币验钞灯作为识别工具,同时考虑到中国幅员辽阔,城乡差别等实际情况,在防伪功能纤维中配置温致变色功能材料用体温或日常热源就可识别,无需专门工具也可鉴别产品的真假。

PLC数字量输入电路形式

PLC 数字量输入模块电路的形式 摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,并结合传感器常见的NPN和PNP输出,给出了和不同的PLC电路形式连接时的接线方法。 关键词:PLC 源输入漏输入NPN输出PNP输出 1 引言 PLC 控制系统的设计中,虽然接线工作占的比重较小,大部分工作还是PLC 的编程设计工作,但它是编程设计的基础,只要接线正确后,才能顺利地进行编程设计工作。而保证接线工作的正确性,就必须对PLC 内部的输入输出电路有一个比较清楚的了解。 我们知道,PLC 数字输入模块为了防止外界线路产生的干扰(如尖峰电压,干扰噪声等)引起PLC 的非正常工作甚至是元器件的损坏,一般在PLC 的输入侧都采用光耦,来切断PLC 内部线路和外部线路电气上的联系,保证PLC 的正常工作。并且在输入线路中都设有RC 滤波电路,以防止由于输入点抖动或外部干扰脉冲引起的错误信号。 2 输入电路的形式 2.1 分类 PLC 的输入电路,按外接电源的类型分,可以分为直流输入电路和交流输入电路;按PLC 输入模块公共端(COM 端)电流的流向分,可分为源输入电路和漏输入电路;按光耦发光二极管公共端的连接方式可分为共阳极和共阴极输入电路。如下图1所示: 图1 PLC输入电路的分类 2.2 按外接电源的类型分类 2.2.1 直流输入电路

图2 为直流输入电路的一种形式(只画出一路输入电路)。当图1 中外部线路的开关闭合时,PLC 内部光耦的发光二极管点亮,光敏三极管饱和导通,该导通信号再传送给处理器,从而CPU 认为该路有信号输入;外界开关断开时,光耦中的发光二极管熄灭,光敏三极管截止,CPU 认为该路没有信号。 图2 直流输入电路 2.2.2 交流输入电路 交流输入电路如图3 所示,可以看出,与直流输入电路的区别主 要就是增加了一个整流的环节。 交流输入的输入电压一般为AC120V 或230V。交流电经过电阻R的限流和电容C的隔离(去除电源中的直流成分),再经过桥式整流为直流电,其后工作原理和直流输入电路一样,不再缀述。

PLC 数字量输入模块电路的形式

PLC 数字量输入模块电路的形式 发布日期:2009-6-26 11:54:11 (阅1069次) 关键词: PLC NPN输出 PNP输出 摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,并结合传感器常见的NPN和PNP 输出,给出了和不同的PLC电路形式连接时的接线方法。 关键词:PLC源输入漏输入NPN输出PNP输出 1 引言 PLC控制系统的设计中,虽然接线工作占的比重较小,大部分工作还是PLC的编程设计工作,但它是编程设计的基础,只要接线正确后,才能顺利地进行编程设计工作。而保证接线工作的正确性,就必须对PLC 内部的输入输出电路有一个比较清楚的了解。 我们知道,PLC数字输入模块为了防止外界线路产生的干扰(如尖峰电压,干扰噪声等)引起PLC的非正常工作甚至是元器件的损坏,一般在PLC的输入侧都采用光耦,来切断PLC内部线路和外部线路电气上的联系,保证PLC的正常工作。并且在输入线路中都设有RC 滤波电路,以防止由于输入点抖动或外部干扰脉冲引起的错误信号。 2 输入电路的形式 2.1 分类 PLC的输入电路,按外接电源的类型分,可以分为直流输入电路和交流输入电路;按PLC输入模块公共端(COM 端)电流的流向分,可分为源输入电路和漏输入电路;按光耦发光二极管公共端的连接方式可分为共阳极和共阴极输入电路。如下图1所示:

图1 PLC输入电路的分类 2.2 按外接电源的类型分类 2.2.1 直流输入电路 图2 为直流输入电路的一种形式(只画出一路输入电路)。当图1 中外部线路的开关闭合时,PLC内部光耦的发光二极管点亮,光敏三极管饱和导通,该导通信号再传送给处理器,从而CPU 认为该路有信号输入;外界开关断开时,光耦中的发光二极管熄灭,光敏三极管截止,CPU 认为该路没有信号。 图2 直流输入电路 2.2.2 交流输入电路 交流输入电路如图3 所示,可以看出,与直流输入电路的区别主 要就是增加了一个整流的环节。 交流输入的输入电压一般为AC120V 或230V。交流电经过电阻R的限流和电容C的隔离(去除电源中的

网络同传-同方易教EGV2.0使用指南

同方易教EGV1.0 使用指南 同方股份有限公司

前言 ◎欢迎使用同方易教 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ※本手册所有的产品商标与产品名称均属于同方股 份有限公司。 ※本手册所有图形仅供参考,请您以实际软件界面为 准。 ※请您在做安装、移除、修改同方易教操作时,备份 好您的硬盘数据,如果数据丢失,本公司不予找回。 ※软件版本如有变更恕不另行通知。 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ 同方易教广泛应用于学校机房或网吧等局域网环境,成为广大机房管理者的得力助手。它以方便、安全的优势备受系统管理者的青睐。

目录 1.产品介绍 (1) 1.1产品说明 (1) 1.2功能简介 (1) 1.3最低硬件配置 (2) 1.4支持的操作系统 (2) 1.5支持的文件系统 (3) 2.快速开始指南 (4) 2.1安装同方易教 (4) 2.2安装流程图 (5) 2.2.1 安装发送端流程图 (5) 2.2.2 网络克隆接收端流程图 (6) 2.3安装发送端(以﹤全新安装﹥为例) (7) 2.3.1 选择安装方式——全新安装 (7) 2.3.2 安装操作系统及应用软件 (9) 2.3.3 安装同方易教操作系统驱动 (10) 2.3.4 安装完成 (11) 2.3.5 设置发送端网络拷贝信息 (11) 2.4网络克隆接收端 (12) 2.4.1 网络安装接收端底层驱动 (12) 2.4.2 配置接收端信息(IP地址/计算机名) .. 15 2.4.3 传送操作系统数据 (17) 3.已经安装好操作系统后安装同方易教 (20) 3.1安装同方易教 (20) 3.2选择安装方式 (20) 3.2.1 简易安装和保留安装 (20) 3.2.2 安装操作系统 (22) 3.2.3 安装同方易教系统驱动 (23)

io开关量输入模块接线DAM-5161

io开关量输入模块接线DAM-5161 iO开关量输入模块简介: DAM-5161模块是全新一代基于嵌入式系统的iO开关量输入模块,采用标准DIN35导轨安装方式,现场安装简单,使用灵活;应对各种现场应用。模块配置有RS232接口,方便与PC或PLC通信,模块配置有RS485接口,可单独与PC或PLC通信,也可以与多个485模块组网使用。模块配有瞬态抑制电路,能有效抑制各种浪涌脉冲,保护模块在恶劣的环境下可靠工作。iO开关量输入模块DAM-5161是工业级数字/开关量输入采集器,可采集16路数字/开关量信号;无需外部电路直接采集有源/无源开关量信号;同时模块可以采集0~200Hz 频率信号,并且带有计数功能。适用于采集工业现场的各种数字/开关量信号。产品采用隔离RS485方案,将通信与系统单独隔离开,消除通信设备之间共模干扰。产品采用先进的磁隔离技术,有效保障数据采集的速度、可靠及安全产品。针对工业应用设计:通过DC-DC变换,实现测量电路和主控电路电源隔离;同时控制单元与信号采集单元采用高性能磁隔离技术实现电气隔离,与一般的光电隔离相比数据通信更快更可靠。DAM-5161可以采集多种数字/开关量信号:在无需外部电路的情况下可以直接采集有源/无源开关量信号;可以直接采集行程开关、NPN/PNP型霍尔开关信号(出厂默认采集NPN型霍尔开关信号,如需采集PNP型霍尔开关信号请采购时注明)。同时模块具有开关量采集去抖动功能、信号频率计算功能、边沿计数功能。 iO开关量输入模块参数: 嵌入式实时操作系统 数字/开关量输入通道:16路 宽电压数字逻辑 0:-28~+1.5V 1:+2.5~+28V 32位计数功能 采集0~200Hz频率信号 宽供电范围:DC+9~30V 地址/波特率/量程可由用户配置 支持MODBUS-RTU协议 支持RS485,RS232支持定制CAN RS485隔离通信 ±15KV ESD保护 隔离耐压:DC2500V 工作温度范围:-40℃~85℃ 工业级V0级防火塑料外壳保障产品应用各类环境安全 工业级塑料外壳,标准DIN35导轨安装 参数: 隔离耐压:DC2500V ESD保护:±15KV 供电范围:DC+9~30V 不带隔离485功耗:小于600mW@24V 带隔离485功耗:小于1W@24V 工作温度:-40℃~+80℃工业级V0级防火塑料外壳保障产品应用各类环境安全

各种纤维的鉴别

各种纤维的鉴别 1、手感目测法:此法适用于呈散纤维状态的纺织原料。 (1)、棉纤维比苎麻纤维和其它麻类的工艺纤维、毛纤维均短而细,常附有各种杂质和疵点。 (2)、麻纤维手感较粗硬。 (3)、羊毛纤维卷曲而富有弹性。 (4)、蚕丝是长丝,长而纤细,具有特殊光泽。 (5)、化学纤维中只有粘胶纤维的干、湿状态强力差异大。 (6)、氨纶丝具有非常大的弹性,在室温下它的长度能拉伸至五倍以上。 2、显微镜观察法:是根据纤维的纵面、截面形态特征来识别纤维。(1)、棉纤维:横截面形态:腰圆形,有中腰;纵面形态:扁平带状,有天然转曲。 (2)、麻(苎麻、亚麻、黄麻)纤维:横截面形态:腰圆形或多角形,有中腔;纵面形态:有横节,竖纹。 (3)、羊毛纤维:横截面形态:圆形或近似圆形,有些有毛髓;纵面形态:表面有鳞片。 (4)、兔毛纤维:横截面形态:哑铃型,有毛髓;纵面形态:表面有鳞片。 (5)、桑蚕丝纤维:横截面形态:不规则三角形;纵面形态:光滑平直,纵向有条纹。 (6)、普通粘纤:横截面形态:锯齿形,皮芯结构;纵面形态:纵向有沟槽。 (7)、富强纤维:横截面形态:较少齿形,或圆形,椭圆形;纵面形态:表面平滑。 (8)、醋酯纤维:横截面形态:三叶形或不规则锯齿形;纵面形态:表

面有纵向条纹。 (9)、腈纶纤维:横截面形态:圆形,哑铃形或叶状;纵面形态:表面平滑或有条纹。 (10)、氯纶纤维:横截面形态:接近圆形;纵面形态:表面平滑。 (11)、氨纶纤维:横截面形态:不规则形状,有圆形,土豆形;纵面形态:表面暗深,呈不清晰骨形条纹。 (12)、涤纶、锦纶、丙纶纤维:横截面形态:圆形或异形;纵面形态:平滑。 (13)、维纶纤维:横截面形态:腰圆形,皮芯结构;纵面形态:1~2根沟槽。 3、密度梯度法:是根据各种纤维具有不同密度的特点来鉴别纤维。 (1)、配定密度梯度液,一般选用二甲苯四氯化碳体系。 (2)、标定密度梯度管,常用的是精密小球法。 (3)、测定和计算,将待测纤维进行脱油、烘干、脱泡预处理,做成小球投入平衡后,根据纤维悬浮位置,测得纤维密度。 4、荧光法:利用紫外线荧光灯照射纤维,根据各种纤维发光的性质不同,纤维的荧光颜色也不同的特点来鉴别纤维。各种纤维的荧光颜色具体显示: (1)、棉、羊毛纤维:淡黄色 (2)、丝光棉纤维:淡红色 (3)、黄麻(生)纤维:紫褐色 (4)、黄麻、丝、锦纶纤维:淡蓝色 (5)、粘胶纤维:白色紫阴影 (6)、有光粘胶纤维:淡黄色紫阴影 (7)、涤纶纤维:白光青天光很亮

清华同方易教使用总结

清华同方易教使用总结 最近教育局拨了20台电脑,10台带光驱的教师机,10台不带的光驱的学生机,目前教师机已经投入使用,但在一个星期后,其中一个教师的办公室电脑出现了问题,幸亏还有一台,这样我也就可以有足够的时间进行研究.开机按del进去,密码一般都是thtfpc,呵呵,OK了,然后进入bios里,将启动设置为restorecard,再重启,进入我们的还原卡设置界面,其中设置分区的各种参数"属性"说明:。 立即复原型引导盘(A)。 用于引导、安装操作系统,可瞬间复原分区数据。 备份复原型引导盘(B)。 用于引导、安装操作系统,需占用与该分区同样大小的硬盘空间备份该分区数据,以供复原时使用,并且复原时间较长。 一般引导盘(C)。 用于引导、安装操作系统,此种引导盘不具备复原功能。 共用资料盘(S)。 资料盘,该分区可被分区格式兼容的引导盘共享。 专属资料盘(P)。 资料盘,该分区只能被与其名称相同且分区格式相兼容的引导盘识别使用。例如:如果引导盘的名称叫做"Win2K",那么它的专属资料盘的名称也必须叫做"Win2K";如果引导盘的名称叫做"Win2000",那么它的专属资料盘的名称也必须叫做"Win2000"。 "磁盘名称"说明:设定引导盘显示在开机选单界面的名称。(一般情况下,该磁盘装什么操作系统就命名为什么样的磁盘名称。如:如果装的是windows98,那么该磁盘就命名为"win98",以便开机时识别)。 分割类别"说明:本分区的分区格式。(可分为FAT16、FAT32、NTFS 等格式)。 还原方式"说明:一般情况下,"立即复原型引导盘"设置为"每次","备份复原型引导盘"设置为"手动",*盘"不使用"。 我现在就是将"立即复原型引导盘"设为每次,然后告诉其他老师要注意,不要将文件放在C盘或桌面,这样也能起到一个很好的作用,先试试看吧。 安装完以后,在操作系统上安装一次还原卡,具体方法为:将还原卡光盘放入光驱,点击"SETUP",开始安装,(在安装过程中注意要选中"自动修改IP功能",这样在网络同传的时候才能自动批量修改接收端电脑的IP地址)。 这样就OK了,先试验看看。

安全数字量输出模块

1 Description Connector set, consisting of four Inline connectors with integrated discharge electronics IB IL 24 PSDO 8-PLSET/CP/R ? PHOENIX CONTACT Data sheet The plug set is used to connect capacitive loads up to 2,2 μF to any of the outputs listed in the ordering data for the safety modules. Remember to consider the full length of the go and return path. Terminal point assignment The terminal point assignment corresponds to the assign-ment of the standard plugs that are supplied with the safety modules. Information about terminal point assignment can be found in the manual for the safety module you are using (see ordering data for documentation). NOTE: Overheating due to incorrect installation Make provision for good heat dissipation in the vicinity of the heatsink. It is essential to observe the required safety distance from neighboring parts. This varies by application but is at least 1.5 cm. Make sure you always use the latest documentation. It can be downloaded from the product at https://www.360docs.net/doc/2b12794365.html,/catalog. 105108_en_012012-05-07

相关文档
最新文档