南京农业大学精品课程--土壤肥料学 6 植物营养与施肥的基本原理

南京农业大学精品课程--土壤肥料学 6 植物营养与施肥的基本原理
南京农业大学精品课程--土壤肥料学 6 植物营养与施肥的基本原理

6植物营养与施肥的基本原理

本章提要:本章围绕植物营养的基本规律,介绍植物必需营养元素的概念及其分组,植物根系与根外器官对养分吸收、运输和利用特点及影响其吸收与分配的基因型差异和环境因素。了解合理施肥应遵循的三项基本原理,即养分归还学说,最小养分律和报酬递减律,掌握确定施肥量、施肥时期和施肥方法的三项技术。

6.1 植物必需营养元素

6.1.1 植物必需营养元素概念

6.1.1.1 植物体内元素的组成

新鲜植物体=水+干物质。水占鲜体75~95%,干物质占5~25%。

干物质=有机质+矿物质。干物质中有机物占90~95%, 5~10%是无机物。

干物质经灼烧后,有机物质被氧化分解、逸出。不挥发的残留部分为灰分。成分包括磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、钼(Mo)、硼(B)、氯(Cl)、硅(Si)、钠(Na)、钴(Co)、铝(Al)、镍(Ni)、钒(V)、硒(Se)等。植物体内可检出70多种矿质元素。植物体内吸收的元素,一方面受植物的基因所决定;另一方面还受环境条件所影响。植物体内的元素可分为必需营养元素和非必需营养元素。

6.1.1.2 植物必需营养元素(essential element)的概念

通过营养液培养法来确定植物必需营养元素。方法是在培养液中系统地减去植物灰分中某些元素,而植物不能正常生长发育,这些缺少的元素,无疑是植物营养中所必需的。如省去某种元素后,植物照常生长发育,则此元素属非必需的。1939年阿诺(Arnon)和斯吐特(Stout)提出了高等植物必需营养元素判断的三条标准:

第一,如缺少某种营养元素,植物就不能完成其生活周期;

第二,如缺少某种营养元素,植物呈现专一的缺素症,其它营养元素不能代替它的功能,只有补充它后症状才能减轻或消失;

第三,在植物营养上直接参与植物代谢作用,并非由于它改善了植物生活条件所产生的间接作用。

当某一元素符合这三条标准的,则称为必需营养元素。目前确定了以下17种高等植物必需营养元素:氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、钼(Mo)、硼(B)、氯(Cl)、,碳(C)、氢(H)、氧(O)和镍(Ni)。

6.1.2 植物必需营养元素的分组

6.1.2.1 按必需营养元素在植物体内的含量分组

在17种必需营养元素中,由于植物对它们的需要量不同(表6-1),可以分为大量营养元素、中量营养元素和微量营养元素。

表6-1 高等植物必需营养元素的种类、可利用形态及其较适宜浓度

(1)大量营养元素(macronutrient)大量营养元素一般占植株干物质重量的百分之几十到千分之几。它们是碳(C)、氢(H)、氧(O)、氮(N)、磷(P)、钾(K)6种。

(2)微量营养元素(micronutrient)微量营养元素的含量只占植株干物质重量的千分之几到十万分之几。它们是铁(Fe)、硼(B)、锰(Mn)、铜(Cu)、锌(Zn)、钼(Mo)、氯(Cl)、镍(Ni)8种。

(3)中量营养元素(nutrient between macronutrient and micronutrient)中量营养元素的含量占植株干物质重量的百分之几到千分之几,它们是钙(Ca)、镁(Mg)、硫(S)3种,有人也称这三种营养元素叫次量元素。

6.1.2.2 按必需营养元素的一般生理功能分组

把营养元素分为以下四组——

(1)构成植物活体的结构物质和生活物质的营养元素,它们是C、H、O、N、S。结构物质是构成植物活体的基本物质,如纤维素、半纤维素、木质素及果胶物质等。而生活物质是植物代谢过程中最为活跃的物质,如氨基酸、蛋白质、核酸、类脂、叶绿素、酶等。C、H、O、N和S同化为有机物的反应是植物新陈代谢的基本生理过程。

(2)P、B和Si有相似的特性,都以无机阴离子或酸的形态而被吸收,在植物细胞中,它们或以上述无机形态存在或与醇结合形成酯类。

(3)K、Na、Ca、 Mg、 Mn和 Cl以离子形态从土壤溶液中被植物吸收,在植物细胞中,它们只以离子形态存在于汁液中,或被吸附在非扩散的有机阴离子上。

(4)Fe 、Cu、Zn 和 Mo(Ni)主要以螯合形态存在于植物中。

6.1.3 肥料三要素

6.1.3.1 必需营养元素的资源

在17种必需营养元素中碳、氢和氧是植物从空气和水中取得的。氮素除豆科植物可以从空气中固定一定数量的氮素外,一般植物主要是从土壤中取得氮素,其余的13种营养元素都是从土壤中吸取的,这就是说土壤不仅是支撑植物的场所,而且还是植物所需养分的供给者。

6.1.3.2 肥料三要素

在土壤的各种营养元素之中,除了C、H、O外,N、P、K 3种元素植物需要和收获时带走较多,而它们通过残茬和根的形式归还给土壤的比例却又是最小的,一般归还比例(以根茬落叶等归还的养分量占该元素吸收总量的百分数)还不到10%。养分供求之间不协调,影响植物产量。需要通过肥料的形式补充给土壤,以供植物吸收利用。所以,人们就称它们为“肥料三要素”或“植物营养三要素”或“氮磷钾三要素”。

6.1.4 必需营养元素与植物生长

植物需要吸收各种必需营养元素,且数量有多有少,只有保持这样的数量和比例,植物体才能健康地生长发育,产出尽可能多的产量。

必需营养元素对植物的生理和营养功能各不相同,但对植物生长发育都是同等重要的,任何一种营养元素的特殊功能都不能被其它营养元素所代替,这就叫营养元素的同等重要律和不可代替律。

缺少大量营养元素固然会影响植物的生长发育,最终影响产量;缺少微量营养元素也同样会影响植物的生长发育,也必然影响产量。例如玉米缺锌时呈现“白苗病”,严重时不抽雄穗;油菜缺硼时,严重时幼苗死亡,轻者呈现“花而不实”症。

6.2植物对养分的吸收

6.2.1 根系对养分的吸收

根系是植物吸收养分和水分的主要器官。植物体与环境之间的物质交换,在很大程度上是通过根系来完成的。因而,植物根系的粗壮发达,生活力强,耐肥耐水是植物丰产的基础。

6.2.1.1 根吸收养分的部位

据离体根研究,根吸收养分最活跃的部位是根尖以上的分生组织区,大致离根尖1cm,这是因为,在结构上,内皮层的凯氏带尚未分化出来,韧皮部和木质部都开始了分化,初具输送养分和水分能力;在生理活性上,也是根部细胞生长最快,呼吸作用旺盛,而质膜正急骤增加的地方。就一条根而言,幼嫩根吸收能力比衰老根强,同一时期越靠近基部吸收能力越弱。

根毛因其数量多、吸收面积大、有粘性、易与土壤颗粒紧贴而使根系养分吸收的速度与数量成十倍、百倍甚至千倍地增加。根毛主要分布在根系的成熟区,因此根吸收养分最多的部位大约在离根尖10cm以内,愈靠近根尖的地方吸收能力愈强。

根系吸肥的特点决定了在施肥实践中应注意肥料施用的位置及深度。

6.2.1.2 根可吸收的养分形态

植物根能吸收的养分形态有气态、离子态和分子态3种(见表6-1)。气态养分有二氧化碳、氧气、二氧化硫和水汽等。气态养分主要通过扩散作用进入植物体内,也可以从多孔的叶子进入,即由气孔经细胞间隙进入叶内。

植物根吸收的离子态养分——阳离子+阴离子。阳离子:NH4+、K+、Ca2+、Mg2+、Fe2+、Mn2+、Cu2+、Zn2+等;阴离子:NO3-、H2PO4-、HPO42-、SO42-、H2BO3-、B4O72-、M0O42-、Cl-等。

土壤中能被植物根吸收的分子态养分种类不多,而且也不如离子态养分易进入植物体,植物只能吸收一些小分子的有机物。如尿素、氨基酸、糖类、磷脂类、植酸、生长素,维生素和抗生素等,一般认为有机分子的脂溶性大小,决定着它们进入植物体内部的难易。大多数有机物须先经微生物分解转变为离子态养分以后,才能较为顺利的被植物吸收利用。

6.2.1.3 土壤养分向根部迁移的方式

土壤中养分向根部迁移的方式有3种——截获、扩散和质流。

(1)截获(root interception)截获指植物根在土壤中伸长并与其紧密接触,使根释放出的H+和HCO3-与土壤胶体上的阴离子和阳离子直接交换而被根系吸收的过程。这种吸取养分的方式具有两个特点:第一,土壤固相上交换性离子可以与根系表面离子养分直接进行交换,而不一定通过土壤溶液达到根表面。第二,根系在土体中所占的空间对整个土体来说是很小的,况且并非所有根的表面都对周围土壤中交换性离子能进行截获,所以仅仅靠根系生长时直接获得的养分也是有限的,一般只占植物吸收总量的0.2~10%,远远不能满足植物的生长需要。

(2)扩散(diffusion)扩散是由于根系吸收养分而使根圈附近和离根较远处的离子浓度存在浓度梯度而引起土壤中养分的移动。土壤中养分扩散是养分迁移的主要方式之一,因为,植物不断从根部土壤中吸收养分,使根表土壤溶液中的养分浓度相对降低,或者施肥都会造成根表土壤和土体之间的养分浓度差异,使土体中养分浓度高于根表土壤的养分浓度,因此就引起了养分由高浓度向低浓度处的扩散作用。

(3)质流(mass flow)质流是因植物蒸腾、根系吸水而引起水流中所携带的溶质由土壤向根部流动的过程。其作用过程是植物蒸腾作用消耗了根际土壤中大量水分以后,造成根际土壤水分亏缺,

而植物根系为了维持植物蒸腾作用,必需不断地从根周围环境中吸取水分,土壤中含有的多种水溶性养分也就随着水分的流动带到根的表面,为植物获得更多的养分提供了有利条件。

一般认为,在长距离时,质流是补充养分的主要形式;而在短距离内,扩散作用则更为重要。如果从养分在土壤中的移动性来讲,硝酸态氮素移动性较大,质流可提供大量的氮素,但磷和钾较少。氮素通过扩散作用输送的距离比磷和钾要远得多,磷的扩散远远低于钾。

6.2.1.4 根部对无机养分的吸收

目前较一致的看法是离子进入根细胞可划分为被动吸收和主动吸收两种形式。

(1)被动吸收(passive uptake)被动吸收又称非代谢吸收,是一种顺电化学势梯度的吸收过程。不需要消耗能量,属于物理的或物理化学的作用。养分可通过扩散、质流等方式进入根细胞。

①养分通过扩散、质流等形式进入根细胞。

离子态养分无论是通过截获、扩散或质流都能进入根细胞。但一般不通过细胞膜,对整个组织来说,一般不能通过内皮层。

②离子交换植物吸收离子态养分,还可以通过离子交换的方式进入植物体内。一般情况是根细胞外的氢离子和粘粒扩散层交换性阳离子进行交换。

(2)主动吸收(active uptake)主动吸收又称为代谢吸收,是一个逆电化学势梯度且消耗能量的吸收过程,且有选择性。①植物体内离子态养分的浓度常比土壤溶液的浓度高出很多倍,有时竟高达十倍至数百倍,而且植物根系仍能不断地吸收这种养分,并不见养分有外溢现象。②为什么植物吸收养分有高度选择性,而不是外界环境中有什么养分,就吸收什么养分。③植物对养分的吸收强度与其代谢作用密切相关,并不决定于外界土壤溶液中养分的浓度。常表现出植物生长旺盛,吸收强度就大,生长衰弱,吸收强度就小。

究竟养分如何进入植物细胞膜内,很多学者通过研究提出了不少假说,但养分进入植物体内的真正机制,到目前为止,还不十分清楚。目前,从能量的观点和酶的动力学原理来研究植物主动吸收离子态养分,并提出载体学说(carrier theory),离子泵学说(ion pump theory)等。

但对于离子半径大小相似、所带电荷相同的离子相互间还存在着争夺载体的运载现象。例如, K+和NH4+,H2PO4-、NO3-和Cl-在被植物吸收时,彼此就有对抗现象。

主动吸收的离子只要细胞保持着活力,离子就不会释放出来,它们也不与外界环境中的离子进行交换。

6.2.1.5 根部对有机养分的吸收

植物根系不仅能吸收无机养分,也能吸收有机态养分。这是二十世纪初随着无菌技术和同位素技术的应用而得到证实的,当然植物并不是什么样的有机养分都能吸收,而主要是限于那些分子量小,结构比较简单的有机物,同时也与被吸收的有机物性质有关。如大麦能吸收赖氨酸,玉米能吸收甘氨酸,大麦、小麦和菜豆能吸收各种磷酸已糖和磷酸甘油酸,水稻幼苗能直接吸收各种氨基酸, 和核苷酸以及核酸等。近年来,使用微量放射自显影的研究指出,以14C标记的腐殖酸分子能完整的被植物根所吸收,并可输送到茎叶中。

6.2.2 根外器官对养分的吸收

植物通过地上部分器官吸收养分和进行代谢的过程,称为根外营养。根外营养是植物营养的一种方式,但只是一种辅助方式。生产上把肥料配成一定浓度的溶液,喷洒在植物叶、茎等地上器官上,称根外追肥。

6.2.2.1 根外营养的机理

根外营养的主要器官是茎和叶,其中叶的比例更大,因而,人们研究根外营养机制时多从叶片研究开始,早期认为叶部吸收养分是从叶片角质层和气孔进入,最后通过质膜而进入细胞内。现在多认为:根外营养的机制可能是通过角质层上的裂缝和从表层细胞延伸到角质层的外质连丝,使喷洒于植物叶部的养分进入叶细胞内,参与代谢过程。

6.2.2.2 根外营养的特点

一般具有以下特点:

(1)直接供给植物养分,防止养分在土壤中的固定和转化。如磷、锰、铁、锌等;某些生理活性物质,如赤霉素、B9等,施入土壤易于转化,采用根外喷施就能克服这种缺点。

(2)养分吸收转化比根部快,能及时满足植物需要。用32P在棉花上试验,涂于叶部,5min后各器官已有相当数量的32 P。而根部施用经15昼夜后32 P的分布和强度仅接近于叶部施用后5min 叶的情况。

(3)促进根部营养,强株健体。根外追肥可提高光合作用和呼吸作用的强度,显著地促进酶活性,从而直接影响植物体内一系列重要的生理生化过程;同时也改善了植物对根部有机养分的供应,增强根系吸收水分和养分的能力。

(4)节省肥料,经济效益高。

6.2.2.3 影响根外营养效果的因素

(1)溶液的组成

(2)溶液的浓度及反应如果主要供给阳离子时,溶液调至微碱性,反之供给阴离子时,溶液应调至弱酸性。

(3)溶液湿润叶片的时间保持叶片湿润的时间在30min至1h内吸收的速度快、吸收量大;喷施时间最好在傍晚无风的天气下进行。

(4)叶片与养分吸收双子叶植物,因叶面积大,角质层较薄,溶液中的养分易被吸收;而稻、麦、谷子等单子叶植物,叶面积小,角质层较厚,溶液中养分的吸收比较困难,在这类植物上进行根外追肥要加大浓度。从叶片结构上看,叶子表面的表皮组织下是栅状组织,比较致密;叶背面是海绵组织,比较疏松、细胞间隙较大, 孔道细胞也多,故喷施叶背面养分吸收快些。

(5)喷施次数及部位不同养分在叶细胞内的移动是不同的。每隔一定时期连续喷洒的效果,比一次喷洒的效果好。生产实践中应掌握在2~3次为宜。

6.2.3 养分在植物体内的运转和利用

通过根部或根外器官吸收的养分进入植物体后,除了满足自身生长发育需要外,大量的养分要进行短距离运输(即养分由表皮、皮层运至根中柱方向的截面运输过程)和长距离运输(即物质通过植物周身的维管系统在根部与地上部之间进行运移的过程),以提供植物其它器官和组织对养分的需要,实现这一目的最重要的途径是木质部运输和韧皮部运输,水和无机养分主要通过木质部向上运输,也可以通过韧皮部向下运输;而有机养分主要在韧皮部内向上和向下运输。

6.2.3.1 木质部运输(xylem transport)的机理

木质部运输是指养分及其同化物从根通过木质部导管或管胞运移至地上部的过程。其机理是,绝大多数的营养元素以无机离子的形式在木质部运转,离子在木质部导管里运输主要靠质流,是随蒸腾流向上运输的。

6.2.3.2 韧皮部运输(phloem transport)的机理

韧皮部运输是指叶片中形成的同化物以及再利用的矿质养分通过韧皮部筛管运移到植物体其它部位的过程。养分从老组织到新组织的运输完全靠韧皮部运输。

6.2.3.3 养分在植物体内的再分配与再利用(reutilization)

养分进入植物体内后就参与植物的生理生化过程,发挥着自己的生理和营养功能,由于植物在不同的生育时期对养分的数量和比例要求不同,环境中养分供应水平与程度也不一样,因而,植物体内的养分就会随生长中心的转移而使养分再分配与再利用。

当然各种养分转移的情况和数量是不同的,一般N、P、S、Mg、K较易移动,再利用程度较高,而B、Ca很难被再利用。

6.3 影响植物吸收养分的条件

植物吸收养分是一种复杂的生理现象,植物生长的许多内外因素共同对养分吸收起着制约作用。内在因素就是植物的遗传特性,而外部因素是气侯和土壤条件。

6.3.1 植物吸收养分的基因型差异

在许多栽培植物不能正常生长甚至遭致死亡的地方,野生植物却能蓬勃生长。如在海滨偶尔还受海潮侵袭的地方,海蓬子能连片生长;在pH值4.0左右的红黄壤土上,杜鹃和白茅却能正常绵延后代。

同一种植物的不同品种或品系,由于产量不同,尽管植株中养分浓度相差不大,但从土壤中带走的养分却相差很大。杂交种和其它高产品种需肥量都高于常规品种。一个品种的适应性广,往往需肥量低,产量低。

对植物营养基因的研究方兴未艾。目前关于一个基因控制某种元素的吸收运输和利用的研究已被植物营养学者和植物遗传学者所关注,成为世界研究热点之一。

6.3.1.1 植物形态特征对吸收养分的影响

(1)根根系有支撑植物、吸收水分和养分、合成植物激素和其它有机物的作用,就吸收养分能力大小而言,根表面积和根密度与根的形态有关,包括根的长度、侧根数量、根毛多少和根尖数。单子叶植物的根和双子叶植物的根在形态上有很大的不同,因而在对养分的利用上也有差别。如禾本科牧草的根可以吸收粘土矿物层间的非交换性钾,而豆科牧草这种能力较弱。

根系吸收养分的潜力远远超过植物对养分的需要。所以,只要一小部分根系所吸收的养分就能满足整株植物的需要。在田间并不是所有根系都与土壤密切接触,因为根系穿过土壤时必然会遇到许多孔隙。因此,只有一部分根系在吸收水分和养分。

(2)叶和茎植物叶、茎不仅本身可由于形态大小、角度、位置不同而造成吸收养分的能力不同,而且由于光合作用能力的不同造成可供吸收养分所消耗的能量也不同,从而也就影响着根系对养分的吸收能力。

6.3.1.2 植物生理生化特性对吸收养分的影响

(1)根系离子交换量植物根系具有较高的阳离子交换量,甚至还有一定的阴离子交换能力。根系的离子交换点位于质外体上。根系的阳离子交换70~90%是由细胞壁上的自由羧基引起的,其余部分是由蛋白质或许还有细胞原生质产生的。根系的离子交换量与植物吸收养分有关。如Ca2+和Mg2+,随着根系阳离子交换量的增大,植物对它们的吸收也增加。

(2)酶活性植物吸收养分是个能动的过程,是根据体内代谢活动的需要而进行的选择性吸收,因而与植物体内的酶活性有一定的相关性。米切利克(1983)报道,植物对磷的吸收速率与植物体内磷酸酯酶活性的相关系数为0.97。

再如植物体内硝酸还原酶的活性强烈影响着植物对硝酸盐的吸收与利用,传统的水稻水作都认为水稻前期不能利用硝态氮,但晚期旱育秧及水稻旱作的研究结果表明,水稻苗期体内也存在着较强的硝酸还原酶活性,因此旱作条件下水稻一生均能很好地吸收和利用硝态氮。

(3)植物激素和植物毒素植物激素(如生长素、激动素和脱落酸)和植物毒素,虽然在植物体内含量很少,但对代谢活动起重要作用。同样影响着植物对养分的吸收。

6.3.1.3 植物生育特点对吸收养分的影响

不同植物种类对元素吸收的选择性

例如,烟草体内含钾多,叶用蔬菜含氮多。某些植物对有益元素的必需性很强。如水稻——硅。许多植物对元素的形态也有一定的选择性。如水稻生长前期——喜铵。一些植物喜酸,例如酸模,在代谢过程中能形成有机酸的铵盐来消除氨的毒害,因而可以吸收较多的铵盐而不会中毒。

(2) 植物不同生育阶段对元素吸收的选择性

植物在各生育阶段,对营养元素的种类、数量和比例都有不同的要求。

表6-2 玉米不同生育期根系对养分的吸收速率(微摩尔·米-1 根长·日-1)

苗龄

(天)

N P K Ca Mg

20 30 40 50 60 100 227

32

19

11

5.7

4.2

11.3

0.90

0.86

0.66

0.37

0.23

53

12.4

8.0

4.8

1.6

0.2

144

5.2

0.56

0.37

0.20

0.08

13.8

1.6

0.90

0.78

0.56

0.29

(Mengel和Barber,1974)

植物整个生育期可分为营养临界期和肥料最大效率期。

营养临界期是指植物对养分供应不足或过多显示非常敏感的时期,不同植物对于不同营养元素的临界期不同。大多数植物磷的营养临界期在幼苗期。氮的营养临界期,对于水稻来说为三叶期和幼穗分化期;棉花在现蕾初期;小麦、玉米为分蘖期和幼穗分化期。水稻对钾的营养临界期在分蘖期和幼穗形成期。

在植物的生育阶段中,施肥能获得植物生产最大效益的时期,叫做肥料最大效率期。这一时期,作物生长迅速,吸收养分能力特别强,如能及时满足植物对养分的需要,产量提高效果将非常显著。玉米的氮素最大效率期在喇叭口期至抽雄期;油菜为花苔期;棉花的氮、磷最大效率期均在花铃期;对于甘薯,块根膨大期是磷钾肥料的最大效率期。

植物吸收养分有年变化、阶段性变化,还有日变化,甚至还有从几小时至数秒钟的脉冲式变化。如果环境条件符合上述变化规律,将促进植物生长。

(3)植物不同的生长速率对元素吸收的选择性

植物的生长速率不同,对养分吸收的多少也不同,生长速度小的植物,即使在肥力较低的土壤中,也能正常生长,施用肥料的增产效果较差;相反,生长速度大的植物,如果处在贫脊的土壤上,生长受到阻碍,产量也受影响,施用肥料能收到较好的增产效果。

6.3.2 环境因素对植物吸收养分的影响

在自然条件下,植物生长发育时刻受到土壤和气候条件的影响。光照、温度、通气、酸碱度、养分浓度和养分离子间的相互作用都直接影响植物对养分的吸收速度和强度。

6.3.2.1 光照

植物吸收养分是一个耗能过程,根系养分吸收的数量和强度受地上部往地下部供应的能量所左右。当光照充足时,光合作用强度大,产生的生物能也多,养分吸收的也就多。有些营养元素还可以弥补光照的不足,例如,钾肥就有补偿光照不足的作用。

光由于影响到蒸腾作用,因而也间接地影响到靠蒸腾作用而吸收的养分离子。

6.3.2.2 温度

植物的生长发育和对养分的吸收都对温度有一定的要求。大多数植物根系吸收养分要求的适宜土壤温度为15~25℃。在0~30℃范围内,随着温度的升高,根系吸收养分加快,吸收的数量也增加。

低温影响阴离子吸收比阳离子明显,可能是由于阴离子的吸收是以主动吸收为主。低温影响植物对磷、钾的吸收比氮明显。所以植物越冬时常须施磷肥,以补偿低温吸收阴离子不足的影响。钾可增强植物的抗寒性,所以,越冬植物要多施磷、钾肥。

6.3.2.3 通气

大多数植物吸收养分是一个好氧过程,良好的土壤通气,有利植物的有氧呼吸,也有利于养分的吸收。某些植物如水稻、芦苇等,在淹水条件下,仍能正常生长,是因为它们的叶部和茎杆有特殊的构造能进入氧气,并向根部运输供植物利用。

6.3.2.4 酸碱度

土壤溶液中的酸碱度常影响植物对养分离子形态的吸收和土壤中养分的有效性。在酸性反应中,植物吸收阴离子多于阳离子;而在碱性反应中,吸收阳离子多于阴离子。表6-3是番茄吸收NH4+-N 和NO3--N的培养试验,在pH4.0~7.0范围内,培养液的pH值越低,则使阴离子NO3--N的吸收增加;反之则阳离子NH4+-N的吸收增加。

土壤溶液中的酸碱度影响土壤养分的有效性。如在石灰性土壤上,土壤pH值在7.5以上,施入的过磷酸钙中的H2PO4-离子常受土壤中钙、镁、铁等离子的影响,而形成难溶性磷化合物,使磷的有效性降低。大多数养分在pH6.5~7.0时其有效性最高或接近最高。因此这一范围通常认为是最适pH范围。

各种植物对土壤溶液的酸碱度的敏感性不一样。据中国科学院南京土壤研究所在江西甘家山红壤试验结果:大麦对酸性最敏感,金花菜、小麦、大豆、豌豆次之,花生、小米又次之,芝麻、黑麦、荞麦、萝卜菜、油菜都比较耐酸,而以马铃薯最耐酸。茶树只宜于在酸性土壤中生长。植物对土壤碱性的敏感性也有类似情况。田菁耐碱性较强,大麦次之,马铃薯不耐碱,而荞麦无论酸、碱都能适应。

6.3.2.5 水分

水是植物生长发育的必要条件之一,土壤中养分的释放、迁移和植物吸收养分等都和土壤水分有密切关系,土壤水分适宜时,养分释放及其迁移速率都高,从而能够提高养分的有效性和肥料中养分的利用率。应用示踪原子研究表明,在生草灰化土上,冬小麦对硝酸钾和硫酸铵中氮的利用率,湿润年分为43~50%,干旱年分为34%;反之当土壤含水量过高时,一方面稀释土壤中养分的浓度,加速养分的流失,另一方面会使土壤下层的氧不足,根系集中生长在表层,不利于吸收深层养分,同时有可能出现局部缺氧而导致有害物质的产生而影响植物的正常生长,甚至死亡。

6.3.2.6离子间的相互作用

土壤是一个复杂的多相体系,不仅养分浓度影响植物的吸收,而且各种离子之间的相互关系也影响着植物对它们的吸收,从已有的研究结果可知,离子间的相互关系中影响植物吸收养分的主要有离子拮抗作用和离子协同作用。这些作用都是对一定的植物和一定的离子浓度而言的,是相对的而不是绝对的。如果浓度超过一定的范围,离子协同作用反而会变成离子拮抗作用。

离子拮抗(ion antaganism)作用是指介质中某种离子的存在能抑制植物对另一种离子吸收或运转的作用,这种作用主要表现在阳离子与阳离子之间或阴离子与阴离子之间。如K+ ——Cs+——Rb+ 的拮抗作用;NH4+——Cs+也有这种作用,但不及K+、 Rb+、 Cs+那样明显。Ca2+——Mg2+ 有抑制作用,如果同时存在Ca2+、 K+ ,则大豆对Mg2+的吸收所受的抑制作用就显著的增加。水稻吸收K+离子能减少对 Fe2+ 离子的吸收。一般来讲,一价离子的吸收比二价离子快,而二价离子与一介离子之间的拮抗作用,比一价离子与一价离子之间所表现的要复杂的多。此外阴离子如Cl-——Br-之间, H2PO4- ——NO3- ——Cl-之间,都存在不同程度的拮抗作用。

离子协同(ion synergism)作用是指介质中某种离子的存在能促进植物对另一种离子吸收或运转的作用,这种作用主要表现在阴离子与阳离子之间或阳离子与阳离子之间。阴离子H2PO4- 、NO3- 和SO42-均能促进阳离子的吸收,这是由于这些阴离子被吸收后,促进了植物的代谢作用,形成各种有机化合物,如有机酸,故能促使大量阳离子K+、Ca2+、Mg2+等的吸收。阳离子之间的协同作用

最典型的是维茨效应,据维茨(Viets)研究,溶液中Ca2+、Mg2+、Al3+等二价及三价离子,特别是Ca2+离子,能促进K+、Rb+以及Br-的吸收。值得注意的是,吸收到根内的Ca2+离子并无此促进作用。根据这些事实,认为Ca2+离子的作用是影响质膜,并非影响代谢,通常这一作用称为“维茨效应”。试验证明,Ca2+离子非但能促进K+离子的吸收,而且还能减少根中阳离子的外渗。氮常能促进磷的吸收,生产上氮磷配合使用,其增产效果常超过单独作用正是由于氮磷常有正交互效果所致。

6.4 施肥的基本原理

施肥有经验施肥和科学施肥。古代的传统施肥都是经验施肥,它是劳动人民生产实践和研究工作者试验研究的科学技术总结。西周时期,我国农民就知道用粪肥了。西汉的《汜胜之书》就叙述了施肥技术分为基肥和追肥;随着生产的发展,对合理施肥的认识日益深化,南宋陈旉的《农书》中也曾把用粪比作用药。清代的《知本提纲》在施肥方法上讲究与耕、灌相结合,并指出施肥要注意“时宜”、“土宜”和“物宜”。由此可见,我国历史上劳动人民对于肥料的施用积累了丰富的经验,在施肥的理论和实践上都具有独特的创造,如地力常新论,三宜施肥(时宜、土宜和物宜)的概念等。

到了19世纪,科学的发展和技术的进步,尤其是欧洲文艺复兴,西方许多学者曾对植物营养进行了大量研究工作,特别是1840年李比希“矿质营养”学说的创立开始了科学施肥的新阶段。 19世纪中叶至20世纪初,随着研究的深入,逐渐揭示并集成了一系列植物营养与合理施肥方面的规律性材料。如养分归还学说、最小养分律、限制因子律、最适因子律和报酬递减律等。这些学说和规律,反映了施肥实践中存在的客观事实,至今在施肥上仍有指导意义。

6.4.1 养分归还学说(theory of nutrient returns)

19世纪中叶,德国化学家李比希(J.V.Liebig)根据索秀尔(Saussure)、施普林盖尔(Sprengel)等人的研究和他本人的大量化学分析材料,认为植物仅从土壤中摄取为其生活所必需的矿物质养分,每次收获必从土中带走某些养分,使得这些养分物质在土壤中贫化。但土壤贫化程度因植物种类而不同,进行的方式也不一致。某些植物(例如碗豆)主要摄取石灰(Ca),其它一些则大量摄取钾,另外一些(谷类作物)主要摄取硅酸,因此,植物轮换茬只能减缓土壤中养分物质的贫竭和较协调地利用土壤中现存的养分源泉。如果不正确地归还植物从土壤中所摄取的全部物质,土壤迟早是要衰竭的。要维持地力就必须将植物带走的养分归还于土壤,办法就是施用矿质肥料,使土壤的养分损耗和营养物质的归还之间保持着一定的平衡。这就是李比希的养分归还学说。其要点是为恢复地力和提高植物单产,通过施肥把植物从土壤中摄取并随收获物而移走的那些养分归还给土壤。

自从养分归还学说问世之后,不仅产生了巨大的化肥工业,而且使农民知道要耕种并持续不断的高产就得向土壤施入肥料。李比希的养分归还学说得到了马克思的肯定,在以后近代科学施肥中也以此为依据,确定了土壤测试施肥技术(soil testing)。

表6-4 不同植物的营养元素归还比例*

归还程度归还比例(%)需要归还的营养元素补充要求

低度归还中度归还高度归还<10

10~30

>30

氮、磷、钾

钙、镁、硫、硅

铁、铝、锰

重点补充

依土壤和植物而定

不必要归还

供试植物有:大麦、小麦、玉米、高梁和花生5种。

*归还比例是指以根茬方式残留于土壤的养分量占养分吸收总量的百分数。

6.4.2 最小养分律(law of the minimum)

李比希提出“植物矿物质营养学说”和“养分归还学说”之后,曾引发了一门巨大的化学肥料工业。为了有效的施用化学肥料,李比希在自己的试验基础上,于1843年又创出了最小养分律。按李比希自己的说法是“田间作物产量决定于土壤中最低的养分,只有补充了土壤中的最低养分才能发挥土壤中其他养分的作用,从而提高农作物的产量”。这就是施肥的“木桶理论”。最小养分律是科学施肥的重要理论之一。当代的平衡施肥理论就是以李比希的最小养分律为依据发展建立的。

我国农业生产发展的历史充分证明了这一施肥原理的正确性。

50年代我国农田土壤普遍缺氮,氮就是当时限制产量提高的最小养分,所以那时增施氮肥,其增产效果极为显著。

到了60年代末,随着氮肥工业的发展和人们对施氮重要性的认识提高,不少田块的化学氮肥施用数量逐年增加,植物对氮素的需要也初步得到满足。再增施氮肥,就出现了增产效果不显著的现象。这时,土壤供磷相应不足,于是磷就成了当时限制产量提高的最小养分。所以,在施氮肥的基础上增施磷肥,植物产量就大幅度增加。

进入70年代,随着产量和复种指数的提高以及秸秆移出农田,植物对养分的需要量也愈来愈多,例如,在南方酸性土壤上开始出现单施氮、磷肥也不能大幅度增产的现象。相反,在施氮、磷肥的基础上配合施用钾肥,对不少植物却能持续增产,这就是说,在南方酸性土壤上,土壤供钾不足已成了限制产量再提高的新的最小养分。

进入80年代钾在北方一些低钾土壤和经济植物和高产田上也成为限制因素。80年代末微量元素在一些土壤和植物上成为新的最小养分。

生产上及时注意最小养分的出现并不失时机的予以弥补,使得产量持续不断的增产,但是在应用最小养分方面应注意以下三点:

第一,最小养分是指土壤中有效性养分含量相对最少的养分。

第二,补充最小养分时,还应考虑土壤中对作物生长发育必需的其他养分元素之间的平衡。

第三,最小养分是可变的,它是随植物产量水平和土壤中养分元素的平衡而变化。

6.4.3 报酬递减律(law of the diminishing returns)

早在18世纪后期,欧洲经济学家杜尔哥(A.R.J.Turgot)和安德森(J.Anderson)同时提出了报酬递减律这一经济规律。目前对该定律的一般描述是:从一定土地上所得到的报酬随着向该土地投入的劳动和资本量的增大而有所增加,但随着投入的单位劳动和资本量的增加,到一个“拐点”时,投入量再增加,则肥料的报酬却在逐渐减少。

这一定律的诞生对工业、农业及其它行业都具有普遍的指导意义,最先引入到农业上的是德国土壤化学家米切利希(Mitscherlich)等人,在20世纪初,在前人工作的基础上,通过燕麦施用磷肥

的砂培试验,深入研究了施肥量与产量之间的关系,从而发现随着施肥剂量的增加,所获得的增产量具递减的趋势,得出了与报酬递减律相吻合的结论(表6-5)。

表6-5 燕麦磷肥试验(砂培)

施磷量(P2O5,g) 干物质 (g) 用公式的计算值每0.05gP2O5的增产量(g)

0.00 0.05 0.10 0.20 0.30 0.50 2.00

9.8±0.50

19.3±0.52

27.2±2.00

41.0±0.85

43.9±1.12

54.9±3.66

61.0±2.24

9.80

18.91

26.64

38.63

47.12

57.39

67.64

-

9.11

7.73

5.99

4.25

2.57

0.34

引自《土壤条件与植物生长》中文版1979.P40

米切利希的试验证明:第一,在其它技术相对稳定的前提下,随着施磷量的逐渐增加,燕麦的干物质量也随之增加,但干物质的增产量却随施磷量的增加而呈递减趋势,这与报酬递减律相一致。第二,如果一切条件都是理想的,植物就会产生某一最高产量;相反,只要某一任何主要因素缺乏时,产量便相应减少。

要强调指出的是,报酬递减律和米切利希学说都是有前提的,它们只反映在其它技术条件相对稳定情况下,某一限制因子(或最小养分)投入(施肥)和产出(产量)的关系。如果在生产过程中,某一技术条件有了新的改革和突破,那么原来的限制因子就让位于另一新的因子,同样,当增加新的限制因子达到适量以后,报酬仍将出现递减趋势。充分认识报酬递减规律,在施肥实践中,就可以避免盲目性,提高利用率,发挥肥料的最大经济效益。

6.5 施肥技术

化肥利用率低,这是一个全球性问题,在我国尤其突出。一般的施肥方法条件下氮肥的利用率为35~40%,磷肥的利用率更低,一般为10~25%。据报道,近年来化肥生产量在不断增长,化肥施用水平不断提高,但粮食产量并没有象五、六十年代那样随之大幅度增加。五、六十年代每公斤氮肥可以增加稻谷15~20公斤,小麦10~15公斤,玉米20~30公斤,1981~1983的每公斤N肥增产小麦10公斤,稻谷9.1公斤,玉米13.4公斤,近10年(1999年)的结果则为每公斤N肥增加粮食5~8公斤。进入二十世纪末,一些地区化肥用量大增,造成减产现象,使肥效明显下降。分析其原因,施肥方法不当和不讲究施肥技术是导致肥效降低的重要因素。因此,如何经济合理地施肥,提

高肥料的经济效益,以最小的肥料投入获得最大的经济收益,已成为今后农业生产中迫切需要解决的问题。合理的施肥技术包括施肥量、施肥时期、施肥方法和肥料养分配比的确定等内容,而确定经济合理施肥量是合理施肥的中心问题。

表6-6 不同植物形成100kg经济产量所需养分的大致数量

*包括相应的茎、叶等营养器官的养分数量。

**块根、块茎、果实均为鲜重,籽粒为风干重。

***大豆、花生等豆科作物主要借助根瘤菌固定空气中氮素,从土壤中吸取的氮素仅占1/3左右。

6.5.1 施肥量的确定

施肥量的确定要受到植物产量水平、土壤供肥量、肥料利用率、当地气候、土壤条件及栽培技术等综合因素的影响。确定施肥量的方法也很多,诸如,养分平衡法,田间试验法等,这里仅以养分平衡法为例介绍施肥量的确定方法。

6.5.1.1 施肥量确定的依据

(1)植物计划产量的养分需求总量土壤肥力是决定产量高低的基础,某一种植物计划产量多高要依据当地的综合因素而确定,不可盲目过高或过低,确定计划产量的方法很多,常用的方法是以当地前3年植物的平均产量为基础,,再增加10~15%的产量作为计划产量。不同植物由于其生物学特性不同,每形成一定数量的经济产量,所需养分总量是不相同的(表6-6)。

按照计划产量,参考表6-6可以按下列公式算出植物计划产量所需要氮、磷、钾的总量。

(2)土壤供肥量土壤供肥量是指植物达到一定产量水平时从土壤中吸收的养分量(不含施用的肥料养分量)。获得这一数值的方法很多,一般来讲,土壤的供肥量多以该种土壤上无肥区全收获物中养分的总量来表示,各地应按土壤类型,对不同植物进行多点试验,取得当地的可靠数据后,按下式估算土壤供肥量:

(3)肥料利用率肥料利用率是指植物吸收来自所施肥料的养分占所施肥料养分总量的百分率。它是合理施肥的一个重要标志,也是计算施肥量时所需的一个重要参数,它可以通过田间试验和室内的化学分析结果按下式求得:

肥料利用率(%)=[(施肥区植物地上部分该元素的吸收量—无肥区植物地上部分该元素的吸收量)/所施肥料中该元素的总量]×100

6.5.1.2 确定施肥量的方法

知道了实现计划产量所需的养分总量、土壤供肥量和将要施用的肥料利用率及该种肥料中某一养分的含量,就可依据下面公式估算出计划施肥量:

计划施肥量(kg)=

6.5.2 施肥时期的确定

掌握植物的营养特性是实现合理施肥的最重要依据之一。不同的植物种类其营养特性是不同的,即便是同一种植物在不同的生育时期其营养特性也是各异的,只有了解植物在不同生育期对营养条件的需求特征,才能根据不同的植物及其不同的时期,有效地应用施肥手段调节营养条件,达到提高产量、改善品质和保护环境的目的。

植物的一生要经历许多不同的生长发育阶段,在这些阶段中,除前期种子营养阶段和后期根部停止吸收养分的阶段外,其它阶段都要通过根系或叶等其它器官从土壤中或介质中吸收养分,植物从环境中吸收养分的整个时期,叫植物的营养期。植物不同生育阶段从环境中吸收营养元素的种类、数量和比例等都有不同要求的时期,叫做植物的阶段营养期。例如,冬小麦越冬前吸收的养分以氮为主,磷次之,钾最少。返青后,吸收养分的数量猛增,直至孕穗、开花期,氮、磷的吸收仍占相当比例,开花以后,磷的吸收明显下降,而氮到乳熟期还有占总量的20%被吸收,到开花期钾已停止吸收。

不仅各种植物吸收养分的具体数量不同,而且养分的种类和比例也有区别,如冬小麦吸收氮磷钾的比例为3:1:3,棉花为1:0.4:0.93。不同植物养分吸收高峰也有差别,如小麦吸收养分高峰,特别是氮大致在拔节期,而开花期所需的养分则有所下降,棉花吸收氮素高峰约在现蕾开花期。

这里需要说明的是,植物对养分的要求虽有其阶段性和关键时期,但决不能忘记植物吸收养分的连续性。任何一种植物,除了营养临界期和最大效率期外,在各个生育阶段中适当供给足够的养分都是必需的。

6.5.3 施肥时期(或环节)与方法的确定

6.5.3.1施肥时期(或环节)

植物有营养期且有阶段营养期,在植物营养期内就要根据苗情而施肥,所以施肥的任务不是一次就能完成的。对于大多数一年生或多年生植物来说,施肥应包括基肥、种肥和追肥3个时期(或环节)。每个施肥时期(或环节)都起着不同的作用。

(1)基肥(basal fertilizer)群众也常称为底肥,它是在播种(或定植) 前结合土壤耕作施入的肥料。其作用是双重的,一方面是培肥和改良土壤,另一方面是供给植物整个生长发育时期所需要的养分。通常多用有机肥料,配合一部分化学肥料作基肥。基肥的施用应按照肥土、肥苗、土肥相融的原则施用。

(2)种肥(seed fertilizer)是播种(或定植)时施在种子附近或与种子混播的肥料。其作用是给种子萌发和幼苗生长创造良好的营养条件和环境条件。因此,种肥一般多用腐熟的有机肥或速效性的化学肥料以及细菌肥料等。同时为了避免种子与肥料接近时可能产生的不良作用,应尽量选择对种子或根系腐蚀性小或毒害轻的肥料。凡是浓度过大、过酸或过碱、吸湿性强、溶解时产生高温及含有毒性成分的肥料均不宜作种肥施用。例如碳酸氢铵、硝酸铵、氯化铵、土法生产的过磷酸钙等均不宜作种肥。

(3)追肥(top dressing)是在植物生长发育期间施入的肥料。其作用是及时补充植物在生育过程中所需的养分,以促进植物进一步生长发育,提高产量和改善品质,一般以速效性化学肥料作追肥。

6.5.3.2 施肥方法

(1)撒施(broadcasting)撒施是施用基肥和追肥的一种方法,即把肥料均匀撒于地表,然后把肥料翻入土中。凡是施肥量大的或密植植物如小麦、水稻、蔬菜等封垄后追肥以及根系分布广的植物都可采用撒施法。

(2)条施(band application)也是基肥和追肥的一种方法,即开沟条施肥料后覆土。一般在肥料较少的情况下施用,玉米、棉花及垄栽红薯多用条施,再如小麦,在封行前可用施肥机或耧把肥料耩入土壤。

(3)穴施(hole application)穴施是在播种前,把肥料施在播种穴中,而后覆土播种。其特点是施肥集中,用肥量少,增产效果较好,果树、林木多用穴施法。

(4)分层施肥(separated layer fertilization)将肥料按不同比例施入土壤的不同层次内。

(5)随水浇施(application together with watering)在灌溉(尤其是喷灌)时将肥料溶于灌溉水而施入土壤的方法。这种方法多用于追肥方式。

(6)根外追肥(foliar fertilization)把肥料配成一定浓度的溶液,喷洒在植物叶面,以供植物吸收。

(7)环状和放射状施肥(ring application)环状施肥常用于果园施肥,是在树冠外围垂直的地面上,挖一环状沟,深、宽各30~60cm(图6-9),施肥后覆土踏实。来年再施肥时可在第一年施肥沟的外侧再挖沟施肥,以逐年扩大施肥范围。放射状施肥是在距树木一定距离处,以树干为中心,向树冠外围挖4~8条放射状直沟,沟深、宽各50cm,沟长与树冠相齐,肥料施在沟内,来年再交错位置挖沟施肥。

6.5.3.8 其它施肥方法

(1)拌种法一般情况下,根瘤菌剂施用时可与种子均匀拌和后一起播入土壤。

(2)蘸秧根对移栽植物如水稻等,将磷肥或微生物菌剂配制成一定浓度的悬着液,浸蘸秧根,然后定植。

(3)浸种法用一定浓度的肥料溶液来浸泡种子,待一定时间后,取出稍晾干后播种,因肥水浸种有肥育种子的作用,故也叫种子肥育法。

(4)盖种肥开沟播种后,用充分腐熟的有机肥料或草木灰盖在种子上面,称盖种肥,有供给幼苗养分、保墒和保温作用。

思考题

1.根对营养的意义有哪些?

2.植物营养元素在植物营养中的地位是同等重要的,而在农业生产上的重要性差异却很大,如何理解?

3.植物营养元素交互作用的类型及其决定条件是什么?

4.如何根据报酬递减原理,分析施肥的经济效益和增产效益?

5.植物营养的阶段性对施肥有何指导意义?

参考文献

1. 陈伦寿,李仁岗编著. 农田施肥原理与实践. 农业出版社,1984

2. 周光召,朱光亚主编. 共同走向科学(上、下). 新华出版社,1998

——百名院士科技系列报告集,

3. 马斯纳著,曹一平等译. 高等植物的矿质营养. 北京农业大学出版社,1991

4. 张礼忠,毛知耘译. 植物的无机营养. 农业出版社,1992

5. 何念祖,孟赐福编著. 植物营养原理. 上海科学技术出版社,1987

6. 史瑞和等编者. 植物营养原理. 江苏科学技术出版社,1989

7. 淅江农业大学主编. 植物营养与施肥. 农业出版社,1992

8. 鲁如坤等编. 农业化学手册. 科学出版社,1982

9. 中国农业科学院土壤肥料研究所主编. 中国肥料. 上海科学技术出版社,1994

作物营养诊断方法

作物营养诊断方法>植株形态诊断 植株形态诊断植株化学分析诊断土壤分析诊断施肥诊断 缺素症的观察步骤作物营养缺乏症状检索表主要农作物营养缺乏症状蔬菜的主 要缺素症状 一、缺素症的观察步骤 1.对比正常植株,首先观察症状出现的部位:症状主要发生在下部老叶,或在新叶或顶芽? 2.观察叶片颜色:叶片是否失绿变褐变黄?叶色是否均一,叶肉和叶脉的颜色是否一致?叶 上有无斑点或条纹?斑点或条纹是什么颜色? 3.观察叶片形态:叶片是否完整?是否卷曲或皱缩?叶尖、叶缘或整个叶片是否焦枯? 4.症状发展过程:症状最先出现在叶尖、叶基部、叶缘或是主叶脉两侧?症状以后又怎样发 展? 5.观察顶尖是否扭曲、焦枯或死亡? 返回顶部 二、作物营养缺乏症状检索表

返回顶部三、主要农作物营养缺乏症状 植株形态诊断>主要农作物营养缺乏症状 主要农作物营养缺乏症状

返回顶部 四、蔬菜的主要缺素症状 1.蔬菜缺氮症状蔬菜缺氮时叶绿素含量减少,植株生长发育不良,生长缓慢,从老叶开始失绿,渐渐发黄,并逐步向上发展直至整株作物失绿而变为黄绿色;蛋白质合成受阻,导致组胞小而壁厚,植株矮小瘦弱,花蕾容易脱落,果实小而少,产量低,品质差。 番茄缺氮时果实小,色淡; 黄瓜果实色浅白绿,靠果柄前一段很细,果实端部靠花蒂一段突然膨大成畸形果,辣椒、茄子果实少而小。 大白菜缺氮时,叶片从下向上渐渐发黄,株形小;包菜缺氮时,发棵慢,下部叶子渐渐发红。 2.蔬菜缺磷症状缺磷的症状是植株生长迟缓、矮小、直立、叶色呈暗绿,花蕾少。 番茄缺磷茎叶呈紫红色,叶片小,株形矮小似发僵,果实少,易开裂。 黄瓜缺磷时叶色深绿,发育不良,果实畸形呈镰刀形,色深。

植物营养与施肥》试题库[1]

《植物营养与施肥》试题库 一、名词解释(24分) 1.矿质营养学说、归还学说、最小养分律、报酬递减律 2.土壤的有效养分、截获、实际有效养分、潜在有效养分 3.保肥性、养分的供应强度、养分的缓冲容量、养分的供应容量 4.代换力、当量性、代换量、可逆性 5.植物营养临界期、有机态氮的矿化、最大肥效期、硝化作用 6.复合肥料、秸秆还田、腐植酸类、菌肥 7.因子综合作用律、正交互作用、养分平衡法、堆肥 8.生物固定、化学固定、肥料、质流 二、简答题(56分) 1.高等植物必需营养元素的三条标准是什么高等植物必需营养元素的种类是什么植物根系如何吸收无机养分影响叶面喷肥效果的因素有哪些 2.养分测定时必须遵循什么原则影响养分有效性的土壤条件有哪些土壤胶体的基本性能有哪些肥料分为哪几类各有何特点 3.基肥的施用方法及各自的特点、追肥的施用方法: 4.植物缺氮有何症状植物缺磷有何症状植物缺钾有何症状植物缺锰有何症状5.土壤氮素的转化包括哪些方面氮肥按所含氮素的形态大致可分为哪几类氮肥深施有何优点氮肥深施的方法有哪些 6.磷素的营养功能有哪些植物缺磷的症状是什么土壤中磷的转化包括哪些内容磷肥的制造方法是什么和有哪些类型如何改进磷肥的施肥方法 7.钾的生理功能是什么钾素营养失调的症状是什么土壤中钾的转化包括哪些

内容钙素营养失调的症状是什么 8.镁素营养失调的症状是什么硫素营养失调的症状是什么硼素营养失调的症状是什么影响土壤有效硼的因素有哪些 9.锌素营养失调的症状是什么影响土壤锌有效性的因素有哪些缺铁的症状是什么影响铁有效性的因素有哪些 10.复合肥料有何优、缺点复合肥料的国内外发展是什么肥料混合的原则是什么哪些肥料不可混合 11.有机肥料在农业生产中的意义是什么有机肥料的缺点是什么种植绿肥有何意义绿肥作物的种植方式有哪几种 12.适于华北地区种植的绿肥主要有哪几种如何合理利用绿肥影响堆肥腐熟的因子有哪些秸秆还田有何作用 13.腐植酸类的作用有哪些菌肥有哪些作用施肥的基本理论是什么肥料的合理分配原则是什么

《植物营养与施肥》之欧阳光明创编

《植物营养与施肥》(8031)考试大纲 欧阳光明(2021.03.07) 一、课程性质及其设置的目的和要求 (一)课程的性质、地位与任务 土是万物之母,土壤是地球上物质循环和生态平衡的基础。肥是土壤之质,是土壤最本质的特性和基本属性,是保证土嚷持续利用的物质基础。土壤和肥料都是重要的自然资源和基本的农业生产资料,是人类、动物、植物和微生物等一切生灵赖以维持生命活动的能量来源,更是农业生产链环中物质和能量循环的枢纽。土壤学是研究土壤物质组成、转化、移动规律,及其与环境因子和植物生长关系的科学,肥料学是研究植物营养原理、肥料的性质与合理使用,以及配方施肥的原理与方法的科学。土壤肥料学是农学、园艺、茶学、植物保护、土地资源管理、林学、城镇经济等专业的专业基础课。本课程的基本任务是:认识土壤的性质,掌握植物营养原理和肥料的性质,在合理开发和利用土壤资源、充分发挥土壤潜在功能的基础上合理施肥,既保证各类怍物的优质、高产,又保持与提高土壤肥力、防止土壤功能退化,维持环境的生态平衡。 (二)课程的基本要求 要求掌握土壤的形成、组成、理化性质,及其对植物供应和协调养分条件与环境条件的能力,熟练掌握我国中、南部主要土壤的性质,以及常用肥料的成分、性质、在土壤中的转化特点与施用技术、植物营养原理、大量元素和微量元素的化学肥料,以及有机肥料和复合肥料的性质与合理使用、配方施肥的原理和方法,为合理开发、管理土壤资源,恰当安排作物布局,因土种植、因土施肥,为学习者,从事自己的专业奠定土肥方面的基础。 (三)本课程与相关课程的关系 “土壤肥料学”涉及到地学、生物学、化学、物理学、数学、农学、植物学、环境科学和生态学等多门类学科。因此,土壤肥料学的前续课程主要有化学、物理学、植物学、植物生理生化、气象学和地质学等,后续课程有栽培学、耕作学、生态学、花卉学、园林树木学、土地管理学、土地资源学、土地利用规划、土地法学、育种学、昆虫学等。土壤肥料学是高等农林院校种植类各专业的必修专业基础课。 二、课程内容与考核目标

植物营养诊断与施肥复习题

植物诊断施肥与营养复习题 一名词解释 1根外营养:植物叶片(包括一部分茎)吸收养料并营养本身的现象。意义:只能作为根系营养的一种补充,而不能代替。 2根外追肥:对于微量营养元素的叶面施肥是一个很重要微量元素施肥方式。 3植物营养期;植物通过根系由土壤吸收养分的整个时期。 4植物营养阶段性:生长初期吸收的数量和强度都较低,随着生长期的推移,对营养物质的吸收逐渐增加,到成熟阶段又趋于减少。 5植物营养的临界期:是指营养元素过多或过少或营养元素间的不平衡,对于植物生长发育有着明显不良的那段时间。(P的营养临界期在幼苗期,N在幼苗阶段,比P稍晚)6影响植物吸收养分的外界因素:1光照2温度3水分4通气5土壤溶液的ph 6养分浓度7离子间的相互作用(注:在酸性反应

中植物吸收的阴离子多余阳离子;而在碱性反应中又恰恰相反) 7同等重要率:必要营养元素在植物体内不论数量多少都是同等重要的。 8不可替代率:任何一种营养元素的特殊功能都不能被其他元素代替。 9最小养分率:是土壤缺少某种营养元素时,其他养分含量虽然较多,植物仍然不能良好的生长,而且植物的生物量在一定限度内随这个元素的增减而相对变化。 10吸收:营养物质由介质进入植物体内的过程,即养分离子向根部运动的迁移过程和养分离子由根部进入植物体内的吸收过程。 11截获:根系在土壤里伸展的过程吸收直接接触到的养分。 12 质留:因植物蒸腾作用引起的土壤养分随土壤水分流动的运动速度较快但是要求水分和离子浓度够大。 13植物营养最大效率:在植物生长发育过程中还有一个时期,植物对养分的要求,不论是在绝对的数量上,还是吸收速率上,都是最高的,此时施肥所起的作用最大增效率显

植物营养与肥料本科

西昌学院成人本科《植物营养与肥料》辅导 1.植物必需营养元素:对于植物生长具有必需性、不可替代性和作用直接性的化学元素为植物必需营养元素。 2. 生理酸性肥料:化学肥料进入土壤后,如植物吸收肥料中的阳离子比阴离子快时,土壤溶液中就有阴离子过剩, 生成相应酸性物质,久而久之就会引起土壤酸化。这类肥料称为生理酸性肥料。 3. 化学诊断:分析植物、土壤的元素含量,与预先拟订的含量标准比较,或就正常与异常标本进行直接的比较而作 出丰缺判断。 4. 分期效应:指某一个生育阶段中,水稻所吸收的单位重量养分(如氮、磷、钾)所能增加的稻谷产量,以PE(partial effeciency)表示。 5. 过磷酸钙的退化作用:过磷酸钙吸湿后会引起肥料中一些成分发生化学变化,导致水溶性的磷酸一钙转变为难 溶性的磷酸铁、磷酸铝,从而降低过磷酸钙有效成分的含量。 6、下列哪种元素不属于高等植物所必需的17种营养元素。(钴) 7、番茄缺钾会得(筋腐果)。 8、下面哪种病症不是由于缺钙造成的。(苹果缩果病) 9、通过测定与呼吸有关的(过氧化物酶)的活性,可以作为钾营养状况的诊断指标。 10、(叶柄(叶鞘) )常成为组织速测的十分适合的样本。 11、植物缺硼会造成下列何种病症。(油菜的“花而不实”) 12、蚕豆缺(铜)时,花的颜色由深红褐色变为白色 13、镍是(脲酶)的金属辅基。 14、苹果锰营养过剩时会造成(粗皮病)。 15、下列哪种方法不能用于水稻植株氮水平的穗肥诊断。(测定NH4—N含量) 16、(氮、磷、钾)素有“肥料三要素”之称。 17、水稻缺钾因其症状发生时期、斑点形式以及易发土壤条件都有些不同,可以分为三种类型,即(褐斑型、胡麻 斑型、赤枯型)。 18、植株缺锌会造成下列哪些病症:(玉米白苗病、小叶病)。 19、营养诊断的一般方法有(形态诊断、化学诊断、施肥诊断、酶学诊断)。 20、小麦在缺乏下列哪几种元素时会出现“不稔症”。(硼、铜) 21、植物缺氮的主要外部症状是什么?答:植物缺氮有以下的外部症状:(1)作物缺氮的显著特征是植株下部叶 片首先褪绿黄化,然后逐渐向上部叶片扩展,失绿均一。(2)禾本科作物表现为分蘖少,茎秆细长;双子叶作物则表现为分枝少。后期若继续缺氮,禾本科作物则表现为穗短小,穗粒数少,籽粒不饱满,并易出现早衰而导致产量下降。(3)花少,果稀,生育期缩短,产量低,品质差。 22、作物缺钾的一般症状有哪些?缺钾的植株为什么会出现褐色坏死组织?答:作物缺钾的一般症状有:植株生 长缓慢、矮化;植株下部老叶上出现失绿,然后变褐,焦枯;有些作物叶片呈青铜色,向下卷曲,叶表叶肉突起,叶脉下陷;根系生长不良,色泽黄褐;种子、果实小,产量低,品质差;早衰。 植株出现褐色坏死组织是因为植株供钾不足会使植物组织中原有的蛋白质分解,导致胺中毒,即在局部组织中出现大量异常的含氮化合物,如腐胺、鲱精胺。 23、硅元素对水稻的生长发育有哪些促进作用?答:(1)硅促进碳水化合物的合成和运转;(2)提高根系活力, 减轻土壤中有害物的危害;(3)使土壤有效磷增加,促进水稻对磷的吸收;(4)增加防御病虫害的能力。 24、叶菜类蔬菜营养吸收特点?答:(1)在氮、磷、钾养分吸收中,主要以氮、钾为主,两者比例约为1:1。与 果菜类相比,氮的需要量明显增加。(2)叶菜类蔬菜多数属浅根型作物,根系入土较浅,抗旱、抗涝能力都比较低。(3)叶菜养分吸收速度的高峰是在生育的前期,结球叶菜吸收高峰是在结球初期,生育后期的养分吸收量与果菜相比,相对要少些。因此,叶菜类蔬菜前期的营养非常重要,对其产量和品质的影响较大。 25、缺锌、缺锰、缺铁和缺镁的主要症状都是叶脉间失绿,如何来辨识?答:辨别微量元素缺乏症状有三个着 眼点,就是叶片大小、失绿的部位相反差强弱,分析如下:(1)叶片大小和形状:缺锌的叶片小而窄,在枝条的顶端向上直立呈簇生状。缺乏其他微量元素时,叶片大小正常,没有小叶出现。(2)失绿的部位:缺锌、缺锰和缺镁的叶片,只有叶脉间失绿,叶脉本身和叶脉附近部位仍然保持绿色。而缺铁叶片,只有叶脉本身保持绿色,叶脉间和叶脉附近全部失绿,因而叶脉形成了细的网状。严重缺铁时,较细的侧脉也会失绿。缺镁的叶片,有时在叶尖和叶基部仍然保持绿色,这是与缺乏微量元素显著不同的。(3)反差:缺锌、缺镁时,失绿部分呈浅绿、黄绿以至于灰绿,中脉或叶脉附近仍保持原有的绿色。绿色部分与失绿部分相比较时,颜色深浅相差很大,这种情况叫作反差很强。缺铁时叶片几乎成灰白色,反差更强。而缺锰时反差很小,是深绿或浅绿色的差异,有时要迎着阳光仔细观察才能发现,与缺乏其他元素显著不同。

植物营养与肥料复习题

《土壤肥料学》肥料部分复习题 一、名词解释: 1、植物营养学 2、养分归还学说 3、最小养分律 4、限制因子律 5、报酬递减律 6、同等重要律 7、不可代替律 8、截获 9、质流10、扩散11、自由空间12、长距离运输13、短距离运输14、根外营养15、拮抗作用16、协助作用17维茨效应18、植物营养期19、植物营养临界期20、植物营养最大效率期21、生理酸性肥料22、生理碱性肥料23、弱酸溶性磷肥24、难溶性磷肥25、复混肥料26、掺和肥料27、磷的退化作用28、有机肥料29、热性肥料30、冷性肥料31、堆肥32、厩肥33、沤肥34、绿肥 二、简述题 1、试将你知道的氮素化肥按其形态进行分类。 2、试将你知道的磷素化肥按其溶解性进行分类。 3、试述植物叶部营养的特性。 4、植物必需的微量元素有哪几种?各写出相应的一种肥料名称。 5、试述铵态氮肥的共同特性。 6、简述硝态氮肥的共同特性。 7、养分的主动吸收可以说明哪三个方面的问题? 8、简述判断植物必需营养元素的标准。 9、复合肥料的优缺点? 10、磷肥与有机肥料配合施用有何好处? 11、为什么提倡磷肥早施其原因是什么? 12、作物缺钾的症状如何? 13、简述微量元素肥料的有效施用方法。 14、简述秸秆直接还田时的注意事项。 15、磷肥高效施用的原则及提高磷肥利用率的技术途径。 16、植物营养学有哪些研究方法。 17、复合肥料的发展方向趋势。 三、综合题 1、从化肥和有机肥料的特点方面谈谈两者在农业生产中的作用和地位。 2、化学肥料混合的原则。 3、试述铵态氮与硝态氮的营养特点。 4、试述氮磷肥配合施用的理论基础。 5、将你知道的有机肥料的种类、性质举例说明之。 6、试述土壤养分离子向根部迁移的途径。 7、试述提高氮肥利用率的措施。 8、论述外界环境条件对植物吸收养分的影响。 9、论述绿肥在农业生产中的作用。 10、你所在的地区在积制、贮存人畜粪尿方面有何经验?存在什么问题?今后如何改进?

作物施肥原理与技术知识点

绪论 1.施肥的效应:合理施肥产生的良好效应,不合理施肥引起的不良效应。 2.合理施肥产生的良好效应:①施肥的增产效应;②施肥能改良土壤和提高土壤肥力;③施肥能改善农产品品质; ④施肥能增强植物净化空气的作用;⑤施肥能有效地减轻农业灾害。 3.不合理施肥引起的不良效应:肥料施用量的增加及由此带来的养分巨大挥发损失、流失,有害元素在土壤的积 累会导致土壤质量下降;引起水体富营养化以及地下水污染;同时引起大气污染,还可以导致农产品污染以及减 产,这些都将严重危害着人类的健康。 4.施肥科学研究容:①作物营养与施肥理论研究;②施肥效应研究;③施肥技术研究。 5.施肥科学的研究方法:①调查研究;②统计研究;③试验研究;④化学分析研究。 6.试验研究包括田间试验和盆栽试验。盆栽试验包括土培法、砂培法、水培以及灭菌培养法等。 第一章施肥的基本原理 1.养分归还学说(theory of nutrition returns)比希①随着作物的每次收获,必然要从土壤中带走一定量的养分, 随着收获次数的增加,土壤养分含量会越来越少。②若不及时地归还作物从土壤中失去的养分,不仅土壤肥力逐 渐下降,而且产量也会越来越低。③为了保持元素平衡和提高产量应向土壤施入肥料。 2.最小养分学说(law of the minimun nutrition)比希①土壤中相对含量最少的养分制约着作物产量的高低。②最 小养分会随条件的改变而改变。③只有补施最小养分,才能提高产量。 3.报酬递减率(law of diminishing returns):从一定面积土地所得到的报酬随着向该土地投入的劳动和投资数量的 增加而增加,但达到一定限度后,随着投入的单位劳动和资本的增加而报酬的增加速度却逐渐递减。 4.因子综合作用律的基本容:作物高产是影响作物生长发育的各种因子,如空气、温度、光照、养分、水分、品 种以及耕作条件等你综合作用的结果,其中必然有一个起主导作用的限制因子,产量也在一定的程度上受该种限 制因子的制约,产量常随这一因子克服而提高,只有各因子在最适状态产量才会最高。 第二章施肥的基本原则 1.施肥的目的:①为了营养作物,提高产量和改善品质;②为了改良和培肥土壤;③减少生态环境污染。 2.培肥地力的可持续原则:①培肥地力是农业可持续发展的根本;②施肥是培肥地力的有效途径:Ⅰ、有机肥在 培肥地力中的作用。Ⅱ增强土壤生物活性,促进土壤养分的有效化,提高土壤有效养分的含量。 3.有机肥的作用:①提高土壤有机质含量,协调土壤水、肥、气、热矛盾。②增强土壤生物活性,促进土壤养分 的有效化,提高土壤有效养分含量。③增强土壤保肥、供肥的能力。 4.协调营养平衡原则:①施肥是调控作物作物营养平衡的有效措施;②施肥是修复土壤营养平衡失调的基本手段。 5.元素类型:大量:C、N、O、H、P、K 中量:Ca、Mg、S 微量:Fe、Mn、Zn、Cu、B、Mo、Cl 有益:Co、Ni、Se、Na、Si 6.施肥与作物产量:把每千克肥料养分所增加的作物经济产量千克数称为肥料的生产系数(production index,PI) 7.施肥与产量和品质的关系:①随着施肥量的增加,最佳产品品质出现在达到最高产量之前;②随着施肥量的增 加,最佳产品品质出现在最高产量出现之后;③随着施肥量的增加,最佳产品品质和最高产量同步出现。 8.肥料利用率(utilization rate),也称肥料利用率(utilization coefficient)或肥料回收率(recovery rate)是指当季作物对肥料中某一种养分元素吸收利用的数量占施用该养分元素总量的百分数。 9.不合理施肥导致生态环境的污染:①施肥引起的大气污染;②施肥引起的水体富营养化;③施肥引起的地下水 污染;④施肥引起食品污染。 第三章养分平衡法 1.养分平衡施肥法(nutrition balance and fertilizer recommendation)是根据作物计划产量需肥量与土壤供肥量之 差估算施肥量的方法,以“养分归还学说”为理论依据。 2.地力差减法是根据作物目标产量与基础产量之差,求得实际目标产量所需肥料量的一种方法。 3.几个参数的确定:①基础产量;②目标产量;③形成100Kg经济产量所需养分量;④肥料利用率;⑤肥料中有 效养分含量。

作物营养诊断施肥实习报告 (2)

一、指导老师;肖海华吕世华吴德勇 二、实习目的 此次资阳作物营养诊断与施肥实习之行主要目的是:通过亲身观察、接触、体验,熟悉常见作物的一些普遍缺素症,分析其缺素原因、提出相应的解决措施,掌握作物营养失调的诊断流程和基本方法,增强感性认识,从中进一步了解、巩固与深化已经学过的理论和方法将并将其与实践更好的融汇贯通,提高发现问题、分析问题以及解决问题的能力。 二、实习时间 2011年11月14日、秋初冬时节 三、实习地点 资阳市雁江区雁江镇响水村 四、实习环境的概况 资阳市雁江区位于华夏系四川沉降带之川中褶带内,龙女寺半球状构造和威远辐射构造之间,西高东低。按大的地貌形态全市可分为低山、丘陵、河流冲积坝三种地貌类型。其中以丘陵为主,大约占总面积的百分之九十以上。地形主要为龙女半球环状构造的影响带,其特点是:结构简单、地层平缓。出露岩层按其新老秩序有:第四系全新统地层、侏罗系蓬莱镇组地层、侏罗系遂宁组地层、侏罗系沙溪庙组地层,土质多为石灰性紫色土构成。该土主要由亚热带地区石灰性紫色砂页岩母质(以白垩纪紫色砂岩和紫色砂砾岩的风化坡、残积物为主,主要分布在西南部河谷两侧的低丘及盆地底部,穿插在红壤亚类向黄红壤亚类过渡的地段)发育而来。全剖面呈均一的紫色或紫红色,层次不明显。在频繁的风化作用和侵蚀作用下形成的,其过程特点是:物理风化强烈、化学风化微弱、石灰开始淋溶。紫色土土层浅薄,通常不到50厘米,超过1米者甚少。一般含碳酸钙,呈微碱性、PH在7.2-8.2之间。石灰性紫色土的发育度轻矿质养分磷、钾、铁等含量丰富但由于有机质含量低、土壤酸度高、因而有效性较低,且养分流失严重,氮素利用率不高,所以出现了大多数作物的大面积缺素症。 该区属于亚热带季风气候,资阳四季分明,终年碧翠,一般海拔高度600-1000 米,年平均气温17℃,年平均降雨1100毫米,年日照时数1300小时,年平均无霜期长达300天。全年云雾多而日照少,空气湿度大而昼夜温差小;平均风速小,大风日数少。适合油菜、水稻、玉米、花生等各类作物的生长,但由于土壤中存在部分必需营养元素的缺失、且当地村民对施肥的不均衡和提高养份有效率方法的不理解,因此许多作物表现出有明显的缺素症。 五、实习内容 Fe元素的缺乏:由于铁在植株体内活性小、移动性很差,不易被重复利用。 (由于土壤PH高,有机质含量低,其有效程度仅为4-5PPM,该区域除单子叶植物较轻外几乎所有的作物表现出严重缺铁现象) 铁的作用:铁是许多酶的组成元素,有较强的固氮作用,直接影响叶绿素合成和叶绿素含量,是促进作物糖类物质合成和蛋白质合成的重要元素。 柑橘的缺铁:柑橘缺铁时,幼嫩新梢叶先发黄,叶脉仍然保持绿色,脉纹清晰可见。随着缺铁程度的加深,叶片除主脉绿色外,其他部位均褪色变为黄色或白色,严重时,仅主脉基部保持绿色,其余全部变黄,叶面失去光泽,叶片皱缩,边缘变褐并破裂,提前脱落。同一博树上的老叶则仍保持绿色。(但局部区域有相邻果树表现出缺铁与不缺铁的显著差异,其原因主要在于:两棵果树之品种、基因·、适应性··间的差异、土壤母质的不同、微域环境造成的影响) 竹子缺铁:表现出竹子顶端叶片黄化、叶脉间断失绿,下部叶片保持绿色,严重时会出现严重时心叶不出,植株生长不良,萎缩,甚至枯死。

《作物营养与施肥》教学大纲

《作物营养与施肥》教学大纲 第一部分大纲说明 课程编号: 开课学期:5 本课程课内总学时数:36 本课程实验课时数:9 学分:2 一、课程的性质与任务 《作物营养与施肥》课程是根据石河子大学农学专业本科培养目标和课程设置的规定为农学类各专业开设的一门重要专业基础课。通过本课程的学习,使学生获得作物营养与作物营养诊断的基本知识,掌握基本理论与操作技能,对学生从事农业教学、科研、推广奠定知识基础。 二、教学对象 本教学大纲适用于农业资源与环境、农学专业本科学生。 三、课程教学基本要求 要求学生掌握施肥的基本原理、基本理论与基本技术,掌握养分平衡法、肥料效应函数法施肥理论和技术,施肥技术、轮作施肥技术、保护地施肥技术、计算机施肥专家系统的基本理论和应用、农化服务与施肥、大田作物营养与施肥、蔬菜营养与施肥、果树营养与施肥、保护地栽培作物营养与施肥等知识。 四、课程教学要求的层次 课程按“了解”、“掌握”、“重点掌握”三个层次对学生的学习进行要求。 考核难度及题量的梯度对应于教学要求的三个层次。 未作具体教学要求的内容不作考核要求。 第二部分学时分配与教学要求 一、学时分配

课内总学时30,实验学时6,2学分。 序号内容课内学时 1 绪论1 2 施肥的基本原理3 3 施肥的基本原则1 4 养分平衡法2 5 肥料效应函数法4 6 作物营养诊断5 7 常规施肥技术2 8 轮作施肥技术2 9 保护地施肥技术2 10 计算机施肥专家系统的建立与应用4 11 农化服务与施肥1 12 大田作物营养与施肥1 13 蔬菜作物营养与施肥1 14 果树营养与施肥1 合计36 二、教材 1、主教材为《作物施肥原理与技术》。谭金芳主编,张自立、邱慧珍副主编,中国农业大学出版社,实验教材是《土壤农化实验指导书》,土壤农化教研室编写,石河子大学教材科编印 辅助教材《作物营养与施肥》,浙江大学主编,农业出版社。 第三部分教学内容与教学要求 第一章绪论 教学内容: 一、施肥的作用、施肥科学的发展概况 二、施肥科学的体系、研究内容与研究方法 教学要求:

《植物营养与施肥》

《植物营养与施肥》(8031)考试大纲 一、课程性质及其设置的目的和要求 (一)课程的性质、地位与任务 土是万物之母,土壤是地球上物质循环和生态平衡的基础。肥是土壤之质,是土壤 最本质的特性和基本属性,是保证土嚷持续利用的物质基础。土壤和肥料都是重要的自 然资源和基本的农业生产资料,是人类、动物、植物和微生物等一切生灵赖以维持生命 活动的能量来源,更是农业生产链环中物质和能量循环的枢纽。土壤学是研究土壤物质 组成、转化、移动规律,及其与环境因子和植物生长关系的科学,肥料学是研究植物营 养原理、肥料的性质与合理使用,以及配方施肥的原理与方法的科学。土壤肥料学是农 学、园艺、茶学、植物保护、土地资源管理、林学、城镇经济等专业的专业基础课。本 课程的基本任务是:认识土壤的性质,掌握植物营养原理和肥料的性质,在合理开发和 利用土壤资源、充分发挥土壤潜在功能的基础上合理施肥,既保证各类怍物的优质、高 产,又保持与提高土壤肥力、防止土壤功能退化,维持环境的生态平衡。 (二)课程的基本要求 要求掌握土壤的形成、组成、理化性质,及其对植物供应和协调养分条件与环境条 件的能力,熟练掌握我国中、南部主要土壤的性质,以及常用肥料的成分、性质、在土 壤中的转化特点与施用技术、植物营养原理、大量元素和微量元素的化学肥料,以及有 机肥料和复合肥料的性质与合理使用、配方施肥的原理和方法,为合理开发、管理土壤 资源,恰当安排作物布局,因土种植、因土施肥,为学习者,从事自己的专业奠定土肥 方面的基础。 (三)本课程与相关课程的关系 “土壤肥料学”涉及到地学、生物学、化学、物理学、数学、农学、植物学、环境科 学和生态学等多门类学科。因此,土壤肥料学的前续课程主要有化学、物理学、植物学、 植物生理生化、气象学和地质学等,后续课程有栽培学、耕作学、生态学、花卉学、园 林树木学、土地管理学、土地资源学、土地利用规划、土地法学、育种学、昆虫学等。 土壤肥料学是高等农林院校种植类各专业的必修专业基础课。 二、课程内容与考核目标 –1–

植物营养诊断与施肥

植物营养诊断与施肥 一、名词解释 1.营养诊断:通过各种方法进行调查观察来判断作物的营养状况是处于缺乏、适当或过剩,为作物合理施肥提供依据,以达到不断提高作物产量和改进品质的目的。 2.营养诊断方法: 9.幼苗法(幼苗诊断):利用植株幼苗敏感期或敏感植物来反应土壤 的营养状况。 10.田间肥效实验法:在田间采取不同的施肥处理,观察长势、长相、 成熟期测产,比较土壤养分供应情况。 化学分析法:采用常规分析方法或测速方法测定土壤养分含量进行判断。 3.形态诊断:通过外形观察或生物测定了解某种养分丰缺与否的一种手段 4.缺素症状:植物在生长过程中因缺乏某种营养素而导致的一些生长异常的症状。 5.根系氧化力: 6.根系活力: 7.营养最大效率期:植物生长阶段中所吸收的某种养分能发挥最大增产效能的时期。在这个时期作物对某种养分的需要量和吸收量都是最多的,这时期也是作物生长最旺盛的时期。 8.潜伏缺素期:生产上,植株外部形态尚未表现缺素症状,而植株内

的某种养分浓度少到足以抑制生长并引起减产的阶段。 二、知识点 1.基本施肥原则和规律 原则:1、提高化肥利用率,提高约10%;2、降低农业生产成本,节约10%左右;3、增产增收效果明显,等量肥料投入可增产10%左右;4、有利于农产品质量提高,正常发育、成熟完全。 ●最小养分律,作物的生长和产量受最小因子的供给水平限制,产量常因该因 子的供给水平的增减而出现浮动。 ●限制因子律,在植物生长过程中影响作物生长的因子很多,不仅限于养分, 把养分条件扩大为整个生态因子(光照、温度、水分、空气、养分和机械支持),作物和产量决定于这些因子,并要求它们之间有良好的配合。假如其中某一元素和其它元素的配合失去平衡,就会影响甚至完全阻碍作物生长,并最终必然会表现在产量上。 ●最适因子律,植物本身适应能力是有限的,只有当各项条件处于最适状态时 植物产量才能达到最高水平。 ●报酬递减律,作物的经济回报不是随施肥量的增加而无限增加,到一定程度 后,出现回报率愈来愈少。在生产中我们一定要注意施肥量和回报的关系。 环境对植物营养的影响看作是合理施肥的重要依据,影响肥效的因素有五个方面,即作物本身的营养特性、土壤性质、气候条件、肥料性质和农业措施。 2.植物营养诊断的几种方法有那些?了解不同诊断方法的优缺点 ●形态诊断、化学诊断、施肥诊断、酶学诊断 1.形态诊断 优点:形态诊断不需要专门的仪器设备,主要凭目视判断,所以经验在其中起重要作用。缺点:当植物缺乏某种元素而不表现该元素的典型症状或者与另一种元素有着共同的特征时就容易误诊。因此形态诊断的同时,还需要配合其他检验方法。尽管如此,这种方法在实践中仍有其重要意义,尤其是对某些具有特异性症状的缺乏症。 2.化学诊断 优点:一般说,植株分析结果最能直接反映果树营养状况,所以是判断营养丰缺最可靠的依据。 缺点:但因为作物营养缺乏除土壤元素含量不足外,还因为植株本身根系的吸收要受外界不良环境的影响,因此有时会出现土壤养分含量与植物生长状况不一致现象。所以总的说来与植物营养状况的相关就不如植株分析结果的高。但是土壤分析在诊断工作中仍是不可缺少的。另外,在缺乏症诊断中,由于缺乏症通常不是所有植株都普遍均匀地发生。所以需要按症状有无及轻重分别采取根际土壤。对于果树等深根作物,不仅需要采取耕层土壤,而且还应根据根系伸展情况采集中、下层的土样。 3.施肥诊断 优点:此法在果树微量元素缺乏的诊断上应用较多,有见效快、用肥少、经济省事等特点,且避免了供试液与土壤接触,对易被土壤吸附固定的元素尤为适用。 缺点:①根外施肥法:叶面吸收养分穿透率低, 吸收数量少; 叶面施肥易从叶面滴落, 喷施

2021自学考试《植物营养与施肥》高分模拟题

2021自学考试《植物营养与施肥》高分模拟题 【四】 【导语】高等教育自学考试,简称自学考试、自考,1981年经国务院批准创立,是对自学者进行的以学历考试为主的高等教育国家考试。 自学考试《植物营养与施肥》章节习题:第3章 第三章磷肥 含量分布:植物体内磷(P2O5)的含量一般为植株干重的0.2-1.1%,其中大部分以有机态磷形式存在,含量是生殖器官>营养器官,种子>叶片,叶>根系>茎杆,幼嫩部位>衰老部位。新芽、根尖等分生组织中,磷显著增高,表现出顶端优势。液泡是磷的储藏库,细胞质是磷的代谢库。 重要含磷化合物:核酸、蛋白质、磷脂、植素、一些生物活性物质(ATP,GTP、UTP、CTP、辅酶等。 植物的吸收:作物通过根系和叶部吸收无机磷和有机磷。 无机磷:主要吸收正磷酸盐,其次有偏磷酸盐,H2PO4-最易被作物吸收。 有机磷:己糖磷酸脂,蔗糖磷酸酯、核糖核酸。

营养功效:1.磷是植物体内重要化合物的组成元素;2.磷能加强光合作用和碳水合物的合成与运转;3.促进氮素代谢;4.磷能促进脂肪代谢;5.提高作物对外界环境的适应性。 施用要领:1.相对集中施用;2.氮磷配合施用。 影响磷素吸收的土壤因素:pH、通气、温度、水分、菌根、土壤质地、土壤离子种类。 缺少:缺磷时,各种代谢过程受到抑制,植株生长迟缓、矮小、瘦弱、直立、根系不发达,成熟延迟、籽实细小、植株叶小、叶色暗绿或灰绿、缺乏光泽,主要是细胞发育不良致使叶绿素密度相对提高,同时,Fe的吸收间接地促进叶绿素合成,使叶色暗,严重缺磷时,在不少作物茎叶上明显地呈现紫红色的条纹或斑点(花青苷)甚至叶片枯死脱落,症状一般从基部老叶开始。逐渐向上部发展。 过多:磷素过剩,谷类无效分蘖,秕粒增加,叶肥厚而密,植株早衰。由于磷过多,而引起的病症,通常以缺Zn、Fe、Mg等的失绿症表现出来。 合理分配依据:1.根据植物特性;2.根据植物不同生育期;3.根据土壤酸碱性。

任务三植物营养与科学施肥

植物营养与科学施肥 一、选择题(每小题选项中只有一个答案是正确的,请将正确答案的序号填在题后的括号) 1.对必需营养元素的生理作用描述错误的是()。 A.只构成植物体的结构物质 B.在植物新代中起催化作用 C.参与植物体物质的转化与运输 D.构成植物体的结构物质、贮藏物质和生活物质 2.对钾的生理作用描述正确的是()。 A.叶绿素的组成成分,增强植物光合作用 B.植物体许多酶的组成成分 C.构成蛋白质和核酸的主要成分 D.增强作物的抗旱性、抗高温、抗病性、抗倒伏、抗早衰等能力 3. 对磷的生理作用描述错误的是( )。 A.磷是核酸、核蛋白、磷脂、酶等的成分 B.在糖代、氮素代和脂肪代中有重要作用 C.磷能提高植物抗寒、抗旱等抗逆性 D.能促进叶绿素合成,促进光合作用 4. 下列植物营养临界期说法错误的是()。 A.小麦磷素营养临界期在三叶期 B.油菜磷素营养临界期在五叶期 C.水稻氮素营养临界期在三叶期和幼穗分化 D.棉花氮素营养临界期在现蕾初期 5.下列关于玉米氮素营养临界期的判断准确的是()。 A.幼穗分化期 B.分蘖期 C.分蘖期和幼穗分化期 D.拔节期和分蘖期 6.下列关于棉花的磷素营养临界期的判断正确的是( )。 A.二叶期 B.二叶期和三叶期 C.三叶期 D.三叶期和四叶期 7.玉米氮肥的营养最大效率期是( )。 A.喇叭口期至抽雄初期 B.喇叭口时期 C.大喇叭口期至抽雄期 D.抽雄期 8. (2015年高考题)小麦磷素营养临界期在( )。 A.灌浆期 B.扬花期 C.抽穗期 D.三叶期 9.植物在( )时期,对养分要求的绝对数量及相对吸收速率都是最高的。 A.苗期 B.营养最大效率期 C.营养临界期 D.生殖生长期

植物营养与施肥名词解释

一、名词解释 1、作物营养最大效率期:指营养物质能产生最大效率的时期。 2、最小养分定律:植物产量的高低决定于最小的养分因子。 3、离子间的拮抗作用:是指在溶液中某一离子的存在能抑制另一离子吸收的现象 4、离子间的协助作用:某一离子的存在能促进另一离子的吸收的现象。 5、土壤供氮能力:指当季作物种植时土壤中已积累的氮和在作物生长期内土壤所矿化释放的氮量总和。 6、土壤缓效钾:被粘土矿物固定的非交换性的钾。 7、根际:是指作物根系对土壤理化、生物性质能产生显著影响的那部分特殊的“根区域”通常指根表周围1-4mm土壤。 8、闭蓄态磷:被铁铝胶膜包闭的磷酸盐。 9、作物营养临界期:指营养元素过多或过少甚至营养元素间不平衡,对植物生长发育产生明显不良影响的时间。 10、土壤养分强度因素:存在土壤溶液中有效养分的浓度,是根系可以直接吸收利用的养分。 11、根外营养:除了根系以外,植物地上部分(茎、叶片、幼果等器官)也可以吸收少量矿质元素,这个过程称为根外营养。 12、归还学说:只有用矿质肥料讲植物吸收的矿质养分归还给土壤,就能保住土壤的肥力。 13、生理酸性肥料:凡是施入土壤经作物吸收后,呈现酸性反应的肥料,叫生理酸性肥料。 14、植物营养学:是研究植物体与环境之间营养物质和能量的交换过程,及营养物质的运输和能量的转化过程的科学。 15、施肥学:将肥料施于土壤或植物,以提高作物产量、品质,并保持和增进土壤肥力的农业措施。 16、肥料:直接或间接供给植物所需养分,改善土壤性质,以提高作物产量和改善作物品质的物质,都可以称作肥料。 17、报酬递减定律:从一定土地上所得报酬随着向该土地投入的劳动和资本量的增大而有所增加,但随着投入的单位劳动和资本量的增加,报酬的增加却在逐渐减少。(亦即最初的劳动和投资所得到的报酬最高,以后递增的单位投资和劳力所得报酬是渐次递减的。) 18、矿质营养学说:腐殖质是在地球上有了植物才出现的,而不是在植物出现以前,因此植物的原始养分只能是矿物质。 19、植物必须营养元素:对所有植物完成生活周期是必不可少的,对植物起直接营养作用,且不能由其他元素代替,缺乏时会表现出特有的症状的化学元素。 20、混成复合肥:几种单质肥料机械混合而成的复合肥料。 21、厩肥:是指以家畜粪尿为主,混以各种垫圈材料积制而成的肥料。 22、绿肥:凡是用做肥料的植物绿色体均称为绿肥。 二、填空题 1、目前国内研制的二大类缓效氮肥是(合成有机氮肥)和(包膜氮肥)。 2、需硫元素较多的作物主要有(十字花科)科和(百合科)科。

实验土壤作物营养诊断

实验土壤作物营养诊断

————————————————————————————————作者:————————————————————————————————日期:

实验二土壤与作物营养诊断 在农业生产中,营养诊断正如医学上的临床化验诊断一样,通过土壤养分速测,可以大致摸清某个生产单位各种田块土壤养分的基本数量及其供应养分的能力,作为作物布局、轮作倒茬、肥料合理分配以及以户定肥、按地投肥等科学用肥的参考,作物从土壤养分供应不足或施肥过多,致使作物的营养失去平衡,产生缺素或者毒害症状,通过对作物生长过程中的营养状况观测与分析,为作物合理施肥提供依据。 植物营养诊断的方法有形态诊断、化学诊断和对比营养诊断法等。作物在生长期内由于营养失调而使植物的外部形态发生变化,如叶子的颜色和形态的改变,出现特有的斑点或暗色点,植物生长延缓等,通过肉眼观察作物的外部形态判断养分丰缺的方法,称为形态诊断,在作物的不同生育期,取其特定部位,用化学方法测定某种养分元素的浓度,用以判断该元素的丰缺水平,叫做植物养分的化学诊断。用所需的营养稀溶液注射到树干分枝或喷洒在叶部,经过7~10天后比较叶子颜色、形态和植物生长状况的变化,用以诊断植物营养方法,称为对比营养诊断法。植物营养诊断的方法是综合的方法,化学诊断必须与土壤调查、作物的生长发育和形态观察、气候条件、农业技术措施等结合起来,才能做出正确的诊断。 植物营养化学诊断的速测方法具有操作简单而快速的特点,用以测定植物组织中未被同化的无机养分,适用于田间,可通过多次重复来获得相对可靠的结果。 判断植物组织速测结果时,必须考虑全面,一般地说,植物组织中某元素含量多少,能反应土壤中该元素的供应水平。但是必须注意植物由于某一营养元素严重缺乏而使生长受到抑制时,另一元素的含量反而会增高,这就容易导出错误的诊断,例如在肥力较低的地块,植物组织中严重缺磷时,硝酸盐的转化受到阻滞,结果会造成组织中NO3-—N的积累,这不能说明土壤有效氮供应充足;又如土壤中氮中磷都缺乏时,组织速测的NO3—N含量很低,而P含量则相对较高,此时,如果施用氮肥,组织中NO3-—N增高,而P降低了。在干旱情况下,土壤中的养分不容易被吸收,致使植株内养分含量下降,这并不能说明土壤中缺乏有效养分;相反,寒冷和缺光等条件会使养分在植物体内积累。此外,中耕切断一些根系,病虫的侵袭等也能影响体内养分的含量。因此在进行化学诊断时必须考虑如下三条原则: 1、化学诊断结果要和植物的产量(或生长量)相比较是判断植物需肥结论的首要原则; 2、营养元素之间在植物体内存在相互作用,故需同时测定N、P、K三种以上的元素; 1、正确选择植物的器官和部位进行测定。 一、土壤营养诊断 (一)土壤样本的采集与处理 在一个生产单位范围内,应根据不同土壤类型、地形、历史情况、田块界限与不同的肥力状况分别采集样本,一般在20亩以下的地块可以采集一个混合样本,超过20亩地块可以根据具体情况增加样本数目。采样可以采取对角线法或蛇形法多点采集等量土样,然后充分弄碎混匀用四分法对角淘汰。最后取土0.5 kg作为一个样本。采样深度以耕作层深度为准(一般为20 cm)。样本袋标签注明采样地点、深度、时间、地块前茬、施肥水平、产量水平、采样人等,袋内外各一标签。 采回的样本及时风干,剔除根茬、枯枝落叶以及石块等混杂物然后,研碎通过1 mm筛孔,备用。 在田间进行土壤养分速测时,都是采用新鲜样本,但由于土壤水分含量变异很大,为了统一计算基础,均以烘干土计,因此必须测定新鲜土样水分含量,然后计算应称湿土重。同时也为判断作物营养条件时,作为水分是否适宜的参考。现介绍田间土壤水分速测法——酒

植物营养与肥料复习题

《植物营养与肥料》复习题 一、名词解释 1.扩散:由于根系不断向根际吸收养分,因而造成根际养分低于土体养分浓度,从而形成分浓度差,在浓度差的推动下,养分就从土体向根际迁移。 2.养分质流:由于植物的蒸腾作用造成根际的水势低于土体的水势,在水势差的推动下,溶解在水中的养分就随水分的运动而迁移到根表。 3.养分的主动吸收:消耗能量使养分有选择的透过质膜进入到细胞内部的吸收。 4.养分的被动吸收:指不需要消耗植物代谢能的吸收方式,依电化学势梯度吸收,一般从高浓度到低浓度方向。 5.离子颉抗作用:指一种离子的存在会抑制根系对另外一种离子的吸收。 6.养分共质体运输:共质体是由细胞的原生质体通过胞间连丝连接起来的一个连续体系,养分通过此体系的运输称养分共质体运输。 7.根外营养:植物通过地上部器官吸收养分和进行代谢的过程。 8.氨化作用:指土壤中有机化合物在微生物作用下分解形成氨(或铵离子)的过程。 9.硝酸还原作用:硝态氮被植物吸收后,不能直接与酮酸结合,必须经过还原过程,使硝态氮转变为氨态氮,才能与酮酸结合形成氨基酸、蛋白质。 10.反硝化作用:硝酸盐或亚硝酸盐在一定条件下被硝化细菌还原为气态氮的过程。 二、填空题 1.肥料是具有功能的物质。(提供植物必需营养元素,或兼有改变土壤性质,提高土壤肥力) 2.植物必需营养元素是指对植物具有、和的元素。(不可缺少性;不能代替性;作用的直接性) 3.肥料三要素是指、和。(N;P;K) 4.植物营养临界期是指,一般是指。(养分缺乏、过多或不平衡对植物生长影响最大的时期;幼苗期) 5.确定施肥量的方法有定性的、和。(定性的丰缺指标法;目标产量法;肥料效应函数法) 6.追肥一般用肥料,其作用是。(速效化肥或腐熟有机肥;迅速满足植物对养分的需求)

作物营养诊断(1)

作物营养诊断的方法 发布时间:2008年07月24日 【字体:大中小】 作物营养诊断的方法 (一)形态诊断作物外表形态的变化是内在生理代谢异常的反映,作物处于营养元素失调时,与某元素有关的代谢受到干扰而紊乱,生育进程不正常,就会出现异常的形态症状。所以根据形态症状及其出现部位可以推断缺乏哪种元素。形态诊断的最大优点是不需要任何仪器设备,简单方便,对于一些常见的有典型或特异症状的失调症,常常可以一望而知。但形态诊断有它的缺点和局限性,一是凭视觉判断,粗放、误诊可能性大,遇疑似症,重迭缺乏症等难以解决。二是经验型的,实践经验起着重要作用,只有长期从事这方面工作具有丰富经验的工作者才可能应付自如。三是形态诊断是出现症状之后的诊断,此时作物生育已显著受损,产量损失已经铸成,因此,对当季作物往往价值不高。 (二)植株化学诊断作物营养失调时,体内某些元素含量必然失常,分析作物体内元素含量与参比标准比较作出丰缺判断,是诊断的基本手段之一。植株成分分析可分全量分析和组织速测两类,前者测定作物体元素的含量,目前的分析技术可能测定全部植物必需元素以及可能涉及的元素,精度高,所得数据资料可靠,通常是诊断结论的基本依据。全量分析费工费时,一般只能在实验室里进行。组织速测测定作物体内未同化部分的养分,都利用呈色反应、目测分级,简易快速,一般适于田头诊断,因比较粗放,通常作为是否缺乏某种元素的大致判断,测试的范围目前局限于几种大量元素如氮、磷、钾等,微量元素因为含量极微,精度要求高,速测难以实现。 1 、叶片分析诊断以叶片为样本分析各种养分含量,与参比标准比较进行丰缺判断,是植株化学诊断的一个分支,由于叶分析结果在指导果树施肥,实现预期产量,进行品质控制中取得较大的成功,受到广泛重视并发展成为果树营养诊断的一项专门技术。果树是多年生作物,叶片寿命较长,养分含量有一个较长的稳定期,且与树体营养状况以及产量有良好的相关性;果树养分临界值受地域影响很小,发现一种果树某一元素的缺乏或毒害水平在各地有一致性,其中微量元素尤其如此。便如 Mn 在许多果树中,叶片含量低于 30 毫克 / 千克时都会出现缺乏病。再者,根据叶分析诊断结果采取的补救措施在时间上也赶得上,当季能奏效。 2 、组织速测诊断用速测方法测定植株新鲜组织的养分作丰缺判断,是一种半定量性质的分析测定,被测定的养分是尚未同化或已同化但仍游离的大分子养分,结果以目视比色判断。此法最大的特点是快速,通常可在几分钟或几十分钟内完成一个项目的测试。组织速测一般以供试组织碎片直接与提取剂、发色剂一起在试管内反应呈色;或者把组织液滴于比色板或试纸上与试剂作用呈色,后者所需试剂极少,又叫“点滴法”。运用组织速测进行诊断,在技术上应注意:取样要选择对某元素反应敏感的部位,以最能反映缺乏状况(养分浓度最低)的为适宜部位;养分划分等级要少,一般分缺乏、正常、丰富三级足够,等级少,级差大,利于判断,细分无益;作点滴法测试所用样本少,重复次数要多,以减少误差;要注意相关元素的测定,如作缺磷作物的诊断,可同时测氮,因缺磷植株 NO 3 - — N 的含量通常偏高,对结果判断的帮助;应把测定结果结合作物长相、形态症状、土壤条件、栽培施肥等因素作综合分析。 (三)土壤化学诊断测定土壤养分含量与参比标准比较进行丰缺判断。作物需要的矿质养分基本上都是从土壤中吸取,产量高低的基础是土壤的养分供应能力,所以土壤化学诊断一直是指导施肥实践的重要手段。根据土壤养分含量与作物产量关系划分养分等级,通常分三级,以高、中、低表示,高——施肥不增产;中——不施肥可能减产,但幅度不超过 20% — 25% ;低——不施肥显

相关文档
最新文档