Msp430f5529定时器模块测周期和ADC12模块

Msp430f5529定时器模块测周期和ADC12模块
Msp430f5529定时器模块测周期和ADC12模块

飞思卡尔锁相环

备战飞思卡尔智能车大赛.开始模块总结. 锁相环设置. 公式: PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1), fbus=PLLCLK/2 void INIT_PLL(void) { CLKSEL &= 0x7f; //选用外部时钟.准备设置锁相环 PLLCTL &= 0x8F; //禁止锁相环 SYNR = 0xc9; //设置SYNR REFDV = 0x81; //设置REFDV PLLCTL |=0x70; //锁相环使能 asm NOP; asm NOP; //两个机器周期缓冲时间 while(!(CRGFLG&0x08)); //等待锁相环锁定 CLKSEL |= 0x80; //设置锁相环为时钟源 } 飞思卡尔XS128的PLL锁相环详细设置说明——关于如何提高总线工作频率PLL锁相环就相当于超频 单片机超频的原因和PC机是个一道理。分频的主要原因是外设需要的工作频率往往远低于CPU/MEMORY 这也和PC机南北桥的原理类似。总线频率设置过程 1、禁止总中断 2、寄存器CLKSEL(时钟选择寄存器)的第七位置0 即CLKSEL_PLLSEL=0。选择时钟源为外部晶振OSCCLK(外接晶振频率) 在PLL(锁相环)程序执行前 内部总线频率为OSCCLK/2 3. PLLCTL_PLLON=1 打开PLL 4.设置SYNR 时钟合成寄存器 、REFDV 时钟分频寄存器 、POSTDIV三个寄存器的参数 5、_asm(nop) _asm(nop);加入两条空指令 使锁相环稳定 6、while(!(CRGFLG_LOCK==1));//时钟校正同步 7、CLKSEL_PLLSEL=1; 下面详细说一下频率的计算一、时钟合成寄存器SYNR寄存器结构 VCOFRQ[1:0]控制压控振动器VCO的增益 默认值为00 VCO的频率与VCOFRQ[1:0]对应表

位置更新引起未接通的分析

上海贝尔阿尔卡特股份有限公司
ASB SSM-ISE 工程服务部
位置更新引起未接通的分析
ASB 工程服务部 外协工程师 赵枫
一,接通率的定义
根据 CMCC 的 2005 年测试规范中规定:在城市忙时采用手机相互拨打的方式,每次通 话时长 100 秒,呼叫间隔 20 秒;如出现未接通,应间隔 20 秒进行下一次试呼. 接通率,定义:接通率=接通总次数/试呼总次数×100%; 说明: 试呼次数:以 channel request 和 CM service request 同时出现来确定试呼开始. 接通次数:当一次试呼开始后出现了 Connect,Connect Acknowledge 消息中的任何一条 就计数为一次接通. 接通率=总(Connect 或 Connect Acknowledge)数/总(channel request 和 CM service request)数×100% 接通率取主叫测试手机的统计结果.
二,未接通现象:
"一次接通"从主叫手机 Channel request 开始, 一直到被叫手机的 TCH 分配完成, Alerting,Connect.在此过程中,任何的信令中断都是"未接通" . 从信令流程上分析,可分为以下几种情形: 1.起呼后没有 IMMEDIATE ASSIGNMENT 消息 定位:RACH 冲突或者 AGCH 拥塞 建议:查看与 RACH 相关的参数――最大重发次数和发送分布时隙数以及与 AGCH 相 关的参数――接入准许保留块数 2.IMMEDIATE ASSIGNMENT REJECT 导致未接通 定位:SDCCH 拥塞 建议:检查 SDCCH 配置,查看相关小区 SDCCH 话务量 3.IMMEDIATE ASSIGNMENT FAILURE 导致未接通 定位:SDCCH 指配失败 建议:排除无线方面原因后,应从交换侧寻找问题原因
ASB2005GSM001
移动通信经验交流汇编
1/5

CC2530定时器设置以及应用

定时器的应用 一、教学目标 1、熟悉定时器相关寄存器的功能 2、能对程序进行改写以实现不同时间的定时操作 二、教学重点 定时器T1寄存器设置 通过变量累计定时溢出调整定时时间的方法 三、教学难点 定时器以及定时中断寄存器的设置 四、教学方法 案例法、对比法 五、教学过程 [引入]定时器也是CC2530的重要资源之一,CC2530的定时器比51单片机的定时器功能更多,本次课通过阅读、修改程序以及相关寄存器的学习,使大家能基本应用定时器完成不同定时时间的程序设计。 定时器程序设计方法也分为查询法和中断法。 任务一、查询法程序设计 1)结合以下寄存器的功能介绍阅读程序,分析程序的功能,并分析定时时间 2)修改程序实现4个LED指示灯的流水灯控制,延时时间为1秒。 将P1口状态用数组存放,采用循环结构引用数组。 任务二、中断法程序设计 与定时器中断相关的寄存器 ◆定时器初始化

定时中断初始化 void init(void) { P1SEL &= ~0x03; // 设置LED1、LED2为普通IO口 P1DIR |= 0x003 ; // 设置LED1、LED2为输出 LED1 = 0; LED2 = 1; //灭LED T1CTL = 0x05; // T1 通道0,8 分频; 自动重载模式(0x0000->0xffff); IEN1 |=0X02; //定时器1中断使能 EA=1; //开总中断 CLKCONCMD &= 0x80; //时钟速度设置为32MHz } 2)中断服务子程序设计 请同学们将任务一的程序调整为中断服务子程序 #pragma vector = T1_VECTOR //中断服务子程序 __interrupt void T1_ISR(void) { … … } 注意:中断标志需要软件清除,T1的中断标志位为T1IF 六、小结 本次课通过两个案例,分别采用查询法和中断法对定时器1进行程序设计,为后面的串口操作打下了基础。 七、作业 请同学们结合按键控制LED和定时器操作完成程序设计,按下按键,LED灯以1秒的时间间隔依次点亮

飞思卡尔智能车电机资料上课讲义

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载冲击的 影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时间运行 于停转状态,电机长时间停转时,稳定温升不超过允许值时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连续堵转电流。 图3.1为该伺服电机的结构图。图3.2是此伺服电机的性能曲线。 图3.1 伺服电机的结构图

图3.2 伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图3.3所示。图3.4为舵机的控制线。 图3.3 舵机控制要求

飞思卡尔单片机编程

关于Codewarrior 中的 .prm 文件 网上广泛流传的一篇文章讲述的是8位飞思卡尔单片机的内存映射,这几天,研究了一下Codewarrior 5.0 prm文件,基于16位单片机MC9S12XS128,一点心得,和大家分享。有什么错误请指正。 正文: 关于Codewarrior 中的.prm 文件 要讨论单片机的地址映射,就必须要接触.prm文件,本篇的讨论基于Codewarrior 5.0 编译器,单片机采用MC9S12XS128。 通过项目模板建立的新项目中都有一个名字为“project.prm”的文件,位于Project Settings->Linker Files文件夹下。一个标准的基于XS128的.prm文件起始内容如下: .prm文件范例: NAMES END SEGMENTS RAM = READ_WRITE DATA_NEAR 0x2000 TO 0x3FFF;

READ_ONLY DATA_NEAR IBCC_NEAR 0x4000 TO 0x7FFF; ROM_C000 = READ_ONLY DATA_NEAR IBCC_NEAR 0xC000 TO 0xFEFF; //OSVECTORS = READ_ONLY 0xFF10 TO 0xFFFF; EEPROM_00 = READ_ONLY DATA_FAR IBCC_FAR 0x000800 TO 0x000BFF; EEPROM_01 = READ_ONLY DATA_FAR IBCC_FAR 0x010800 TO 0x010BFF; EEPROM_02 = READ_ONLY DATA_FAR IBCC_FAR 0x020800 TO 0x020BFF; EEPROM_03 = READ_ONLY DATA_FAR IBCC_FAR 0x030800 TO 0x030BFF; EEPROM_04 = READ_ONLY DATA_FAR IBCC_FAR 0x040800 TO 0x040BFF; EEPROM_05 = READ_ONLY DATA_FAR IBCC_FAR 0x050800 TO 0x050BFF; EEPROM_06 = READ_ONLY DATA_FAR IBCC_FAR 0x060800 TO 0x060BFF; EEPROM_07 = READ_ONLY DATA_FAR IBCC_FAR 0x070800 TO 0x070BFF; PAGE_F8 = READ_ONLY DATA_FAR IBCC_FAR 0xF88000 TO 0xF8BFFF;

位置更新具体信令流程

第4章位置更新 4.1 概述 在GSM系统中有三个地方需要知道位置信息,即HLR、VLR和MS。当这个信息发生变化时,需要保持三 者的一致,由位置更新流程实现。位置更新流程是位 置管理中的主要流程,总是由MS发起。 位置更新流程是一个通用流程,在如下三类位置更新流程中要使用到:正常位置更新、周期性位置更 新、IMSI附着位置更新流程。 正常位置更新用于更新网络侧对于MS的位置区信息,LOCATION UPDATING REQUEST消息中包含位置更新 流程的类型信息。 在网络侧VLR判定MS为未知用户时,会启动正常位置更新流程,作为MM连接建立请求的响应。

为限制位置更新尝试次数,位置更新失败时要使用位置更新attempt counter 计数器。在MS开机或SIM卡刚插入时,该计数器清零。 MS中要保持一个"forbidden location areas for roaming"表和一个"forbidden location areas for regional provision of service"表。MS关机或SIM 卡拔出时,将这两个表删除。当MS收到位置更新拒绝消息,其原因值为"Roaming not allowed in this location area"或"Location Area not allowed"时,从BCCH上收到的LAI信息触发位置更新请求的LAI要加到相应的表中。这两个表的容量至少要有10个表项,当表项数目超过表的容量时,最早的表项内容删除。 成功的进行位置更新后,MS在SIM卡中置UPDATED 状态位(UPDATED状态表明最后一次位置更新请求成

单片机定时器习题

单片机定时器/计数器、中断和串行口习题 一、填空题 1、若要启动定时器T0开始计数,则应将TR0的值设置为 1 。 2、定时器T1工作在方式0时,其定时时间为(8192-定时器初值)*2us 。方式1时定时时间又为(65536-定时器初值)*2us 。 3、串行通信有异步通信和同步通信两种基本通讯方式。 4、波特率是指每秒钟传递信息的位数。 5、如果要将现有的波特率加倍,可使用指令MOV PCON,#80H 。 6、当串行口工作在方式1时,一帧信息共有10位,即起始位、8个数据位、停止位。 7、串行口工作在方式2时的波特率为fosc/32或fosc/64 。 8、外部中断1的程序入口地址是0013H 。 二、选择题 1、若要采用定时器0,方式1,如何设置TMOD__B__ A.00H B.01H C.10H D. 11H 2、单片机采用方式0时是13位计数器,它的最大定时时间是多少?_B__ A.81.92ms B.8.192ms C.65.536ms D.6.5536ms 3、以下哪项不是中断的特点? C A.分时操作 B.实时处理 C.在线编程 D.故障处理 4、外部中断响应时间至少需要__A个机器周期。 A.3 B.2 C.4 D.8 5、通过串口发送和接受数据时,在程序中使用__A___指令。 A.MOV BMOVX C.MOVC D.SW AP 6、以下哪个是中断优先级寄存器?__B A.IE B.IP C.TCON D.SCON 7、串行口中断的程序入口地址是 C 。 A 0003H B 001BH C 0023H D 000BH 三、判断题 1、8051的两个定时器T0和T1都是16位的计数器。(对) 2、单片机的计数器最高检测频率为振荡频率的1/12。(错) 3、定时/计数器的方式2具有自动装入初值的功能。(对) 4、引起中断的原因或发出中断申请的来源称为中断源。(对) 5、中断可使CPU和外设同时工作。(对) 6、定时器的特殊功能寄存器TMOD是用作中断溢出标志,并控制定时计数器的启动和停止。(错) 7、定时器控制寄存器TCON可以位寻址。(对) 8、MCS-51系列单片机的5个中断源都是可屏蔽中断。(对) 四、综合题

(流程管理)GSMBSS信令消息诠释位置更新流程

GSM BSS信令消息诠释——位置更新流程

目录 位置更新流程信令消息诠释 (4) 1.信令流程 (4) 2.信令流程详解 (4) (1).Channel Request (4) (2).Channel Required (7) (3).Channel Activation (7) (4).Channel Activation Acknowledge (9) (5).Immediate Assignment Command (10) (6).SABM(Set Asynchronous Balanced Mode)帧 (13) (7).UA(Unnumbered Acknowledgement)帧 (14) (8).Establish Indication (14) (9).CR(Call Request)(CMP L3 Information) (17) (10).CC(Call Confirm) (19) (11).Location Updating Accept (19) (12).Location Updating Reject (19) (13).TMSI Reallocation Complete (20) (14).Clear Command (20) (15).Clear Complete (20) 附录1:Element Identifier (21) 9.3 Other Information Elements (21) 9.3.1 Channel Number (22) 9.3.2 Link Identifier (23) 9.3.4 BS Power (25) 9.3.5 Channel Identification (25) 9.3.6 Channel Mode (25) 9.3.7 Encryption information (27) 9.3.8 Frame Number (28) 附录2:MS Power Class and Level (28) 4.1Output power (29) 4.1.1Mobile Station (29) 附录3:Channel Description (1) 附录4:Message Type (7) 10.4Message Type (7)

电机驱动电路总结

电机驱动电路 一、直流电机驱动电路的设计目标 在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机 即可,当电机需要双向转动时,可以使用由4个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使 用继电器即可;但如果需要调速,可以使用三极管,场效应管等开 关元件实现PWM(脉冲宽度调制)调速。 2.性能:对于PWM调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。

2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。 要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或者光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 二、三极管-电阻作栅极驱动 (如果电路看不清楚请到相册里看) 1.输入与电平转换部分: 输入信号线由DATA引入,1脚是地线,其余是信号线。注意1脚对地连接了一个2K欧的电阻。当驱动板与单片机分别供电时,这个电阻可以提供信号电流回流的通路。当驱动板与单片机共用一组电源时,这个电阻可以防止大电流沿着连线流入单片机主板的地线造成干扰。或者说,相当于把驱动板的地线与单片机的地线隔开,实现“一点接地”。 高速运放KF347(也可以用TL084)的作用是比较器,把输入逻辑信号同来自指示灯和一个二极管的2.7V基准电压比较,转换成接近功率电源电压幅度的方波信号。KF347的输入电压范围不能接近负电源电压,否则会出错。因此在运放输入端增加了防止电压范围溢出的二极管。输入端的两个电阻一个用来限流,一个用来在输入悬空时把输入端拉到低电平。 不能用LM339或其他任何开路输出的比较器代替运放,因为开路输出的高电平状态输出阻抗在1千欧以上,压降较大,后面一级的三极管将无法截止。2.栅极驱动部分: 后面三极管和电阻,稳压管组成的电路进一步放大信号,驱动场效应管的栅极并利用场效应管本身的栅极电容(大约1000pF)进行延时,防止H桥上下两臂的场效应管同时导通(“共态导通”)造成电源短路。 当运放输出端为低电平(约为1V至2V,不能完全达到零)时,下面的三极管截止,场效应管导通。上面的三极管导通,场效应管截止,输出为高电平。当运放输出端为高电平(约为VCC-(1V至2V),不能完全达到VCC)时,下面的三极管导通,场效应管截止。上面的三极管截止,场效应管导通,输出为低电平。 上面的分析是静态的,下面讨论开关转换的动态过程:三极管导通电阻远小于2千欧,因此三极管由截止转换到导通时场效应管栅极电容上的电荷可以迅速释放,场效应管迅速截止。但是三极管由导通转换到截止时场效应管栅极通过2千欧电阻充电却需要一定的时间。相应的,场效应管由导通转换到截止的速度要比由截止转换到导通的速度快。假如两个三极管的开关动作是同时发生的,这个电路可以让上下两臂的场效应管先断后通,消除共态导通现象。

飞思卡尔单片机寄存器及汇编指令详解

附录I:寄存器地址列表 直接页面寄存器总结

高页面寄存器总结

非易失寄存器总结 注:直接页面寄存器表地址的低字节用粗体显示,直接寻址对其访问时,仅写地址低字节即可。第2列中寄存器名用粗体显示以区别右边的位名。有0的单元格表示未用到的位总是读为0,有破折号的单元格表示未用或者保留,对其读不定。

附录II 指令接与寻址方式 HCS08指令集概括 运算符 () = 括号种表示寄存器或存储器位置的内容 ← = 用……加载(读: “得到”) & = 布尔与 | = 布尔或 ⊕= 布尔异或 ×= 乘 ÷ = 除 : = 串联 + = 加 - = 求反(二进制补码) CPU registers A =>累加器 CCR =>条件代码寄存器 H =>索引寄存器,高8位 X => 索引寄存器,低8位 PC =>程序计数器 PCH =>程序计数器,高8位 PCL =>程序计数器,低8位 SP =>堆栈指针 存储器和寻址 M =>一个存储区位置或者绝对值数据,视寻址模式而定 M:M + 0x0001 => 两个连续存储位置的16位值.高8位位于M的地址,低8位位于更高的连续地址. 条件代码寄存器(CCR)位 V => 二进制补码溢出指示,第7位 H => 半进位,第4位 I => 中断屏蔽,第 3位 N => 求反指示器, 第2位 Z => 置零指示器, 第1位 C => 进/借, 第0位 (进位第 7位 ) CCR工作性符号 – => 位不受影响 0 = > 位强制为0 1 = > 位强制为1

= >根据运算结果设置或清除位 U = > 运算后没有定义 机器编码符号 dd =>一个直接寻址0x0000–0x00FF的低8位(高字节假设为0x00) ee => 16位偏移量的高8位 ff => 16位偏移量的低8位 ii => 立即数的一个字节 jj => 16位立即数值的高位字节 kk => 16位立即数值的低位字节 hh => 16位扩展寻址的高位字节 ll => 16位扩展寻址的低位字节 rr => 相对偏移量 n —任何表达范围在0–7之间的一个有符号数的标号或表达式 opr8i —任何一个表达8位立即值的标号或表达式 opr16 —任何一个表达16位立即值的标号或表达式 opr8a —任何一个表达一个8位值的标号或表达式.指令对待这个8位值为直接页面64K 字节地址空间(0x00xx)中地址的低8位. opr16a —任何一个表达16位值的标号或表达式.指令对待这个值为直接页面64K字节地址空间. oprx8 —任何一个表达8位无符号值的标号或表达式,用于索引寻址. oprx16 —任何一个16位值的标号或表达式.因为HCS08有一个16位地址总线,这可以为一个有符号或者无符号值. rel —任何指引在当前指令目标代码最后一个字节之后–128 to +127个字节之内的标号或表达式.汇编器会计算包括当前指令目标代码在内的8位有符号偏移量. 寻址方式 隐含寻址(Inherent)如CLRA,只有操作码,无操作数,需要操作的数据一般为CPU寄存器,因此不需要再去找操作数了。(INH) 立即寻址 (Immediate)如LDA #$0A,“$”表示16进制,此时操作数位于FLASH空间,与程序一起存放。(IMM) 直接寻址 (Direct)如 LDA $88,只能访问$0000-$00FF的存储器空间,指令短速度快; (DIR) 扩展寻址 (Extended)如果操作数地址超出了$00FF,自动为扩展寻址;(EXT) 相对寻址(Relative)如BRA LOOP,指令中一般给出8位有符号数表示的偏移量。(REL) 变址寻址 (Indexed) 采用[H:X]或SP作为指针的间接寻址方式。( IX )( IX1 )( IX2 ) 变址寻址 (Indexed) 1〉无偏移量:CLR ,X 简写(IX) 2〉无偏移量,指令完成后指针加1(H:X = H:X + 0x0001) ,简写(IX+)只用于指令MOV和CBEQ指令中;

定时器产品使用说明书

定时器产品使用说明书 定时设置: 1、先检查时钟是否与当前时间一致,如需重新校准,在按住“时钟”键的同时,分别按住“星期”、“小时”、“分钟”键,将时钟调到当前准确时间。 2、按一下“设定”键,显示屏左下方出现“1开”字样(表示第一次开启的时间)。然后按“星期”调整本次设定的星期组合模式,再按“小时”、“分钟”键,输入所需开启的时间。 3、再按一下“设定”键,显示屏左下方出现“1关”字样(表示第一次关闭时间),再按“星期”、“小时”、“分钟”键,输入所需关闭的日期和时间。 4、继续按动“设定”键,显示屏左下方将依次显示“2开、2关、3开、3关……16开、16关”,参考步骤2、3设置以后各次开关时间。设置完成后,按一下“时钟”键返回。 5、如果每天不需设置16组开关,则必须按“清除”键,将多余各组消除,使其显示屏上显示“—:—”图样(不是00:00)。 6、按“模式”键,可以变换工作模式。总共有四种工作模式:A、液晶显示开(代表进入常开模式);B、液晶显示关(代表进入常关模式);C、由开进入自动(表示目前状态为开,等到下一组时间到后开始自动运行);D、由关进入自动(表示目前状态为关,等到下一组定时时间到后开始自动运行)。 当出现以下情况时: 1、定时器没有根据设定的程序开启或关闭,请检查设置程序是否正确或重新调整。 2、定时器长时间不用,显示模糊时,请将定时器接通电源充足,10分钟后无显示,按“复位”键,2-3秒。 3、如以上步骤均不能排除问题,请与公司或经销商联系维修。 注意事项: 1、对于那些因定时开关出错而可能发生的生命相关事故或者对社会产生重大影响的设备(如医疗设备等),请不要使用定时开关。 2、对于那些因定时开关出错而发生重大财产损失的设备(大型加热器或冷库),在使用本定时开关时,请务必是特性和性能的数值有足够的余量,并采取二重电路等安全对策。 3、请勿自行修理、分解或改造。 4、接通电源后请勿接触端子部分。本开关工作在无潮湿、腐蚀及高金属含量气体环境中。请勿沾染油或水。

07-移动被叫流程

第7章移动被叫流程7.1 概述 移动被叫包括MS拨打MS、固定拨打MS。

7.2 正常流程 1. 信令流程 BTS BSC MSC MS 图7-1 移动被叫正常流程 (1) 当被寻呼的MS 在MSC 的服务区内时,MSC 向BSC 发送Paging 消息,该消息中包 含寻呼小区列表以及TMSI 和IMSI 信息;

(2) BSC向寻呼小区发送Paging Command消息,该消息中包含所属寻呼子信道的号 码和所占用的时隙号; (3) BTS收到BSC的Paging Command消息后,在该寻呼组所属的寻呼子信道上(PCH 子信道上)发送Paging Request消息,该消息中包含被寻呼用户的IMSI或TMSI; (4) MS解码寻呼消息后,若发现是对自己的寻呼,则将在RACH上发出Channel Request 消息来触发初始化信道分配过程; (5) 其余消息见移动主叫流程。 2. 流程说明 (1) 图7-1中(1)~(11)为寻呼信令流程 在此流程中,BSS发起寻呼,并为MS分配信令信道。 (2) 指配流程分类 根据指配类型,指配流程别可分成三类:Early Assignment、Late Assignment和Very Early Assignment。除了Late Assignment过程中指配过程(Assignment Request消 息的下发)在MSC收到MS的Connect消息以后触发进行,其他流程与移动主叫基本 相同,具体流程参见主叫流程。 7.3 BSC内部处理流程 1. BSC收到A接口的Paging消息后,根据“流量控制参数表”检查是否进行流控。 2. 通过查“小区模块信息表”,将寻呼消息转发给相关BM模块。 3. BM模块计算出合适的寻呼分组并下发 4. BM模块根据寻呼消息中的TMSI或IMSI及“系统消息数据表”中的下述参数计算寻 呼分组:“AGCH保留块数(BS-AG-BLKS-RES)”、“CCCH配置”、“相同寻呼间 帧数编码(BS-PA-MFRMS)”。 7.4 异常流程与故障定位指导 本节只对MS做被呼流程中寻呼不到MS的异常流程(即不下发寻呼命令或无寻呼响应 上报)进行分析,其他异常流程分析请参见“移动主叫流程”。 寻呼不成功时, MSC通常会给主叫用户提示“用户不在服务区”或者“用户无法接通” 类似的语音信息。此时,先通过A接口和ABIS接口信令跟踪,确认是寻呼命令下发 出现异常还是寻呼命令下发后无响应。通常有以下几种情况:A接口无寻呼命令、ABIS 口无寻呼命令、ABIS口无寻呼响应、A接口无寻呼响应。

STM32如何设置定时器

STM32如何设置定时器 STM32 如何设置定时器 下面以stm32 的TIM2 作为实例一步步配置成为定时器: 第一种 对定时器的基本配置 TIM_TimeBaseStructure.TIM_Period = 1000; //设置自动装载寄存器 TIM_TimeBaseStructure.TIM_Prescaler = 35999; //分频计数 TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //选择向上计数 TIM_TimeBaseInit(TIM2, TIM_TimeBaseStructure); TIM_Cmd(TIM2, ENABLE); //是能定时器 始能定时器的中断: TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); 在开启时钟里一定要打开TIM2 的时钟,函数表达式如下: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); 4:中断向量函数的编写: void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; #ifdef VECT_TAB_RAM //如果程序在ram 中调试那么定义中断向量表在Ram 中否则在Flash 中 /* Set the Vector Table base location at 0x20000000 */

飞思卡尔MC9S12XS128功能模块驱动

用了一年多飞思卡尔MC9S12XS128这款处理器,现在总结下各个功能模块的驱动. //锁相环时钟的初始化总线频率为40MHz(总线时钟为锁相环时钟的一半) //晶振为11.0592MHz void PLL_init(void) //PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1) { //锁相环时钟= 2*11.0592*(39+1)/(10+1)=80MHz 总线时钟为40MHz REFDV=0x0A; SYNR=0x67; //0110_0111 低6位的值为19,高两位的值为推荐值 while(CRGFLG_LOCK != 1); CLKSEL_PLLSEL = 1; //选定锁相环时钟 //FCLKDIV=0x0F; //Flash Clock Divide Factor 16M/16=1M } //周期中断定时器的初始化- // //周期中断通道1用于脉冲累加器的定时采样,定时周期为: 10ms= (199+1)*(1999+1)/(40M) (没有使用) //周期中断通道0用于控制激光管的轮流发射,定时周期为: 2000us= (399+1)*(199+1)/(40M) //2011/4/4 15:24 定时时间改为1ms void PIT_init(void) { PITCFLMT_PITE = 0; // 禁止使用PIT模块 PITCFLMT :PIT 控制强制加载微计数器寄存器。 PITCE_PCE0 = 1; // 使能定时器通道0 //PITCE_PCE1 = 1; //使能定时器通道1 PITMUX = 0; //通道0,和通道1均选择8位微计数器0

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。 先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的: 七个中断优先级 每一个中断源都有一个可以设置的级别 高优先级中断的可以嵌套低优先级中断 复位后可屏蔽中断默认优先级为1 同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应 注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断 下面直接进入正题,看看怎么设置中断优先级: XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。 分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中 这些中断的位7到位3都为D,他们就被分成了一组。0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器: 我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。 设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为 这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。对应规则是这样的:中断地址的低四位除以2 比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了 拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。因此中断优先级要SCI0>PORTH>PIT0。 我们先要从头文件中找出相应中断的地址: PIT0【7:4】位为7,选择中断组: INT_CFADDR=0x70;

智能编程定时器操作说明书

文案大全 此文档由恒飞电器提供 由杭州寰宇世极功放编写 ※系统概述: M P 3智能音乐播放器:采用世界最先进的微电脑控制技术。将广播自动分区播放、外部音频和麦克风录音存储等先进功能综合为一体。内存大小由你选择: (分别可用U 盘或T F 卡设计),成为广播设备的典范之精品,达到国内领先水平。广泛适用于校园自动广播音乐打铃、外语广播教学听力考试系统。 ※综合功能: M P 3自动广播、智能分区广播、日常教学广播、消防紧急广播、背景音乐播放、外语教学及听力考试广播功能。 ※技术参数: 信噪比:>90d B ; 谐波失真:<0.1%; 频响范围:20H z -18K ; 电压:220V ※前面板介绍(由于机型不同布局略有不同) 01、电源灯及开关 02、插U 盘或连接电脑U S B 囗 03、电源灯 (T F 卡插囗) 04、显示屏; 05、菜单上,下,左,右控制 选择键; 06、确定,停止,返回键; 07、咪,输入,监听音量控制键; 08、分区1,2,3,4,5,6按键 09、分区及电源全开全关按键; 10、手动与自动切换按键; 重要提示:当你插入新U 盘或TF 卡时,必须先把它插在本机上并开关本机电源,让它自动生成AUDIO 文件夹后并把有编号的MP3歌曲装到AUDIO 文件夹内才可以播放。 ※后面板介绍(由于机型不同布局略有不同)

2 注:短路输入端囗: 当这个端囗有短路信号输入时,本机会立刻播放你放在內存里AL A R M 文件夹内的这一首曲目,A L AR M 这文件夹內只能放一首用于紧急报警用的歌曲,其它需要定时播放的歌曲要放在AU DI O 文件夹內,如歌曲的路径放错则定时播放将不执行。短路输出端囗: 这个端囗与功放电源和分区的动作同步,即当有定时点到时,这端囗即短路,当定时歌曲放完或设定了结束时间到了即断开,这端囗作用是用于控制电源时序器接多台功放之用。 ※设备连接图(由于机型不同 布局略有不同) 01、FM 与遥控天线接囗; 03、MIC 输入插孔; 05、六个分区输入输出接线座; 07、输入电源接线座; 02、音频输入输出插孔; 04、短路输入警报与短路输出控制接口; 06、电源输出接线座;

飞思卡尔智能车电机

飞思卡尔智能车电机公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载 冲击的影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时 间运行于停转状态,电机长时间停转时,稳定温升不超过允许值 时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连 续堵转电流。 图为该伺服电机的结构图。图是此伺服电机的性能曲线。

图伺服电机的结构图 图伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为 20ms,宽度为的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图所示。图为舵机的控制线。

飞思卡尔寄存器整理

S12的输入/输入端口(I/O口) I/O端口功能 可设置为通用I/O口、驱动、内部上拉/下拉、中断输入等功能。 设置I/O口工作方式的寄存器有: DDR、IO、RDR、PE、IE和PS。 DDR:设定I/O口的数据方向。 IO :设定输出电平的高低。 RDR:选择I/O口的驱动能力。 PE:选择上拉/下拉。 IE:允许或禁止端口中断。 PS:1、中断允许位置位时,选择上升沿/下降沿触发中断;2、中断禁止时且PE有效时,用于选择上拉还是下拉。 I/O端口设置 1、A口、B口、E口寄存器 (1)数据方向寄存器DDRA、DDRB、DDRE DDRA、DDRB、DDRE均为8位寄存器,复位后其值均为0。 当DDRA=0、 DDRB=0、 DDRE=0 时A口、B口和E口均为输入口。 否则,A口、B口、E口为输出口。当DDRA、DDRB、DDRE的任何一位置1时,则该位对应的引脚被设置为输出。 例如,将A口设置为输出口,则其C语言程序的语句为:DDRA=0xff; (2)A口、B口、E口上拉控制寄存器PUCR PUCR为8位寄存器,复位后的值为0。当PUPAE、PUPBE、PUPEE被设置为1时,A口、B口、E口具有内部上拉功能;为0时,上拉无效。当A口、B 口、E口为地址/数据总线时,PUPAE和PUPBE无效。 (3)A口、B口、E口降功率驱动控制寄存器RDRIV RDRIV为8位寄存器,复位后的值为0,此时,A口、B口、E口驱动保持全功率;当RDPA、RDPB、RDPE为1时, A口、B口、E口输出引脚的驱动功率下降 (4)数据寄存器PORTA、PORTB、PORTE PORTA、PORTB、PORTE均为8位寄存器,复位后的值为0,端口引脚输出低电平;要使引脚输出高电平,相应端口对应位应该置1。 由于PE0是/XIRQ、PE1是IRQ,因此,PE0和PE1只能设置为输入。

CSFB流程图详解

CSFB流程图详解 TD-LTE语音解决方案目前有:CSFB,双待机。以下主要针对CSFB进行讨论:CSFB主要流程分为4部分,一是回落至2G(中移动方案),二是在2G中读取系统消息,三是在2G中进行语音呼叫,四是呼叫结束后返回LTE。 1、TD-LTE回落至2G UE语音拨打时,会发一条extended service request,消息里会携带CSFB信息。之后会在基站的辅助下回落至2G,由4G回落至2G时长约250ms。 在回落2G时,LTE的基站会下发RRC connection Release,该消息会指示UE去测量哪些频点。 2、UE在2G需要读取必要的系统消息,系统消息读取时长约为300ms 3、UE在2G中起呼,接通时延一般为6S左右 4、因此无位置更新的情况下,呼叫总时延为6.5S左右 5、若CSFB回落至2G,LTE TA LIST与GSM LAC区的不一致,回落至2G后还要进行LAU(位置更新),才能在2G中进行语音业务,需要额外增加LAU的时延,约为2S。 6、因此CSFB的总时延为6.5至8.5S

7、语音结束后,返回至4G时,若终端支持自主FR,可以秒回。由2G下发的channel release至UE读取LTE的MIB及SIB1不到1秒 8、若终端不支持自主FR,则不能由2G直接重选至4G(原因是没有对2G、4G的互操作进行改造),需要TDS 3G的桥接,才能回至4G,时长约为几十秒。 9、若终端不支持自主FR,又没有3G网络,则UE不能返回到4G 10、若终端为被叫,则LTE基站会下发一条CS ServiceNofication消息,指示UE,有CS 域的呼叫。则UE会在基站的辅助下回落至2G,响应寻呼。

飞思卡尔电机控制模块详解

M=2. 一、关键点 1、MC 模块驱动电机的PWM 波频率在20K 左右时效果比较好。DITH 位等于0时,计算方法如下: DITH=1时, 其中,左对齐和有对齐方式下 M=1,中间对齐是2、MC 模块定时计数器的中断最好禁止,如果开启,在相应的中断服务程序中至少要添加一条“清楚中断标志位”的指令。 3、电机控制模块共8个通道,每个通道有2个Pin 脚组成。 4、Fast 位控制精度,7位或者11位。 5、给周期寄存器写入数值,可启动 MC 计数器,写0关闭所有通道的计数器。 6、MCAM[1:0]写入0x00可关闭某个channel ,写入非零值不是启动MC 计数器,而是控制对齐方式。为了精确周期寄存器的值应尽量大,Ftc 应尽量小。 二、寄存器寄存器讲解讲解讲解:: 1 MCCTL0 (Motor Controller Control Register 0) 第7位保留; 第6、5位是MCPRE[1:0]控制电机控制器定时计数器时钟f TC 预分频系数。如下: 第4位 MCSWAI 置1,等待模式中电机控制器正常运行,清0,在等待模式中电机控制模块时钟关闭。 第3位,FAST ,清0,电机控制器PWM 模块占空比寄存器分辨率设置为11位,置1,电机控制器PWM 模块占空比寄存器分辨率设置为7位。 第2位,DITH ,清零,电机控制器dith 特性禁止,置1电机控制器dith 特性使能。 第1位保留; 第0位MCTOIF ,为1表示,电机控制模块定时计数器溢出;为0,表示自上次复位或清零以来,电机控制模块定时计数器没有发生溢出。 2 MCCTL1 (Motor Controller Control Register 1)

相关文档
最新文档