1.固体理论---王耘波

1.固体理论---王耘波
1.固体理论---王耘波

§6.Frenkel 激子

§6.Frenkel 激子 一些离子晶体的价电子的波函数适用紧束缚近似的方法。电子的有效质量大、带窄。因而电子和空穴的引力强,距离大小。极限情况下,电子和空穴处于同一格点,即Frenkel 激子。 与Wannier 激子相反。Frenkel 激子的空间分布小,动量空间上分布宽,因此不用布洛赫函数而用Wannier 函数来描述。 Wannier 函数定义为: () ()∑?-= -k k l k i x e N l x W μμ?1 其中l 是格矢。逆变换为 ()() ∑-=?l l k i k l x W e x μμ? 实际上,() l x W -是布洛赫函数()x k μ?在k 空间展开成Fourier 级数时的Fourier 系数。Wannier 函数有以下特点: i) 是宗量l x -的函数。 ii) 具有明显的局域性。其值主要集中在l x =附近。 iii) 不同能带与不同格点的Wannier 函数是正交的。 ()()l l x d l x W l x W '=-'-? δδμννμ* 本节取Wannier 表象,以() l x W W x l -=μμ为基矢。将场算符展开为: ()() ∑-=ψl l l x W a x μμ μ (注意在布洛赫表象中 ()()∑=ψμ μμ?k k k x a x ) 仍然只考虑价带与导价 l c l a a = +=1l v l d a 只考虑一个电子——空穴对的态,Hamilton 量 h el h el v H H H E H -+++= 将各项表示为Wannier 表象,(类似与§4) ?? ? ???-+=∑∑∑'''''+l c l c m c l l c m l c k l c m c l m l m l el W W W W W W W W W W a a H ννμννν 注意,Wannier 函数与k 不同。它不满足H-F 方程。为简单起见,以下我们将c l W 等简记为lc 等。由Wannier 函数的局域化特性。可以忽略不同格点的

固体理论讲义1-周期性结构

第一章 周期性结构 1. 正格矢与倒格矢 晶体的第一重要特征是原子(离子、分子)的周期性排列 ------可用周期性点阵表示 点阵中任一格点的位置由正格矢决定: 332211→ →→→++=a l a l a l R l l 1, l 2, l 3是整数,a 1, a 2, a 3为点阵的基矢(或基平移)。 元胞:点阵的最小重复单元 1.由a 1, a 2, a 3组成的平行六面体被称为初基元胞。 2.每个元胞中平均只包含一个格点。 3.元胞和基矢的选择并非唯一。 元胞的体积:)(321→ → → ??=Ωa a a 魏格纳-赛茨元胞(W-S 元胞) 它是由一个格点与最近邻格点(有时也包括次近邻格点)的连线中垂面所围成的多面体,其中只包含一个结点。 它能更明显地反映点阵的对称性。 它具有所属点阵点群的全部对称性(旋转、反射、反演操作)。

倒格矢 由于元激发的状态都是由波矢来描述的----引入波矢空间及响应的点阵,即倒点阵。 倒点阵的基矢是由晶格点阵的基矢定义的: )3,2,1,((0 )(22=?? ?≠===?→ → j i j i j i b a ij i i ) π πδ 可求出: ) (2)(2) (2213132321→→→→→→→ →→ ?Ω =?Ω =?Ω=a a b a a b a a b πππ 在倒点阵中任一格点的位置矢: → →→→++=332211b n b n b n K n (n i 为整数) 称为倒格矢。 元胞的体积: )(321* → → → ??=Ωb b b 布里渊区: 相应的W-S 元胞作为倒点阵的元胞:在此多面体边界上的任意一点可由另一点加上一个倒格矢的平移达到。 当它的中心为原点时,W-S 元胞所包含的区域称为第一布里渊区,用BZ 表示,又称简约区 倒点阵与正点阵的关系 m l n R K i i i l n πππ22) 2(*3 ==?=ΩΩ∑→ → m 为整数 BZ 具有晶格点阵点群的全部对称性。

激子与激子束缚能(内容清晰)

激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子-空穴对。半导体吸收一个光子之后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系在一起。激子对描述半导体的光学特性有重要意义;Free Exciton自由激子束缚在杂质上——施主,受主,深能级杂质形成束缚激子(Tight Bond Exciton)。 激子束缚能大,说明自由激子容易和杂志结合形成发光中心。激子效应对半导体中的光吸收、发光、激射和光学非线性作用等物理过程具有重要影响,并在半导体光电子器件的研究和开发中得到了重要的应用。与半导体体材料相比,在量子化的低维电子结构中,激子的束缚能要大得多,激子效应增强,而且在较高温度或在电场作用下更稳定。 在半导体吸收光谱中,本征的带间吸收过程是指半导体吸收一个光子后,在导带和价带同时产生一对自由的电子和空穴.但实际上除了在吸收带边以上产生连续谱吸收区以外,还可以观测到存在着分立的吸收谱线,这些谱线是由激子吸收引起的,其能谱结构与氢原子的吸收谱线非常类似。 激子谱线的产生是由于当固体吸收光子时,电子虽已从价带激发到导带,但仍因库仑作用而和价带中留下的空穴联系在一起,形成了激子态。 自由激子作为一个整体可以在半导体中运动。这种因静电库仑作用而束缚在一起的电子空穴对是一种电中性的、非导电性的电子激发态。 与氢原子一样,激子也具有相应的基态和激发态,但其能量状态与固体中的介电效应和电子空穴的有效质量有关.实际上,固体中的激子态可用类氢模型加以描述,并按此模型很好地估算出激子在带边下方分立能级的能态和电离能。 总的来说,宽禁带的半导体材料,激子束缚能较大,而激子玻尔半径则比较小,而禁带较窄的材料,其激子电离能较小,激子玻尔半径则较大。 激子效应对半导体中的物理过程和光学性质具有重要的影响。激子的吸收和复合直接影响半导体的光吸收和发光,而且,作为固体中的一种元激发,其状态与母体材料的电子能带性质和外场的作用紧密相关。此外,自由激子在半导体中可以受到杂质或缺陷中心在空间上的束缚,形成所谓的束缚激子。其吸收谱线能量位置略低于自由激子的吸收谱线。 激子在电中性缺陷上的束缚过程大致可分为两种,它可以是一个自由激子整

激子效应原理

激子效应原理 由于吸收光子在固体中产生的可移动的束缚的电子-空(穴)子对。 在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为激子。通常可分为万尼尔(Wannier)激子和弗伦克尔(Frenkel)激子,前者电子和空穴分布在较大的空间范围,库仑束缚较弱,电子“感受”到的是平均晶格势与空穴的库仑静电势,这种激子主要是半导体中;后者电子和空穴束缚在体元胞范围内,库仑作用较强,这种激子主要是在绝缘体中 作用 激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子-空穴对。半导体吸收一个光子之后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系在一起。 激子对描述半导体的光学特性有重要意义;自由激子束缚在杂质上形成束缚激子。激子束缚能大,说明自由激子容易和杂质结合形成发光中心。激子效应对半导体中的光吸收、发光、激射和光学非线性作用等物理过程具有重要影响,并在半导体光电子器件的研究和开发中得到了重要的应用.与半导体体材料相比,在量子化的低维电子结构中,激子的束缚能要大得多,激子效应增强,而且在较高温度或在电场作用下更稳定。 在半导体吸收光谱中,本征的带间吸收过程是指半导体吸收一个光子后,在导带和价带同时产生一对自由的电子和空穴.但实际上除了在吸收带边以上产生连续谱吸收区以外,还可以观测到存在着分立的吸收谱线,这些谱线是由激子吸收引起的,其能谱结构与氢原子的吸收谱线非常类似.激子谱线的产生是由于当固体吸收光子时,电子虽已从价带激发到导带,但仍因库仑作用而和价带中留下的空穴联系在一起,形成了激子态.自由激子作为一个整体可以在半导体中运动.这种因静电库仑作用而束缚在一起的电子空穴对是一种电中性的、非导电性的电子激发态. 与氢原子一样,激子也具有相应的基态和激发态,但其能量状态与固体中的介电效应和电子空穴的有效质量有关.实际上,固体中的激子态可用类氢模型加以描述,并按此模型很好地估算出激子在带边下分立能级的能态和电离能。 总的来说,宽禁带的半导体材料,激子束缚能较大,而激子玻尔半径则比较小.而禁带较窄的材料,其激子电离能较小,激子玻尔半径则较大。 激子效应折叠编辑本段 激子效应对半导体中的物理过程和光学性质具有重要的影响.激子的吸收和复合直接影响半导体的光吸收和发光,而且,作为固体中的一种元激发,其状态与母体材料的电子能带性质和外场的作用紧密相关.此外,自由激子在半导体中可以受到杂质或缺陷中心在空间上的束缚,形成所谓的束缚激子。其吸收谱线能量位臵略低于自由激子的吸收谱线.激子在电中性缺陷上的束缚过程大致可分为两种,它可以是一个自由激子整体地受到缺陷中心的束缚,也

激子的光跃迁

激子的光跃迁 不同状态间的跃迁自然会有不同的特点。在第二章中已经讨论过,激子是理想晶体固有的另一种重要的光学激发态,本节讨论其相应的光吸收和光发射。我们将看到它与带间电子与空穴的产生和复合相应的光跃迁不同的行为。 (自由)激子是晶体的本征激发态,类似于晶体中的单电 k。激子光跃迁子态,波函数为布洛赫波,具有确定的波矢ex 同样要遵循准动量守恒。 k。由于光的波矢与k 产生一个激子,准动量就从零变为ex 空间布里渊区的大小相比,要小得多。因而对没有声子参与的(零声子)光吸收跃迁,产生的激子的波矢必定处于布里k 。对激子的零声子光发射跃迁,也同样 渊区中心,即0 ex 只能来自布里渊区中心的激子。这使得激子光跃迁不同于带间电子跃迁,光谱为尖锐的线谱。 有声子参与的激子光跃迁,表现为 *零声子线的伴线, 与零声子线的间隔为相应声子(一个或多个)的能量; *或者,使谱线加宽。 % 声学声子(小能量声子)协同的光跃迁

带边吸收光谱的精细结构与激子跃迁实验发现,在带间跃迁吸收边的低能方面,往往会出现一系列分立的吸收峰,并且谱峰分布有一定的规律性。图给出了低温(1.2K)下高纯GaAs带边附近的吸收谱(图中右下角虚线表示GaAs带间跃迁吸收边),其主要特征是在吸收边低能方向出现一系列吸收峰,而且吸收强度高(与临近的带间跃迁吸收比)。图中标号为n = 1,2,3,…的吸收谱被归结为自由激子吸收,如 第二章所讨论的,可归之于到不同(类氢)激子态的跃迁。 图中标号为D0-X的吸收峰为中性施主杂质上束缚激子的吸收。与杂质有关的跃迁将在下一章讨论。 图低温下高纯GaAs近带边吸收光谱。 右下角虚线表示带间跃迁吸收边

固体理论讲义二-声子

1. 晶格动力学 本节用经典力学的方法讨论完整晶格中原子(离子)绕平衡位置的振动 -晶格振动 晶体的元胞数为N ,原子质量为M ,原子的位置: )()(t u R t X l l l += )(t u l 则代表此原子的位移。 晶格振动的总动能 z y x u u M T l l l ,,2 1 ,== ? ? ∑αα α α 总势能为 ...)',(2 1 )(',',0+Φ+ Φ+ Φ=Φ∑∑∑ β α α β αβα α αl l l l l l u u l l u l ),'()',(0)(0 '20 0l l u u l l u l l l l βαβ ααβ α αΦ=???? ? ???Φ ?=Φ=???? ???Φ ?=ΦΦ的势能。 为常数,是平衡位置时 由于晶体的平移对称性 )'()'()',(l l l l l l -Φ=-Φ=Φβααβαβ )'(l l -Φαβ代表 l ’元胞中原子沿β方向移动单位距离时对l 元胞中原子作用力 沿α方向的分量,称为力常数 ∑=-Φ' 0)'(l l l αβ 因为当整体作刚性运动(即每个原子均作ααv u l =)时,晶格中任一原子受到其它原子作用力之总和为零;即 )'()'()(''' =? ?? ???-Φ-=-Φ-=?Φ?- =∑∑∑ββαββ β αβα αv l l u l l u l F l l l ------------------------- 略去Φ展开的三次方

∑∑ ∑ ? =-Φ+ = ?Φ+=α α αβ β ααβα α α,,'' ,)'(2 121l l l l l l l l l u M p u u l l p p M T H 由正则方程 可得系统的运动方程 ββ αβα',')'(l l l u l l u M -Φ-=∑?? 利用平移对称性及布洛赫定理 α α0u e u l R ik l ?= 对于确定的k ,运动方程的解表现出下列特征: (1) 各元胞中原子振动的方向相同,振幅相等。 (2) 有特定的相位关系,按l ik R e ?变化 --------- 令α α k U u =0对应于用波矢k 标记的特解 z y x U k D U k k ,,,)(=-=∑?? βαβ β αβα ∑?-Φ≡ l R ik l e l M k D )(1)(αβαβ-------3?3动力学矩阵,为实的厄米矩阵。 其对角化方程为 αββ αβωk k e e k D 2)(=∑ ω为振动频率,由久期方程 0||)(||det 2=-αβαβδωk D 可求出3个本征频率和本征向量 ),,(321;)(==σωωσ σk e k σ k e 满足正交性和完备性条件 t i k k e e U ωαα-~ 结合以上方程可知: ] [1~ t R k i k l l e e N u ωα α -?

自由激子和束缚激子

激子详解 激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子-空穴对。半导体吸收一个光子之后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系在一起。 激子对描述半导体的光学特性有重要意义;Free Exciton自由激子束缚在杂质上---施主,受主,深能级杂质形成束缚激子(Tight Bond Exciton)。 激子束缚能大,说明自由激子容易和杂志结合形成发光中心。激子效应对半导体中的光吸收、发光、激射和光学非线性作用等物理过程具有重要影响,并在半导体光电子器件的研究和开发中得到了重要的应用。与半导体体材料相比,在量子化的低维电子结构中,激子的束缚能要大得多,激子效应增强,而且在较高温度或在电场作用下更稳定。 在半导体吸收光谱中,本征的带间吸收过程是指半导体吸收一个光子后,在导带和价带同时产生一对自由的电子和空穴.但实际上除了在吸收带边以上产生连续谱吸收区以外,还可以观测到存在着分立的吸收谱线,这些谱线是由激子吸收引起的,其能谱结构与氢原子的吸收谱线非常类似. 激子谱线的产生是由于当固体吸收光子时,电子虽已从价带激发到导带,但仍因库仑作用而和价带中留下的空穴联系在一起,形成了激子态. 自由激子作为一个整体可以在半导体中运动.这种因静电库仑作用而束缚在一起的电子空穴对是一种电中性的、非导电性的电子激发态. 与氢原子一样,激子也具有相应的基态和激发态,但其能量状态与固体中的介电效应和电子空穴的有效质量有关.实际上,固体中的激子态可用类氢模型加以描述,并按此模型很好地估算出激子在带边下方分立能级的能态和电离能。 总的来说,宽禁带的半导体材料,激子束缚能较大,而激子玻尔半径则比较小.而禁带较窄的材料,其激子电离能较小,激子玻尔半径则较大。 激子效应对半导体中的物理过程和光学性质具有重要的影响.激子的吸收和复合直接影响半导体的光吸收和发光,而且,作为固体中的一种元激发,其状态与母体材料的电子能带性质和外场的作用紧密相关.此外,自由激子在半导体中可以受到杂质或缺陷中心在空间上的束缚,形成所谓的束缚激子。其吸收谱线能量位置略低于自由激子的吸收谱线. 激子在电中性缺陷上的束缚过程大致可分为两种,它可以是一个自由激子整体地受到缺陷中心的束缚,也可以是一个电荷(电子或空穴)首先被缺陷的近程势所束缚,使缺陷中心荷电,然后再通过库仑互作用(远程势)束缚一个电荷相反的空穴或电子,形成束缚激子. 束缚激子在半导体发光中有非常重要的地位.在间接带半导体材料中,由于动量选择定则的限制,材料的发光通常是很弱的,但如果存在束缚激子,其波函数在空间上是局域化的,因而发光跃迁的动量选择定则大大放松,无须声子参与就可能具有很大的发光跃迁几率.这样,间接带材料的发光效率将大大增强。 例如,在间接带Ⅲ-Ⅴ族半导体材料磷化镓(GaP)中,通过掺入Ⅴ族氮原子(或同时掺入能形成施主受主对的锌和氧),发光就可大大增强,其原因就是因为氮在晶格中代替磷位,是一种电中性的替位式等电子杂质.这种杂质中心由于其电负性与主晶格原子不同,原子尺寸不同等原因,在晶格中会产生作用距离较短的近程势,并使激子束缚在其位置附近形成束缚激子.实验上,在掺氮的GaP中已观测到单个氮原子以及成对氮原子所引起的很强的束缚激子发光.现在,这类掺杂方法已成为制造GaP 和GaAsP等可见光发光二极管的基本工艺. 激子是由库仑作用结合在一起的电子空穴对,其稳定性取决于温度、电场、载流子浓度等因素.当样品温度较高时,激子谱线由于声子散射等原因而变宽.而当KbT(k是玻尔兹曼常数)值接近或大

03讲义固体废物的破碎与细磨

第三学习单元第三学习单元(6 课时):固体废物的破碎和细磨3.1 固体废物的破碎,破碎、机械强度、机械能破碎方法 3.2 固体废物的细磨,细磨的原理与方法、细磨设备 3.3 固体废物的低温破碎 本学习单元的重点和难点: 固体废物的破碎方法及设备 固体废物低温破碎的原理及方法 3.1固体废物的破碎 3.1.1导言 1、为什么要学习本单元? 让大家了解破碎的定义与目的、固体废物的机械强度的概念和破碎方法、破碎方法的选择、破碎产物的特性表示法、细磨原理和方法。 2、本单元学习内容 破碎的定义、目的,机械强度的概念、机械能破碎方法、破碎方法的选择,破碎比、破碎段、破碎流程、破碎产物的特性表示法,破碎机械、细磨的概念、原理和方法,低温破碎、湿式破碎。

3、学习目标 掌握破碎的定义与机械强度的概念,了解破碎机的类型和特点;掌握固体废物破碎的基础理论;了解固体废物破碎的基本方法。 3.1.2破碎的基础理论 1、破碎的定义 通过外力克服固废破坏物体点间内聚力使大块分裂为小块即破碎,进一步分裂为细粉即磨碎。 2、破碎的目的和意义 有利于三化处理。固体废物经破碎之后,尺寸减小,粒度均匀,有助于固体废物的焚烧、堆肥和资源化利用处理;固体废物经破碎之后,体积减小,容重和密实性增加,便于运输、压缩、贮存和高密度填埋及土地还原利用等;固体废物经破碎之后,有助于不同组分单体分选与回收利用。 3、固体废物的机械强度和破碎方法 (1)机械强度的概念 固体废物的机械强度是指固体废物抗破碎的阻力。通常用静载下测定的抗压强度、抗拉强度、抗剪强度和抗弯强度来表示。 抗压强度>抗剪强度>抗弯强度>抗拉强度。 抗压强度>250MPa坚硬固体废物; 40-250MPa中硬固体废物; <40MPa软固体废物。

《固体理论》教学大纲

《固体理论》教学大纲 课程名称: 《固体理论》 授课教师:中国人民大学物理系同宁华副教授 固体理论 Solid State Theory 课程编号:课程属 性: 专业必修课 学时/学 分: 72/4 教学方式课堂讲授考试方式笔试+作业成绩评定作业/期末 30/70 预修课 程: 量子力学;高等量子力学;量子统计;固体物理 教学目的和要求: 《固体理论》课程旨在向物理系研究生教授固体物理研究中所用到的基本概念、基本理论和方法。该课程是《量子统计》和《固体物理》的后续课程,运用较为系统和形式化的理论,来处理固体物理中的各种现象。该课程以元激发概念为主线,并涉及到现代固体物理中的其他基本内容。通过一定量的实例和练习,培养学生运用基本概念、基本理论和方法研究固体物理问题的能力。为研究生打下良好的理论基础,从而使他们能比较顺利地开始相关课题的研究工作。 学习本课程,预先需要的基础知识包括:(1)量子力学,(2)高等量子力学,(3)量子统计,以及(4)固体物理。 通过课堂的讲授和课下练习,使学生重点掌握以下内容: (1)概述 (2)晶体周期性结构、能带理论 (3)晶体中的集体激发:声子 (4)磁体中的集体激发:磁振子 (5)电子气体中的集体激发:等离子体激元

(6)电声子相互作用,极化子理论(选) (7)超导体的BCS理论 本课程需要学生初步了解的内容有: (8)强关联电子体系:Mott相变;局域磁矩;巡游铁磁性;高温超导的RVB理论(选) 本课程作业:课后练习,文献阅读报告 第一章概述(8学时) 玻恩-奥本海默近似;多电子Schroedinger方程;Slater行列式;Hartree-Fock 近似 第二章晶体周期性结构和能带理论(8学时) 正格矢;倒格矢;点阵傅立叶变换;Bloch定理;Bloch表象和Wannier表象;紧束缚近似;密度泛函理论及LDA近似 第三章声子(8学时) 晶格动力学;简正坐标;声子;声学模和光学模;极化激元;态密度 第四章磁振子(8学时) HP变换;铁磁自旋波理论;反铁磁自旋波理论 第五章等离激元(8学时) 相互作用电子气体;线性响应理论;介电函数;电子系统的元激发谱;基态能量第六章电-声子相互作用(8学时) 电-声子相互作用哈密顿量;声子自能;有效电子-电子相互作用;中岛变换;极化子理论(选) 第七章超导电性的微观理论(12学时) 超导态的基本性质; BCS跃华哈密顿量;BCS理论 第八章强关联体系(12学时) Hubbard模型与t-J模型; Mott转变; Anderson杂质模型与Kondo模型; RKKY相互作用;巡游铁磁性;高温超导铜氧化物

固体能带理论综述

半导体物理学 ——固体能带理论综述 班级:材料物理081401 姓名:薛健 学号:200814020122

固体能带理论综述 摘要:本文综述了固体能带理论中的布洛赫定理、一维周期场中电子运动的近自由电子近似、包络函数模型(平面波展开方法)等基本理论。还介绍了采用了包络函数法和近自由电子近似法来计算其能带结构。可以看出,采用包络函数方法外推势能分布为体材料的势能分布时得到能带结构与利用准自由电子近似的方法得到的结果一致;另外,外推势能分布近似成为有限深势阱时与用超越方程得到的结果相吻合。而采用近自由电子近似方法在外推势能分布为量子阱的势能分布时与直接采用近自由电子近似来处理小带阶的量子阱的结果一致。 关键词:能带理论,包络函数,近自由电子近似 一、引言 能带理论[1]是研究固体中电子运动的一个主要理论基础。在二十世纪二十年代末和三十年代初期,在量子力学运动规律确定以后,它是在用量子力学研究金属电导理论的过程中开展起来的。最初的成就在于定性地阐明了晶体中电子运动的普遍性的特点。例如,在这个理论基础上,说明了固体为什么会有导体、非导体的区别;晶体中电子的平均自由程为什么会远大于原子的间距等。在这个时候半导体开始在技术上应用,能带理论正好提供了分析半导体理论问题的基础,有利地推动了半导体技术的发展。后来由于电子计算机的发展使能带论的研究从定性的普遍规律到对具体材料复杂能带的结构计算。到目前,计算材料能带结构的方法有:近自由电子近似法、包络函数法(平面波展开法)[2,9,10,13]、赝势法[3,6]、紧束缚近似——原子轨道线性组合法[4,5, 7, 8, 11]、 K.P方法[12]。人们用这些方法对量子阱[2, 8, 9,10]。量子线[11,12,13]、量子点结构[16, 17]的材料进行了计算和分析,并取得了较好计算结果。使得对这些结构的器件的设计有所依据。并对一些器件的特性进行了合理的解释。 固体能带论指出,由于周期排列的库仑势场的祸合,半导体中的价电子状态分为导带与价带,二者又以中间的禁带(带隙)分隔开。从半导体的能带理论出发引出了非常重要的空穴的概念,半导体中电子或光电子效应最直接地由导带底和价带顶的电子、空穴行为所决定,由此提出的P-N结及其理论己成为当今微电子发展的物理依据。半导体能带结构的具体形态与晶格结构的对称性和价键特性密切相关,不同的材料〔如Si,Ge与GaAs,InP)能带结构各异,除带隙宽度外、导带底价带顶在k空间的位置也不同,GaAs,InP等化合物材料的导带底价带顶同处于k 空间的中心位置,称为直接带隙材料,此结构电子-空穴的带间复合几率很大,并以辐射光子的形态释放能量,由此引导人们研制了高效率的发光二极管和半导体激光器,在光电子及光子集成技术的发展中,其重要性可与微电子技术中的 晶体管相比拟。 二、布洛赫定理[1] 能带理论的出发点是固体中的电子不再束缚于个别的原子,而是在整个固体内运动,称为共有化电子,在讨论共有化电子的运动状态时假定原子实处在其平衡位置,而把原子实偏离平衡位置的影响看成微扰,对于理想晶体,原子规则排列成晶体,晶格具有周期性,因而等效势场V (r)也应具有周期性。晶体中的电子就是在一个具有晶格周期性的等效势场中运动,其波动方程为: (1)

激子的产生与复合--Chapter-4

第四章激子的产生与复合 激子是电子—空穴束缚在一起的激发单元。 低激发密度下,激子可视为独立的粒子, 激子间相互作用可忽略。 高激发密度下,激子间相互作用会形成激子分子。 强耦合下,激子可进一步凝聚成电子—空穴液滴 (e-h droplet/e-h plasma) 激子的产生(吸收)与复合过程具有特征性 2008-4-11

激子的概念 带边吸收光谱的精细结构 2008-4-12

特征: 吸收边低能侧出现一系列吸收峰 吸收强度高于吸收边 吸收峰的出现不伴随光电导 n=1,2,3……对应于自由激子的吸收谱 D0-X对应于中性施主杂质上束缚激子的吸收 吸收不是来源于价带电子到导带的跃迁, 可能来源于价带电子到导带以下某些能级的跃迁. 2008-4-13

吸收不是来源于价带电子到导带的跃迁, 可能来源于价带电子到导带以下某些能级的跃迁. 哪些因素可能引起导带以下的能量? 杂质或缺陷声子 这些原因都不能解释上述现象: (1)完整本征半导体中没有杂质或缺陷 (2)声子参与的吸收强度很低, 低温主要是声子发射 什么原因引起了体系能量降低? 2008-4-14

什么原因引起了体系能量降低? 可能的解释:电子和空穴束缚在一起降低原子体系的能量实验证据: 不伴随光电导 激子(exciton)——固体中的元激发态或激发态的量子 由于库仑相互作用束缚在一起的电子-空穴对。 激子可作为一个整体(准粒子)在固体中运动,传播能量和动量,不传播电荷。(不伴随光电导) 激子是低于带隙的激发态。 在一定条件下(如温度),激子会被离解成自由电子和空穴。 2008-4-15

物理学院学术型硕士研究生培养方案

物理学院学术型硕士研究生培养方案 目录 物理学一级学科硕士研究生培养方案 (1) 材料物理与化学二级学科硕士研究生培养方案 (7) 课程与教学论(物理)二级学科硕士研究生培养方案 (12)

物理学一级学科硕士研究生培养方案 (0702) 一、学科简介 物理学是研究物质结构、相互作用及运动规律的基础学科。通过对物质微观结构及力学、热学、光学、电学、磁学等性能进行设计、表征、分析,达到对物质基本运动规律的认识,从而实现认识客观世界及其规律,并利用规律改变世界、造福人类的目的。经过多年的发展,物理学形成了理论物理、粒子物理与原子核物理、原子与分子物理、等离子体物理、凝聚态物理、声学、光学、无线电物理等学科方向,这些学科方向相互依存,相互促进,共同协调发展。 吉林师范大学物理学科始建于1958年,1985年开始与吉林大学等学校联合培养硕士研究生;凝聚态物理二级学科2000年获硕士学位授权,2001年被确定为吉林省重点学科,2003年被确定为吉林省重点资助学科,2006年被确定为吉林省“十一五”期间重点学科;物理学一级学科2010年获硕士学位授权,2011年确定为吉林省“十二五”期间优势特色重点学科,2014年被确定为吉林省高等学校“重中之重”建设学科。物理学科在纳米功能材料、半导体光电子学及器件、凝聚态物质理论、界面物理等研究领域取得了重要研究成果。本学科现拥有吉林省高端科技创新平台建设项目1个,教育部重点实验室1个,吉林省高校重点实验室1个,吉林省科技创新中心1个,教育部创新团队(培育)1个。本学科现有教职工62人,其中,教授12人、副教授18人。教师队伍中有“新世纪百千万人才工程”国家级人选1人、中国科学院“百人计划”人选1人、国务院政府特殊津贴获得者2人、教育部“新世纪优秀人才”3人、吉林省高级专家2人、吉林省拔尖创新人才4人、吉林省有突出贡献的中青年专业技术人才2人、“长白山学者”特聘教授1人、“长白山学者”讲座教授1人。本学科广泛开展学术交流,先后有9人在国外高校访学或攻读博士学位,聘请中科院院士等10余位国内外著名学者为兼职教授,多次组织召开国际、国内学术会议。 二、培养目标 培养具有宽广的自然科学知识和扎实的物理学专业知识,具有良好的社会责任感和事业心,具有较强的创新意识和学术素养,具有提出、分析和解决问题的能力,能独立从事科学研究工作,胜任从事物理学及相关专业的教学、研究、管理和服务工作的高层次专门人才。 具体要求: 1.较好地掌握马克思主义基本原理,培养社会主义核心价值观,热爱祖国,遵纪守法,具有良好的道德品质和敬业精神。 2.系统掌握本学科、本专业的基础理论和专门知识,熟悉本专业有关研究方向的国内外研究现状、前沿和发展趋势;具有从事理论物理、粒子物理与原子核物理、原子与分子物理、凝聚态物理、光学、无线电物理等领域的教学、科研或相关管理工作的能力。 3.掌握一门外国语,能熟练阅读外文文献,能用外语进行学术交流和论文写作。 4.具有实验室工作的基本技能及科技管理的能力。

激子的光跃迁

3.6激子的光跃迁 不同状态间的跃迁自然会有不同的特点。在第二章中已经讨论过,激子是理 想晶体固有的另一种重要的光学激发态,本节讨论其相应的光吸收和光发射。我们将看到它与带间电子与空穴的产生和复合相应的光跃迁不同的行为。 (自由)激子是晶体的本征激发态,类似于晶体中的单电 子态,波函数为布洛赫波,具有确定的波矢ex k r 。激子光跃迁 同样要遵循准动量守恒。 产生一个激子,准动量就从零变为ex k r 。由于光的波矢与k 空间布里渊区的大小相比,要小得多。因而对没有声子参与的(零声子)光吸收跃迁,产生的激子的波矢必定处于布里 渊区中心,即0ex k r 。对激子的零声子光发射跃迁,也同样 只能来自布里渊区中心的激子。这使得激子光跃迁不同于带间电子跃迁,光谱为尖锐的线谱。 有声子参与的激子光跃迁,表现为 *零声子线的伴线, 与零声子线的间隔为相应声子(一个或多个)的能量; *或者,使谱线加宽。

声学声子(小能量声子)协同的光跃迁 3.6.1 带边吸收光谱的精细结构与激子跃迁 实验发现,在带间跃迁吸收边的低能方面,往往会出现一系列分立的吸收峰,并且谱峰分布有一定的规律性。图3.6-1给出了低温(1.2K o)下高纯GaAs带边附近的吸收谱(图中右下角虚线表示GaAs带间跃迁吸收边),其主要特征是在吸收边低能方向出现一系列吸收峰,而且吸收强度高(与临近的带间跃迁吸收比)。图中标号为n = 1,2,3,…的吸收谱被归结为自由激子吸收,如第二章所讨论的,可归之于到不同(类氢)激子态的跃迁。 图中标号为D0-X的吸收峰为中性施主杂质上束缚激子的吸收。与杂质有关的跃迁将在下一章讨论。

材料学研究培养方案

材料学研究生培养方案 一、培养目标 培养我国建设事业需要的热爱祖国、遵纪守法、品德良好、具备严谨科学态度和优良学风,适应二十一世纪材料科学与工程研究和应用需要的德、智、体全面发展的高级专业人才。 1.硕士学位 掌握材料学的基本理论和实验技能,了解本领域的研究动态,基本能独立展开与本学科有关的教学、科研和开发工作。学位论文有一定的新颖性和应用背景。 2.博士学位 博士学位获得者应系统掌握材料物理的基本理论,具备宽广和坚实的实验技术,了解本学科发展的历史现状和最新动态,能独立承担和主持与本学科有关的教学、科研和开发工作。学位论文要求具有重要的学术意义或应用价值,并具一定的创新性。论文在深度和广度两方面均达到相应的要求。 二、研究方向 主要研究方向 (1)储能材料与电池工程 (2)光催化能源和环境材料工程 (3)微电子互连材料与新型金属薄膜材料 (4)功能聚合物材料 (5)纳米印刷与纳米结构制备 (6)聚焦离子束微加工技术 (7)扫描和透射电子显微术 (8)新型薄膜太阳能电池材料 (9)新型发光材料 (10)燃料电池关键材料与工程基础 (11)新型复合涂层材料 三、招生对象 1.硕士研究生:获学士学位的应届本科毕业生,已获学士学位在职人员,同等学历在职人员,参加全国硕士研究生统一考试合格,再经面试合格者。2.硕—博连读:获学士学位的应届本科毕业生,已获学士学位在职人员,同等学历在职人员,参加全国硕士研究生统一考试合格,再经面试合格者。入学后前两年完成基础课及学位课程,享受硕士生待遇,在第四学期进行考核,合格者经校研究生院审核批准直接转为博士生并享受博士生待遇。考核未通过按硕士生规格培养。 3.博士研究生:获硕士学位的应届毕业研究生,已获硕士学位在职人员,同等学历在职人员,参加南京大学统一组织的博士生入学考试,笔试和面试均合格者。 四、学习年限 硕士研究生:三年

固体理论讲义1-周期性结构

第一章 周期性结构 1. 正格矢与倒格矢 晶体的第一重要特征是原子(离子、分子)的周期性排列 ------可用周期性点阵表示 点阵中任一格点的位置由正格矢决定: 332211→ →→→++=a l a l a l R l l 1, l 2, l 3是整数,a 1, a 2, a 3为点阵的基矢(或基平移)。 元胞:点阵的最小重复单元 1.由a 1, a 2, a 3组成的平行六面体被称为初基元胞。 2.每个元胞中平均只包含一个格点。 3.元胞和基矢的选择并非唯一。 元胞的体积:)(321→ → → ??=Ωa a a 魏格纳-赛茨元胞(W-S 元胞) 它是由一个格点与最近邻格点(有时也包括次近邻格点)的连线中垂面所围成的多面体,其中只包含一个结点。 它能更明显地反映点阵的对称性。 它具有所属点阵点群的全部对称性(旋转、反射、反演操作)。

倒格矢 由于元激发的状态都是由波矢来描述的----引入波矢空间及响应的点阵,即倒点阵。 倒点阵的基矢是由晶格点阵的基矢定义的: )3,2,1,((0 )(22=?? ?≠===?→ → j i j i j i b a ij i i ) π πδ 可求出: ) (2)(2) (2213132321→→→→→→→ →→ ?Ω =?Ω =?Ω=a a b a a b a a b πππ 在倒点阵中任一格点的位置矢: → →→→++=332211b n b n b n K n (n i 为整数) 称为倒格矢。 元胞的体积: )(321* → → → ??=Ωb b b 布里渊区: 相应的W-S 元胞作为倒点阵的元胞:在此多面体边界上的任意一点可由另一点加上一个倒格矢的平移达到。 当它的中心为原点时,W-S 元胞所包含的区域称为第一布里渊区,用BZ 表示,又称简约区 倒点阵与正点阵的关系 m l n R K i i i l n πππ22) 2(*3 ==?=ΩΩ∑→ → m 为整数 BZ 具有晶格点阵点群的全部对称性。

激子

由于吸收光子在固体中产生的可移动的束缚的电子-空(穴)子对。 在光跃迁过程中,被激发到导带中的电子和在价带中的空穴由于库仑相互作用,将形成一个束缚态,称为激子。通常可分为万尼尔(Wannier)激子和弗伦克尔(Frenkel)激子,前者电子和空穴分布在较大的空间范围,库仑束缚较弱,电子“感受”到的是平均晶格势与空穴的库仑静电势,这种激子主要是半导体中;后者电子和空穴束缚在体元胞范围内,库仑作用较强,这种激子主要是在绝缘体中。 激子是固体中的一种基本的元激发,是由库仑互作用互相束缚着的电子-空穴对。半导体吸收一个光子之后,电子由价带跃迁至导带,但是电子由于库仑作用仍然和价带中的空穴联系在一起。 激子对描述半导体的光学特性有重要意义;自由激子束缚在杂质上形成束缚激子。激子束缚能大,说明自由激子容易和杂质结合形成发光中心。激子效应对半导体中的光吸收、发光、激射和光学非线性作用等物理过程具有重要影响,并在半导体光电子器件的研究和开发中得到了重要的应用.与半导体体材料相比,在量子化的低维电子结构中,激子的束缚能要大得多,激子效应增强,而且在较高温度或在电场作用下更稳定。 在半导体吸收光谱中,本征的带间吸收过程是指半导体吸收一个光子后,在导带和价带同时产生一对自由的电子和空穴.但实际上除了在吸收带边以上产生连续谱吸收区以外,还可以观测到存在着分立的吸收谱线,这些谱线是由激子吸收引起的,其能谱结构与氢原子的吸收谱线非常类似.激子谱线的产生是由于当固体吸收光子时,电子虽已从价带激发到导带,但仍因库仑作用而和价带中留下的空穴联系在一起,形成了激子态.自由激子作为一个整体可以在半导体中运动.这种因静电库仑作用而束缚在一起的电子空穴对是一种电中性的、非导电性的电子激发态. 与氢原子一样,激子也具有相应的基态和激发态,但其能量状态与固体中的介电效应和电子空穴的有效质量有关.实际上,固体中的激子态可用类氢模型加以描述,并按此模型很好地估算出激子在带边下分立能级的能态和电离能。 总的来说,宽禁带的半导体材料,激子束缚能较大,而激子玻尔半径则比较小.而禁带较窄的材料,其激子电离能较小,激子玻尔半径则较大。

第八章半导体发光

第八章半导体发光 研究一种新型半导体材料,首先是要对它的光电以及结晶品质等进行研究。对于光电子材料。对它的发光性质的研究是一个重大课题,有大量的工作可做。可以说每一种光电子材料的光学性质研究都有大量文献报道。通过对材料的发光性能的研究,可以判定材料的生长质量,发光特性,杂质情况,杂质电离能,适合不适合制作发光器件等。 画光谱图 1. 辐射跃迁:处于激发态的电子向较低的能级跃迁,同时发射光子的过程。要求系统处于非平衡状态,一般通过一些外加的激发手段才能达到。 电致发光:电流激发。 阴极射线发光:电子束激发。 光致发光:光激发,入射光子能量要大于材料禁带宽度。 2.发光波长与能量的关系:λ=c/v=hc/E=1240/E(nm),E单位为电子伏特(eV)3.带-带跃迁:导带的电子跃迁到价带,与空穴复合,自由载流子复合。(激子效应对半导体发光光谱有更重要的影响,但在较高实验温度下和对于纯度较差的样品,可以观察到带-带跃迁) 发光光谱形状:F(hv )∝( hv )2(hv-Eg)1/2exp-(hv-Eg)/KT 特征:发光峰在Eg附近。发光峰具有一个高能量尾部,在hv=Eg处,低能量边缘突然截止。在低激发情况,发射峰的半峰宽近似等于0.7kT。随掺杂浓 度增加和费米能级深入导带,发光峰峰位置和高能边缘均向高能量方向 移动。增加激发和升高温度也可导致发光向高能方移动。自吸收导致实 验观测的发光光谱向低能方向漂移。K:玻尔兹曼常数,8.62x10-5电子 伏特/度。300K时,KT约26meV。77K时,KT约6.6meV。 4.自由激子:自由电子和自由空穴由与库仑力作用而束缚在一起所形成的系统,可在晶体中运动。电子与空穴之间的作用类似与氢原子中电子与质子的相 互作用。自由激子代表了低激发密度下纯半导体中电子和空穴的能量最 低的本征激发态。(对足够纯的半导体材料,低温下本征辐射复合的主 要特征可以是激子复合导致的狭窄谱线。按激子复合发光模型,发光谱 低能端应在激子波矢0对应的激子能量处突然截止,考虑激子效应时,

物理学专业硕士研究生培养方案

物理学专业硕士研究生培养方案 (2017级研究生开始使用) 一、专业学科、学制、学习方式 一级学科:物理学(代码:0702 ) 二级学科:凝聚态物理(代码:070205 ) 理论物理(代码:070201 ) 学制:三年学习方式:全日制 二、本学科情况介绍: 物理学是研究物质的结构、相互作用和运动规律以及它们的各种实际应用的科学。它是自然科学的基础,是近代科学技术的主要源泉。物理学是基础学科也是发展最快的学科之一,是与产业联系最密切的理学学科。物理学科是广州大学最早建立重点学科之一,属广州市人才培养的重要基地,1996年获二级学科硕士授予权,已经培养了50多名硕士,许多人已成为重要学术和技术骨干。经过多年的努力,学科已经形成了若干个稳定的研究方向。理论物理专业的研究方向有:受限小量子系统、磁性与强关联多电子系统的理论研究。凝聚态物理专业的研究方向有:半导体纳米结构中的电子性质研究、信息光电子研究方向、信息功能材料与计算机辅助设计.学科的研究特色是与国际该领域的研究接轨,所有的成果都将在国内外权威刊物上发表,绝大部分论文被《SCI》所收录,有相当部分论文被国内外同行引用。近年来学科承担了国家自然科学基金10项,广东省自然科学基金重点项目1项,广东省自然科学基金和计划项目20多项。2000年3月以来获省部级奖励6项,其中教育部科学技术二等奖1项,广东省科学技术一等奖1项,三等奖3项,2005年以来本学科获得国家发明专利5项。本学科除取得一些科学成果外,还取得了一些社会效益。学科已经培养硕士研究生50多人,毕业生全部就业,且有多名毕业生在山西大学、安徽大学、中山大学、华南师范大学等211工程学校及新加坡科技学院从事教学科研工作。有些研究生的毕业论文发表在“Phys. Rev. B”,“J. Appl. Phys.”,“J. Phys.: Condens. Matter”,“Eur. Phys. J”等国际权威刊物上,毕业生中有多人分别考上北京大学、上海交大、中国科学院、南京大学、中山大学、北京理工大学和华中科技大学等学校博士研究生,8人被评为“南粤优秀研究生”。 三、培养目标 培养热爱社会主义,拥护中国共产党,遵纪守法,品行优良,作风朴实,学风严谨,富于创新精神,善于开拓进取,在物理领域掌握坚实的基础理论和系统的专门知识,能比较熟练地阅读本专业的外文资料,具备初步的外语写作和听说能力,具有较强的计算机应用能力和材料物理实验研究能力,了解本学科领域的前沿研究问题,且具有新的见解,具有从事物理科学研究工作或独立担负专门技术工作的能力,积极为社会主义建设事业服务,身心健康的高级专门人才。 四、培养方式 本专业硕士学位获得者应: 1. 具有严谨的学风和良好的科学道德; 2. 能够通过所有规定课程的考试或考查,并修满规定的学分; 3.完成规定的社会实践学习工作; 4.发表一篇学术论文(或被接受发表); 5.完成学位论文的写作,并按时参加论文的答辩。 具体参照《广州大学硕士研究生培养工作暂行规定》执行

激子效应

激子效应对半导体中的物理过程和光学性质具有重要的影响.激子的 吸收和复合直接影响半导体的光吸收和发光,而且,作为固体中的一种元激发,其状态与母体材料的电子能带性质和外场的作用紧密相关.此外,自由 激子在半导体中可以受到杂质或缺陷中心在空间上的束缚,形成所谓的束 缚激子。其吸收谱线能量位置略低于自由激子的吸收谱线.激子在电中性缺陷上的束缚过程大致可分为两种,它可以是一个自由激子整体地受到缺陷 中心的束缚,也可以是一个电荷(电子或空穴)首先被缺陷的近程势所束缚,使缺陷中心荷电,然后再通过库仑互作用(远程势)束缚一个电荷相反的空 穴或电子,形成束缚激子.束缚激子在半导体发光中有非常重要的地位.在 间接带半导体材料中,由于动量选择定则的限制,材料的发光通常是很弱的,但如果存在束缚激子,其波函数在空间上是局域化的,因而发光跃迁的动量选择定则大大放松,无须声子参与就可能具有很大的发光跃迁几率.这样, 间接带材料的发光效率将大大增强。 例如,在间接带Ⅲ-Ⅴ族半导体材料磷化镓(GaP)中,通过掺入Ⅴ族氮原子(或同时掺入能形成施主受主对的锌和氧),发光就可大大增强,其原因就是因为氮在晶格中代替磷位,是一种电中性的替位式等电子杂质.这种杂质中心由于其电负性与主晶格原子不同,原子尺寸不同等原因,在晶格中会产生作用距离较短的近程势,并使激子束缚在其位置附近形成束缚激子.实验上,在掺氮的GaP中已观测到单个氮原子以及成对氮原子所引起的很强的束缚激子发光.现在,这类掺杂方法已成为制造GaP和GaAsP等可见光发光二极管的基本工艺. 激子是由库仑作用结合在一起的电子空穴对,其稳定性取决于温度、电场、载流子浓度等因素.当样品温度较高时,激子谱线由于声子散射等原因而变宽.而当kT(k是玻尔兹曼常数)值接近或大于激子电离能时,激子会因热激发而发生分解.所以,在许多半导体材料中,只有低温下才能观测到清 晰的激子发光,而当温度升高后,激子谱线会展宽,激子发光强度降低,以至发生淬灭.另外,在电场的作用下,电子和空穴分别向相反方向运动,因而当半导体处于电场作用下时,激子效应也将减弱,甚至由于电场离化而失效. 而当样品中载流子浓度很大时,由于自由电荷对库仑场的屏蔽作用,激子也可能分解.这些影响激子稳定性的物理因素在光电器件应用中,可以作为对激子效应和相关的光学性质进行可控调制的有效手段.但对发光和激光器 件来说,特别是对一些需要在室温下大浓度注入条件工作的器件来说,将产生一些不利的影响,使激子效应的应用受到限制.总的来说,当激子束缚能 较大时,激子相对比较稳定.如在宽禁带半导体材料(如Ⅱ-Ⅵ族化合物材料和氮化物)以及下面要更详细讨论的半导体量子阱等低维结构中,激子束缚能一般比较大,即使在室温下,激子束缚能也比kT大许多,吸收光谱中能看

相关文档
最新文档