2013 综述 The calcium-sensing receptor in the breast

2013 综述 The calcium-sensing receptor in the breast
2013 综述 The calcium-sensing receptor in the breast

9

The calcium-sensing receptor in the breast

Joshua N.VanHouten,Ph.D.,Assistant Professor,

John J.Wysolmerski,M.D.,Professor *

Section of Endocrinology and Metabolism,Department of Internal Medicine,Yale University School of

Medicine,TAC S131,Box 208020,New Haven,CT,USA

Keywords:

breast

mammary gland

PMCA2

PTHrP

skeletal metastasis

lactation

milk Normal breast epithelial cells and breast cancer cells express the calcium-sensing receptor (CaSR),the master regulator of systemic calcium metabolism.During lactation,activation of the CaSR in mammary epithelial cells downregulates parathyroid hormone-related protein (PTHrP)levels in milk and in the circulation,and increases calcium transport into milk.In contrast,in breast cancer cells the CaSR upregulates PTHrP production.A switch in G-protein

usage underlies the opposing effects of the CaSR on PTHrP

expression in normal and malignant breast cells.During lactation,

the CaSR in normal breast cells coordinates a feedback loop that

matches the transport of calcium into milk and maternal calcium

metabolism to the supply of calcium.A switch in CaSR G-protein

usage during malignant transformation converts this feedback

loop into a feed-forward cycle in breast cancer cells that may

promote the growth of osteolytic skeletal metastases.

ó2013Elsevier Ltd.All rights reserved.

Background

The calcium-sensing receptor

The extracellular calcium-sensing receptor (CaSR)is a G-protein-coupled,7-transmembrane pass,cell surface receptor (GPCR)that binds calcium ions and mediates cellular responses to changes in the concentration of extracellular free calcium eCa 2to T.1–3It is a member of class C of the large family of GPCRs and is most closely related to the metabotropic glutamate receptors,gamma amino butyric acid

(B)(GABA(B))receptors,several taste receptors and pheromone receptors.It is highly expressed in the parathyroid glands and in the kidney where it acts as the principal regulator of parathyroid hormone *Corresponding author.Tel.:t1(203)7857447;Fax:t1(203)7856015.

E-mail addresses:joshua.vanhouten@https://www.360docs.net/doc/2b14066613.html, (J.N.VanHouten),john.wysolmerski@https://www.360docs.net/doc/2b14066613.html, (J.J.

Wysolmerski).

Contents lists available at SciVerse ScienceDirect

Best Practice &Research Clinical

Endocrinology &Metabolism

journal homepage:

https://www.360docs.net/doc/2b14066613.html,/locate/beem

1521-690X/$–see front matter ó2013Elsevier Ltd.All rights reserved.https://www.360docs.net/doc/2b14066613.html,/10.1016/j.beem.2013.02.011

Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

(PTH)secretion and renal calcium handling,respectively,in response to changes in the circulating concentrations of calcium.1–8Therefore,it is absolutely critical to the proper regulation of systemic calcium and bone homeostasis.

Since the discovery of the CaSR,it has become apparent that it is expressed widely within the body and its functions are not limited to the regulation of PTH secretion and renal tubular calcium handling.2,3Thus,the CaSR modulates cellular proliferation,cellular differentiation and ion transport in many different organs.2,9,10In addition,mirroring its effects on PTH secretion,in many cells outside the parathyroid glands,it regulates the secretion of parathyroid hormone-related protein (PTHrP)in response to changes in Ca 2to .11Other chapters in this volume delve into the structure and phar-macology of this remarkably versatile receptor in great detail.In this chapter,we will concentrate on the function of the CaSR in the breast.Before doing so,we will brie ?y review some aspects of mammary gland biology required for a full appreciation of the function of the CaSR in mammary epithelial cells.

Mammary gland development and milk secretion

The mammary gland forms initially during embryonic life as a bud-like appendage that grows down from the epidermis as a simple series of branched tubes embedded within a fatty stromal compartment known as the mammary fat pad.12,13Little subsequent development of the gland occurs until puberty,when hormones stimulate the growth and branching of the ductal system,which expands to ?ll the entire mammary fat pad.14,15Pubertal mammary development occurs primarily in response to the synergistic actions of estrogen and growth hormone.14–16The adult virgin duct system consists of a simple bi-layered epithelium composed of basal myoepithelial cells and centrally located luminal epithelial cells.Further development and regression of the mammary gland occur during reproductive cycles.During pregnancy,the sequential actions of progesterone and prolactin stimulate the develop-ment of terminal ductules and the proliferation of luminal epithelial cells to generate grape-like,or alveolar spheres of cells that form an acinar structure with a central lumen connected to the ducts.14–17Pregnancy also stimulates the alveolar epithelial cells to differentiate in order to form https://www.360docs.net/doc/2b14066613.html,k pro-duction requires the synthesis,transport and secretion of large amounts of triglycerides,immuno-globulins,lactose,milk proteins and ions such as calcium and phosphate.17Bulk milk secretion does not start until parturition and is stimulated by the fall in progesterone levels and a further increase in prolactin secretion.15,17Milk secretion is sustained locally by suckling and systemically by prolactin secreted from the pituitary gland.Once lactation ceases,the mammary gland regresses through an intricately choreographed wave of cell death and tissue remodeling known as mammary gland invo-lution.18The end result of this process is a return to a simple ductal tree similar to that of the virgin female.Subsequent rounds of alveolar development and involution occur with each successive repro-ductive cycle,allowing for milk production with each pregnancy and lactation,but not in between.Regulation of calcium and bone metabolism during lactation

Milk provides all the calcium and phosphorus required for rapid skeletal growth during the neonatal period.Nursing humans secrete 300–400mg of calcium into milk each day.19–21The extra demand for calcium stresses maternal calcium homeostasis and,as a result,lactation is associated with a series of adaptations involving calcium and bone metabolism.22Suckling induces maternal hyperphagia and prolactin secretion,which stimulate the absorption of calcium by the gastrointestinal tract.23–25Therefore,some of the extra calcium required to support infant growth comes from the maternal diet.During lactation,the kidneys retain calcium,and urinary calcium excretion declines to very low levels.26,27Thus,some calcium is reclaimed from the urine.Finally,lactation is associated with signi ?cant bone loss,and it has been assumed that much of milk calcium comes from the maternal skeleton.26,27

Bone mineral density (BMD)declines between 5and 8%over 6months of full-time nursing in humans.This decline occurs at an estimated rate of between 1and 3%per month.The rate of decline in BMD following menopause by comparison,approximates 1–3%per year.26Rodents,which typically nurse many more offspring than humans,lose up to 20–30%of their bone mass over 3weeks of lacta-tion.27,28Bone loss during lactation is associated with increased turnover.Thus,biochemical markers of J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

404

J.N.VanHouten,J.J.Wysolmerski/Best Practice&Research Clinical Endocrinology&Metabolism27(2013)403–414405 bone resorption and markers of bone formation are elevated in nursing humans.In rodents,bone his-tomorphometry reveals that osteoclast(Oc)numbers and activity are increased in lactating as compared to nulliparous females.Osteoblast(Ob)numbers and bone formation rates are also elevated but are insuf?cient to offset the increased rates of bone resorption,thereby resulting in net bone loss.26–29The mechanisms that drive the increased bone turnover and bone loss associated with lactation are only partly understood.Two key factors are low estrogen levels due to hypogonadotropic hypogonadism caused by the suckling re?ex,and the secretion of PTHrP from the breast,both of which act synergis-tically to increase osteoclast numbers and activity.Finally,a characteristic feature of bone loss associated with lactation is its rapid and complete reversibility after weaning.26,29In rodents,skeletal mass is almost completely restored4weeks after the end of lactation.In humans,bone mineral density is restored to baseline within6–12months.26,30–32As a result,the skeleton can support multiple rounds of pregnancy and lactation,and repeated nursing does not predict future osteoporosis in women.22,26

The CaSR in the normal mammary gland

Dr.Edward M.Brown’s laboratory published the?rst report of CaSR expression in the human breast.8A subsequent survey of CaSR expression in the mouse mammary gland revealed that CaSR mRNA levels are low during post-natal mammary gland development through late pregnancy,but increase to a peak during lactation.33With the onset of mammary gland involution,CaSR expression again falls to nulliparous levels.33To date,defects in mammary gland development or differentiation status have not been attributed to alterations in the CaSR.However,these are times of dynamic changes in mammary epithelial cell turnover and given the role of the CaSR in regulating cell proliferation and differentiation in other cell types,it is possible that the CaSR might participate in these processes in the mammary gland during puberty or pregnancy.Speci?c genetic manipulations designed to answer these questions have not yet been directed at these time periods.Instead,work to date has focused on the period with the highest levels of CaSR expression,lactation.33–35

The CaSR regulates PTHrP production in mammary epithelial cells

In parathyroid chief cells,CaSR signaling represents the main mechanism by which the secretion of PTH is matched to the circulating concentration of calcium.36The related autocrine/paracrine factor, parathyroid hormone-related protein(PTHrP,gene symbol Pthlh),which was?rst described as the tumor-derived factor responsible for many cases of humoral hypercalcemia of malignancy,has a much wider tissue distribution than PTH,and does not normally regulate systemic calcium homeostasis.11 However,PTHrP shares N-terminal homology and a common receptor(PTHR1)with PTH that allow it to mimic the calciotropic actions of PTH in the kidney and bone.11Normally,PTHrP acts in a para-crine/autocrine fashion and does not circulate.During lactation,however,the mammary gland secretes PTHrP into the circulation,where it acts in an endocrine fashion to mobilize skeletal calcium stores by activating bone resorption.11

The CaSR has been reported to regulate PTHrP expression and/or secretion in several cell types, such as astrocytes,ovarian epithelial cells,cytotrophoblasts,osteoblasts,prostate cancer cells, HEK293cells(transfected with CaSR),and breast cancer cells.37Therefore,we asked whether the CaSR might regulate PTHrP expression and/or secretion by mammary epithelial cells during lactation. In contrast to its effect on most cell types studied,including breast cancer cells,38we found that stimulation of the CaSR on normal mammary epithelial cells suppressed PTHrP production.33The observation of an inverse relationship between CaSR stimulation and PTHrP secretion in normal breast cells has been supported by a series of pharmacologic and genetic studies in mice.Low dietary calcium-induced reductions in Ca2to levels in wild-type mice,33global haploinsuf?ciency of the CaSR,34or mammary-speci?c deletion of the CaSR all resulted in increased Pthlh gene expression in the mammary gland and higher milk PTHrP concentrations.In calcium-de?cient lactating mice, infusion of the calcimimetic compound NPS-R467returned PTHrP production to levels approaching those in control,calcium-replete mice.33Because global homozygous deletion of Casr is lethal,4we recently studied a genetic model of mammary-speci?c CaSR insuf?ciency generated by breeding b-lactoglobulin-Cre mice39with Casr lox/lox mice.40In this model,exon7of the Casr gene is deleted

speci ?cally in mammary epithelial cells,but only during late pregnancy and lactation during which the b -lactoglobulin gene is switched on.Consistent with previous results,these mice demonstrated increased PTHrP production by mammary epithelial cells and increased milk PTHrP concentrations.Circulating immunoreactive PTHrP was also apparently elevated in these mice,although the differ-ence did not reach statistical signi ?cance.Nonetheless,urinary cAMP levels,which serve as a sen-sitive bioassay for circulating PTH and PTHrP,41were signi ?cantly higher in lactating BLG-Cre;PTHrP lox/lox mice.Since PTH levels were suppressed in these mice,the elevated urinary cAMP levels indicate that bioactive PTHrP levels were elevated.In addition,Cao et al.showed that increasing dietary calcium in lactating WT or PTH à/àmice reduced PTHrP concentrations in milk,42presumably by activation of the mammary CaSR.The inverse relationship between circulating cal-cium and milk PTHrP also holds true in lactating 1a (OH)ase t/àand 1a (OH)ase à/àmice on either a high calcium diet or on a “rescue diet ”,a high-calcium,-phosphorus,and -lactose diet that facilitates 1,25-dihydroxy-vitamin-D-independent calcium absorption.43Together these observations support the conclusion that,in the normal mammary gland,Ca 2to acts on the CaSR to suppress PTHrP secretion both into milk and into the circulation.

The purpose of regulating the PTHrP content of milk and its dependence on the CaSR are unclear.However,we have observed that pups suckling dams with mammary-targeted deletion of the CaSR that were thus ingesting milk with reduced milk calcium content and elevated levels of PTHrP,had a signi ?cantly lower total body calcium content.44Furthermore,when we engineered mice (b -lacto-globulin-Cre/PTHrP lox/à)to produce milk with no PTHrP but normal Ca 2tconcentrations,they had increased levels of total body calcium.These data suggest that milk PTHrP levels affect neonatal cal-cium accrual independently of the milk calcium concentration.Our data are also consistent with those of Cao et al.42and Ji et al.,43who found that increasing dietary calcium in lactating mice suppressed milk PTHrP concentration and increased skeletal calcium accrual of the suckling pups.In both studies,dietary calcium supplementation also increased milk calcium levels,which likely had an additional effect on the neonatal skeleton.42,43Thus,it is possible that milk PTHrP levels are adjusted by the breast CaSR in an opposite manner as milk calcium levels in order to generate an integrated biochemical signal to program neonatal skeletal metabolism to the nutritional availability of calcium.Further testing of this hypothesis will require a model in which milk calcium can be adjusted independently of milk PTHrP.

The CaSR increases calcium transport into milk

Several studies have shown that CaSR signaling modulates milk calcium concentrations in response to changes in the circulating calcium https://www.360docs.net/doc/2b14066613.html,ctating mice on a low-calcium diet had low serum calcium levels and produced milk with reduced calcium concentrations.Simultaneous treatment with the calcimimetic NPS R-467,however,partially restored milk calcium levels toward baseline.33Genetic ablation of the CaSR,whether from global haploinsuf ?ciency 34or mammary-speci ?c deletion of the CaSR,44also reduced milk calcium concentrations.Furthermore,mammary-speci ?c deletion of the CaSR dramatically reduced the clearance of calcium from the circulation into milk.In vitro,Ca 2to and calcimimetic compounds stimulated transport of 45Ca in 3-dimensional cultures of differentiated mammary epithelial cells.33,34This resulted,in part,from changes in the enzymatic activity of a speci ?c calcium pump,PMCA2.The plasma membrane calcium-ATPase 2(PMCA2)is a P-type calcium pump expressed in the apical (milk-facing)surface of mammary epithelial cells.It is responsible for trans-porting 60–70%of the calcium found in milk.35,45In vitro and in vivo,CaSR stimulation or Casr gene deletion had no effect on PMCA2protein levels or PMCA2(Atp2b2)gene expression.35Rather,CaSR activation stimulated the Ca 2t-pumping,ATPase activity of PMCA2.35Therefore,calcium stimulates its own transport into milk.In addition,calcium transport into milk is modulated by the CaSR-PMCA2dyad,according to calcium availability in the maternal circulation.Still unknown are the intracel-lular signal transduction pathways linking the CaSR to PMCA2activation.

In MCF-7breast cancer cells,the CaSR activates Ca 2tentry through the canonical transient receptor potential ion channel,TRPC1.46However,the main calcium entry mechanism(s)in normal mammary epithelial cells during lactation have not been identi ?ed,and whether the CaSR might also regulate this step is unclear.47

J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

406

J.N.VanHouten,J.J.Wysolmerski/Best Practice&Research Clinical Endocrinology&Metabolism27(2013)403–414407 CaSR signaling pathways in mammary epithelial cells

The CaSR binds Ca2tand other polyvalent cations,aminoglycoside antibiotics,and amino acids as a homodimer.48The CaSR undergoes a conformational change upon ligand-binding,which promotes GDP dissociation from a G a subunit of a heterotrimeric G-protein complex,causing it to dissociate from the G bg subunits.As with many GPCRs,the CaSR interacts with multiple G a sub-types,and the downstream signaling pathways are highly divergent,and depend on the cellular context.48The CaSR has been shown to stimulate the PLC/PKC pathway downstream of G a q and to decrease cAMP downstream of G a i.48Both G a q and G a i,as well as interaction with the scaffolding proteins?lamin-A and caveolin-1,are thought to be involved in the regulation of PTH secretion by the CaSR in parathyroid chief cells.48In growth plate chondrocytes,CaSR interaction with GABA-B receptor subunits induced signaling through PLC and ERK1/2.49MAPK signaling mediates CaSR-stimulated PTHrP secretion in some cell types.50However,in normal mammary epithelial cells the MAPK/ERK pathway is not involved in the regulation of PTHrP production.51Instead,the CaSR couples with G a i to decrease cAMP production by adenylate cyclase,and subsequently PKA activation,without affecting phosphodies-terase activity.51Lower cAMP production results in the inhibition of PTHrP expression,an effect that can be mimicked by inhibition of PKA,or reversed with forskolin or dibutyryl-cAMP.51

The CaSR during lactation:at the crossroads of milk production,calcium metabolism and skeletal turnover

As reviewed above,genetic and pharmacologic evidence suggests the existence of a feedback loop52 that helps to ensure a steady supply of calcium to the mammary gland to support milk production(see Fig.1).At the beginning of lactation,mammary epithelial cells produce PTHrP and secrete it into the maternal circulation where it acts on bone cells to stimulate osteoclastic bone resorption and release calcium into the circulation.Circulating calcium,in turn,acts on the mammary gland CaSR to inhibit further PTHrP production and to stimulate the transport of calcium into milk.If the delivery of calcium to the gland lags behind calcium usage,the resulting lower systemic calcium levels then reduces CaSR stimulation,leading to a reduction in calcium transport and increase in PTHrP secretion by the mammary epithelial cells.In this way,the mammary gland directly adjusts it own calcium usage to match its supply.By secreting more PTHrP,it also in?uences calcium mobilization from the skeleton. Emerging evidence also suggests that by adjusting milk calcium and PTHrP content,the mammary gland CaSR entrains maternal and neonatal calcium and bone metabolism to respond in concert to changes in calcium availability.This system likely evolved when dietary calcium was only intermit-tently available to scavenging mammals and appears to be primarily designed to avoid severe or prolonged maternal hypocalcemia.By reducing the transport of calcium into milk and by increasing circulating and milk PTHrP levels,the CaSR attempts to restore maternal calcium levels by attenuating calcium usage and increasing skeletal calcium mobilization.

The CaSR and breast cancer

Breast cancer is the most common malignancy in women in western societies and affects approximately one in eight women in the US.In women with advanced disease,the skeleton is the main site of metastasis and up to70%of patients have one or more bone metastases.53–55These are most commonly osteolytic in nature and depend on the ability of the cancer cells to recruit and activate osteoclasts to resorb the surrounding bone.In turn,bone resorption releases growth factors and large amounts of calcium as well as phosphate into the microenvironment of the tumor cells, potentially stimulating osteolysis and tumor cell proliferation.53–55This positive-feedback relation-ship that develops between breast cancer cells and factors released into the bone microenvironment is referred to as the vicious cycle of osteolysis and contributes to both the formation and progression of bone metastases.PTHrP is produced by many breast cancers and increases local osteolysis by bone metastases.53,55,56Given that the CaSR regulates PTHrP production by normal mammary epithelial cells and given that breast cancer cells are exposed to high Ca2to at sites of active bone resorption, it has been hypothesized that the CaSR promotes osteolytic bone metastases.To date,data to support or refute such a role for the CaSR are remarkably scant and largely based on studies in breast

cancer cell lines in vitro.In the subsequent section,we review the current state of knowledge on the subject.

CaSR expression in breast cancer

The ?rst report of CaSR expression in breast cancer came from the Brown laboratory 8when they demonstrated CaSR mRNA and protein expression in breast tissue samples from 6different women;two were samples of normal breast tissue,two were samples of ?brocystic disease and two were samples from ductal carcinomas.8A subsequent report from the same laboratory demonstrated CaSR expression in two standard human breast cancer cell lines,MCF-7and MDA-MB-231cells,an obser-vation that has been con ?rmed.9,38,57,58

Although there has been no systematic or quantitative comparison of CaSR expression between normal breast tissue and breast cancer,Huang and colleagues demonstrated that the CaSR was expressed at much higher levels in fully transformed MCF-7and MDA-MB-231breast cancer cell lines than in two non-transformed breast epithelial cell lines,Hs 578Bst and MCF-10A.59In addition,Mihai et al.performed immunohistochemistry on 65tumors from patients with metastatic breast cancer and found that 75%of the cancers expressed levels of CaSR that were graded 2tor more on a semi-quantitative 0–5score.60In this study,the tumors from patients with bone metastases had higher levels of CaSR expression,suggesting a role for the CaSR in modulating the formation of

skeletal

Fig.1.During lactation,stimulation of the CaSR in mammary epithelial cells increases the transport of calcium into milk by affecting the activity of the calcium transporter,PMCA2.In addition,CaSR activation inhibits the release of PTHrP into milk and into the maternal circulation.Circulating PTHrP acts on the PTH/PTHrP receptor in the kidney to conserve calcium,and in bone,on the osteoblast (Ob),to increase osteoclast (Oc)development and activity through the RANK/RANKL pathway and mobilize skeletal calcium reserves.When the supply of calcium to mammary epithelial cells is abundant,the CaSR will promote its transport into milk,and limit renal conservation of calcium and mobilization of calcium from the skeleton by attenuating mammary PTHrP production.On the other hand,if calcium supplies decline,its transport into milk declines and systemic PTHrP rises,normalizing circulating calcium through its action on bone and kidney cells.

J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

408

J.N.VanHouten,J.J.Wysolmerski/Best Practice&Research Clinical Endocrinology&Metabolism27(2013)403–414409 metastases(see discussion below).Very little is known about the mechanisms that control CaSR expression in breast cancer,although one interesting report demonstrated that CaSR gene expression could be modulated by BRCA1in both MCF-7and MDA-MB-231cells.61

In summary,the CaSR is expressed by many breast cancers,and it may be expressed at higher levels on malignant cells than on normal breast epithelial cells.In addition,primary tumors with higher levels of CaSR expression appear to be more likely to metastasize to bone.However,these conclusions are based on a small number of studies and many questions regarding the level and control of CaSR expression in breast tumors remain.It will be especially important to determine whether CaSR expression correlates with the molecular sub-type of breast cancer and whether levels of CaSR expression correlate with tumor size,stage,grade or clinical outcome in large-scale studies.

CaSR function in breast cancer

Effects on PTHrP production in tumors

One clearly documented function of the CaSR in breast cancer cells is to regulate PTHrP production. As discussed in previous sections,in the intact normal mammary gland and in normal mammary epithelial cells in culture,CaSR activation decreases PTHrP mRNA levels and PTHrP secretion.33,34,51 However,in breast cancer cells,activation of the CaSR with Ca2t,spermine,aminoglycoside antibi-otics,or allosteric(type-II)calcimimetics has the opposite effect and increases PTHrP secretion.38,51 This has been shown for several immortalized or fully transformed human or mouse breast cell lines,including Comma D cells,MCF-7cells,and MDA-MB-231cells.38,51In addition,Ca2to acted synergistically with TGF-b to enhance PTHrP production in MCF-7and MDA-MB-231cells.38 Our laboratory was interested in understanding why normal breast cells suppressed PTHrP pro-duction in response to CaSR activation whereas malignant breast cells stimulated PTHrP production in response to CaSR activation.We found that changes in PTHrP production were not explained by al-terations in calcium transients or MAPK signaling downstream of the receptor,but rather correlated with divergent cAMP responses.51In normal breast cells,activation of the receptor suppresses cAMP levels while in malignant cells activation of the receptor stimulates cAMP production.This results from a switch in G-protein usage.In normal cells the CaSR couples to G a i but in malignant cells,it couples instead to G a s.The PTHLH gene is known to be sensitive to cAMP and the effects of CaSR activation on PTHrP production in these different cells could be mimicked by manipulating cAMP levels indepen-dently from CaSR activation.51Thus,it would appear that malignant transformation alters downstream signaling,thereby explaining the paradoxical positive effect of extracellular calcium on PTHrP pro-duction in breast cancer cells.The alteration in PTHrP production may have important consequences for the pathophysiology of breast cancer,especially for the progression of bone metastases and will be discussed further below.

Evidence for pro-tumorigenic effects

There are con?icting reports regarding the effects of CaSR signaling on the proliferation of breast cancer cell lines.In the report by Sanders et al.,Ca2to levels between0.5and10mM had no effect on cell proliferation as assessed by cell number in MCF-7or MDA-MB-231cells.38However members of the Ahidouch laboratory have reported that elevated Ca2to(1.4–5.0mM)stimulated the proliferation of MCF-7cells by25–30%.46,57The effect was mediated by the CaSR and depended on the activation of PLC,PKC,ERK and store-operated calcium entry through the calcium channel,transient receptor po-tential channel1(TRPC1).46Activation of the CaSR in MCF-7cells also induced membrane metal-loproteinase(MMP)activity that released membrane-bound ligands of the epidermal growth factor receptor(EGFR).57Activation of the EGFR,in turn,promoted TRPC1expression,ERK activation and cell proliferation.Transactivation of EGFRs by G-protein-coupled receptors has been well documented and is referred to as“triple pass”signaling.62The CaSR transactivates EGFR signaling in several cell types, suggesting that this may be a commonly utilized signaling pathway downstream of the receptor.63–66 EGFR activation contributes to breast cancer tumorigenesis,and these results suggest that the CaSR might promote the aggressiveness of breast cancers in an EGFR-dependent manner.67Consistent with this idea,Saidak et al.demonstrated that CaSR activation increases the migration of MCF7,T47D and MDA-MB-231breast cancer cells at Ca2to levels between 1.8mM and 5.0mM.58Similar to

Ca 2to -induced proliferation,Ca 2to -induced migration depended on the activation of PLC and ERK activity.In MCF-7cells,activation of the CaSR also increased the transcriptional activation of the estrogen receptor and augmented effects of estradiol to increase the expression of estrogen receptor target genes such as the progesterone receptor.68,69Finally,Huang and colleagues reported that the CaSR promotes expression of choline kinase and the production of phosphocholine by MCF-7and MDA-MB-231cells.59Increases in phosphocholine production occurred at Ca 2to levels between 1and 3mM and were reported to be mediated by coupling of the receptor to G a 12and Rho activation.Phosphocholine production is elevated in breast cancer and other tumors and may contribute to tumor progression.70,71Thus,these data suggest that CaSR expression promotes a more aggressive course in breast tumors.

Evidence for anti-tumorigenic effects

In contrast to the above studies suggesting that the CaSR contributes to the aggressiveness of breast cancer cells,the Chakrabarty laboratory has reported that CaSR activation inhibits proliferation and decreases malignant behavior in breast cancer cells.61,72These investigators assessed proliferation by directly counting cell number and compared low (0.2mM)to physiological (1.4mM)Ca 2to .Increasing Ca 2to concentrations over this range inhibited proliferation,invasion and anchorage-independent growth of MCF-7,MDA-MB-435and MDA-MB-231cells 72and enhanced sensitivity to cell death in response to paclitaxel,a standard chemotherapeutic drug.61,72These effects were associated with the suppressed expression of the survivin gene,a well described anti-apoptotic factor in breast and other cancers.61,72These data suggest that the CaSR might inhibit the development and/or progression of breast cancer,similar to its purported role in colon cancer.9This idea was supported by the ?nding that CaSR expression was increased by the wild-type BRCA1gene in breast cancer cells and that the inhibitory effect of BRCA1on survivin expression and positive effect on the paclitaxel response were mediated,in part,by the CaSR.61

Is the CaSR a tumor promoter or tumor suppressor for breast cancer?

At present,it is dif ?cult to reconcile these apparently con ?icting data suggesting that the CaSR inhibits malignant behavior on the one hand or promotes it on the other,especially when different investigators have used the same cell lines.In essence,one can ?nd reports suggesting that high Ca 2to stimulates,inhibits or has no effect on the proliferation of MCF-7or MDA-MB-231cells.One clear difference between the ?ndings from the Ahidouch and the Chakrabarty laboratories was the Ca 2to concentration used.46,57,61,72However,Sanders et https://www.360docs.net/doc/2b14066613.html,ed levels of Ca 2to that encompassed those used by both of the other laboratories and reported no effect of Ca 2to on proliferation.38It seems likely that the differences reported re ?ect the complexity of downstream signaling pathways and the modifying impacts of other oncogenic or tumor suppressor pathways.48,51,61,73Whatever the explanation for these discrepancies,the con ?icting results point to the need for further studies of clinical samples and in animal models of breast cancer to more accurately assess the impact of CaSR function on tumor biology.CaSR and bone metastases

The studies of Mihai and colleagues suggest a positive correlation between CaSR expression in primary tumors and the occurrence of bone metastases in patients.60Therefore,although these ?ndings need to be con ?rmed in other clinical studies,it is worth speculating on how the CaSR might favor the development of osteolytic bone metastases.As noted above,in order for a bone metastasis to grow in size,the surrounding mineralized tissue must be dissolved through the actions of peri-tumoral osteoclasts,which release high local concentrations of ionized calcium into the microenvironment.53–55Although there is some disagreement in the literature on this point,some studies have suggested that tumor cells in close proximity to actively resorbing osteoclasts may be exposed to Ca 2to con-centrations as high as 40mM.74,75Therefore,it might be advantageous for a cancer cell to respond to Ca 2to in ways that would enhance growth and promote osteolysis.PTHrP has been shown to be an important factor through which breast cancer cells recruit and activate osteoclasts.53–56Therefore,the ability of a malignant cell to sense high Ca 2to and increase PTHrP production would be clearly

J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414410

advantageous.51In addition to increasing osteoclast activity via paracrine interactions with the microenvironment,PTHrP acts directly within breast cancer cells to increase proliferation through an intracrine pathway.11Release of growth factors from the bone matrix as a result of bone resorption also stimulates the growth of bone metastases.53–56Furthermore,as reviewed above,activation of the CaSR might directly stimulate proliferation of the breast cancer cells.46,57Most patients with bone metas-tases have ER-positive tumors and augmenting the transcriptional effects of the ER may promote the growth of the cells in bone.53,55,68,69Finally,in normal breast epithelial cells,activation of the CaSR stimulates the actions of the calcium pump,PMCA2.35,76We have shown that PMCA2can help protect breast cancer cells from cell death in response to high levels of Ca 2to .76It is possible that a similar CaSR-dependent mechanism of enhanced intracellular Ca 2tclearance might also prevent cell death in the bone microenvironment in vivo.Therefore,there are several interconnected pathways through which CaSR expression on breast cancer cells would favor their growth and survival in the bone microenvironment and thus enhance progression of osteolytic bone disease.These pathways are highlighted in Fig.2.It must be emphasized that this ?gure is speculative,and the proposed pathways will need to be validated in patient samples and/or in animal models.Nevertheless,it is supported by existing evidence and manipulation of CaSR expression has been used successfully to alter the pro-gression of skeletal metastases in a xenograft model of prostate cancer cells.77

Summary

The CaSR is truly remarkable in its versatility.It signals in response to various ligands as well as biochemical changes in the microenvironment,such as alterations in pH or salinity.It forms homo-dimers,but can also heterodimerize with other receptor partners and it can signal differently

in Fig.2.In breast cancer cells,the CaSR increases PTHrP secretion,and could increase calcium export and/or import through regu-lation of the calcium export pump PMCA2or the calcium channel TRPC1,respectively.In the setting of osteolytic bone metastasis,where breast cancer cells may be exposed to very high levels of extracellular calcium,the CaSR might facilitate a vicious feed-forward cycle by increasing PTHrP secretion,thereby promoting osteolysis to increase the local calcium concentration,which further increases CaSR stimulation.PMCA2can protect breast cancer cells from calcium-mediated apoptosis,and its regulation by the CaSR might support the survival of breast cancer cells in the calcium-rich bone microenvironment.

J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414411

response to different ligands.Therefore,it is perhaps not surprising that it regulates biological pro-cesses in various organs.In the mammary gland,the receptor participates in key aspects of lactational physiology.It regulates mammary gland PTHrP production and the transport of calcium into milk.In essence the mammary CaSR serves as a key nutrient sensor to adjust the production of milk in response to calcium availability.As a result,it confers an ability to respond to alterations in systemic calcium concentrations in ways that allow the lactating mammary gland to actively participate in systemic calcium and bone metabolism.These effects may be exploited to alter rates of milk production or to modify its calcium content.In addition,manipulating rates of calcium uptake by the mammary gland or bone resorption might lead to improved treatments for milk fever in dairy cattle.Interestingly,the biochemical signals generated by the CaSR appear to be altered by the process of malignant trans-formation,and emerging evidence suggests that the CaSR may in ?uence the behavior of breast cancer cells.This may be especially important for the pathophysiology of osteolytic bone metastases,where breast cancer cells may be exposed to high concentrations of Ca 2to in the vicinity of resorbing oste-oclasts.In this setting,the CaSR may reactivate some aspects of lactation-related calcium handling and PTHrP secretion in response to the bone microenvironment.If this is true,a greater understanding of the role of the receptor in both normal and malignant breast cells may provide clues to novel treat-ments for breast cancer in general and,perhaps,for bone metastases in particular.

Con ?ict of interest statement

The authors have no con ?icts of interest to disclose.

References

1.Brown EM,Gamba G,Riccardi D et al.Cloning and characterization of an extracellular Ca(2t)-sensing receptor from bovine parathyroid.Nature 1993;366:575–580.

2.Hofer AM &Brown EM.Extracellular calcium sensing and signalling.Nature Reviews Molecular Cell Biology 2003;4:530–538.

3.Brennan SC &Conigrave AD.Regulation of cellular signal transduction pathways by the extracellular calcium-sensing receptor.Current Pharmaceutical Biotechnology 2009;10:270–281.

4.Ho C,Conner DA,Pollak MR et al.A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.Nature Genetics 1995;11:389–394.

5.Pearce SH,Trump D,Wooding C et al.Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism.The Journal of Clinical Investigation 1995;96:2683–2692.

6.Pearce SH,Williamson C,Kifor O et al.A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor.The New England Journal of Medicine 1996;335:1115–1122.

7.Pollak MR,Brown EM,Chou YH et al.Mutations in the human Ca(2t)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.Cell 1993;75:1297–1303.

8.Cheng I,Klingensmith ME,Chattopadhyay N et al.Identi ?cation and localization of the extracellular calcium-sensing receptor in human breast.Journal of Clinical Endocrinology and Metabolism 1998;83:703–707.

9.Brennan SC,Thiem U,Roth S et al.Calcium sensing receptor signalling in physiology and cancer.Biochimica et Biophysica Acta 2012.

10.Quinn SJ,Kifor O,Kifor I et al.Role of the cytoskeleton in extracellular calcium-regulated PTH release.Biochemical and

Biophysical Research Communications 2007;354:8–13.

11.Wysolmerski JJ.Parathyroid hormone-related protein:an update.The Journal of Clinical Endocrinology and Metabolism

2012;97:2947–2956.

12.Cowin P &Wysolmerski J.Molecular mechanisms guiding embryonic mammary gland development.Cold Spring Harbor

Perspectives on Biology 2010;2:

a003251.

J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

412

J.N.VanHouten,J.J.Wysolmerski/Best Practice&Research Clinical Endocrinology&Metabolism27(2013)403–414413 13.Mikkola ML&Millar SE.The mammary bud as a skin appendage:unique and shared aspects of development.Journal of

Mammary Gland Biology and Neoplasia2006;11:187–203.

14.Robinson GW.Cooperation of signalling pathways in embryonic mammary gland development.Nature Reviews Genetics

2007;8:963–972.

15.Brisken C&O’Malley B.Hormone action in the mammary gland.Cold Spring Harbor Perspectives on Biology2010;2:

a003178.

16.Watson CJ&Khaled WT.Mammary development in the embryo and adult:a journey of morphogenesis and commitment.

Development2008;135:995–1003.

17.Anderson SM,Rudolph MC,McManaman JL et al.Key stages in mammary gland development.Secretory activation in the

mammary gland:it’s not just about milk protein synthesis!.Breast Cancer Research2007;9:204.

18.Watson CJ&Kreuzaler PA.Remodeling mechanisms of the mammary gland during involution.The International Journal of

Developmental Biology2011;55:757–762.

19.Kirby BJ,Ardeshirpour L,Woodrow JP et al.Skeletal recovery after weaning does not require PTHrP.Journal of Bone and

Mineral Research2011;26:1242–1251.

20.Ardeshirpour L,Brian S,Dann P et al.Increased PTHrP and decreased estrogens alter bone turnover but do not reproduce

the full effects of lactation on the skeleton.Endocrinology2010;151:5591–5601.

21.Mamillapalli R&Wysolmerski J.The calcium-sensing receptor couples to Galpha(s)and regulates PTHrP and ACTH

secretion in pituitary cells.Journal of Endocrinology2010;204:287–297.

22.Wysolmerski JJ.Interactions between breast,bone,and brain regulate mineral and skeletal metabolism during lactation.

Annals of the New York Academy of Sciences2010;1192:161–169.

23.Ajibade DV,Dhawan P,Fechner AJ et al.Evidence for a role of prolactin in calcium homeostasis:regulation of intestinal

transient receptor potential vanilloid type6,intestinal calcium absorption,and the25-hydroxyvitamin D(3)1alpha hy-droxylase gene by prolactin.Endocrinology2010;151:2974–2984.

24.Charoenphandhu N,Nakkrasae LI,Kraidith K et al.Two-step stimulation of intestinal Ca(2t)absorption during lactation

by long-term prolactin exposure and suckling-induced prolactin surge.American Journal of Physiology–Endocrinology and Metabolism2009;297:E609–E619.

25.Smith MS&Grove KL.Integration of the regulation of reproductive function and energy balance:lactation as a model.

Frontiers in Neuroendocrinology2002;23:225–256.

26.Kovacs CS&Kronenberg HM.Maternal-fetal calcium and bone metabolism during pregnancy,puerperium,and lactation.

Endocrine Reviews1997;18:832–872.

27.VanHouten J.Maternal calcium and bone metabolism during lactation.Current Opinion in Endocrinology and Diabetes2005;

12:477–482.

28.VanHouten JN&Wysolmerski JJ.Low estrogen and high parathyroid hormone-related peptide levels contribute to

accelerated bone resorption and bone loss in lactating mice.Endocrinology2003;144:5521–5529.

29.Ardeshirpour L,Dann P,Adams DJ et al.Weaning triggers a decrease in receptor activator of nuclear factor-kappaB ligand

expression,widespread osteoclast apoptosis,and rapid recovery of bone mass after lactation in mice.Endocrinology2007;

148:3875–3886.

30.Karlsson C,Obrant KJ&Karlsson M.Pregnancy and lactation confer reversible bone loss in humans.Osteoporosis Inter-

national2001;12:828–834.

https://www.360docs.net/doc/2b14066613.html,skey MA&Prentice A.Bone mineral changes during and after lactation.Obstetrics and Gynecology1999;94:608–615.

32.Polatti F,Capuzzo E,Viazzo F et al.Bone mineral changes during and after lactation.Obstetrics and Gynecology1999;

94:52–56.

*33.VanHouten J,Dann P,McGeoch G et al.The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport.The Journal of Clinical Investigation2004;113:598–608.

34.Ardeshirpour L,Dann P,Pollak M et al.The calcium-sensing receptor regulates PTHrP production and calcium transport in

the lactating mammary gland.Bone2006;38:787–793.

*35.VanHouten JN,Neville MC&Wysolmerski JJ.The calcium-sensing receptor regulates plasma membrane calcium adenosine triphosphatase isoform2activity in mammary epithelial cells:a mechanism for calcium-regulated calcium transport into milk.Endocrinology2007;148:5943–5954.

36.Chattopadhyay N&Brown EM.Role of calcium-sensing receptor in mineral ion metabolism and inherited disorders of

calcium-sensing.Molecular Genetics and Metabolism2006;89:189–202.

37.Chattopadhyay N.Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its

impact on humoral hypercalcemia of malignancy.American Journal of Physiology–Endocrinology and Metabolism2006;

290:E761–E770.

*38.Sanders JL,Chattopadhyay N,Kifor O et al.Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines.Endocrinology2000;141: 4357–4364.

39.Selbert S,Bentley DJ,Melton DW et al.Ef?cient BLG-Cre mediated gene deletion in the mammary gland.Transgenic

Research1998;7:387–396.

40.Chang W,Tu C,Chen TH et al.The extracellular calcium-sensing receptor(CaSR)is a critical modulator of skeletal

development.Science Signaling2008;1:ra1.

41.Broadus AE,Mahaffey JE,Bartter FC et al.Nephrogenous cyclic adenosine monophosphate as a parathyroid function test.

The Journal of Clinical Investigation1977;60:771–783.

42.Cao G,Gu Z,Ren Y et al.Parathyroid hormone contributes to regulating milk calcium content and modulates neonatal

bone formation cooperatively with calcium.Endocrinology2009;150:561–569.

43.Ji J,Lu R,Zhou X et al.1,25-Dihydroxyvitamin D(3)contributes to regulating mammary calcium transport and modulates

neonatal skeletal growth and turnover cooperatively with calcium.American Journal of Physiology–Endocrinology and Metabolism2011;301:E889–E900.

44.Mamillapalli R,VanHouten J,Dann P et al.Mammary-speci?c ablation of the calcium-sensing receptor gene results in

transient hypercalcemia and hypercalciuria during lactation.Endocrine Reviews2011;32.OR02-01.

45.Reinhardt TA,Lippolis JD,Shull GE et al.Null mutation in the gene encoding plasma membrane Ca2t-ATPase isoform 2

impairs calcium transport into milk.Journal of Biological Chemistry 2004;279:42369–42373.

46.El Hiani Y,Ahidouch A,Lehen ’kyi V et al.Extracellular signal-regulated kinases 1and 2and TRPC1channels are required

for calcium-sensing receptor-stimulated MCF-7breast cancer cell proliferation.Cellular Physiology and Biochemistry:In-ternational Journal of Experimental Cellular Physiology,Biochemistry,and Pharmacology 2009;23:335–346.

47.VanHouten JN &Wysolmerski JJ.Transcellular calcium transport in mammary epithelial cells.Journal of Mammary Gland

Biology and Neoplasia 2007;12:223–235.

48.Chakravarti B,Chattopadhyay N &Brown EM.Signaling through the extracellular calcium-sensing receptor (CaSR).

Advances in Experimental Medicine and Biology 2012;740:103–142.

49.Cheng Z,Tu C,Rodriguez L et al.Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2t-

sensing receptor and cell differentiation in murine growth plate chondrocytes.Endocrinology 2007;148:4984–4992.

50.Tfelt-Hansen J,MacLeod RJ,Chattopadhyay N et al.Calcium-sensing receptor stimulates PTHrP release by pathways

dependent on PKC,p38MAPK,JNK,and ERK1/2in H-500cells.American Journal of Physiology –Endocrinology and Metabolism 2003;285:E329–E337.

*51.Mamillapalli R,VanHouten J,Zawalich W et al.Switching of G-protein usage by the calcium-sensing receptor reverses its

effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells.The Journal of Biological Chemistry 2008;283:24435–24447.

52.VanHouten JN.Calcium sensing by the mammary gland.Journal of Mammary Gland Biology and Neoplasia 2005;10:129–139.

53.Theriault RL.Biology of bone metastases.Cancer Control:Journal of the Mof ?tt Cancer Center 2012;19:92–101.

54.Patel LR,Camacho DF,Shiozawa Y et al.Mechanisms of cancer cell metastasis to the bone:a multistep process.Future

Oncology 2011;7:1285–1297.

55.Akhtari M,Mansuri J,Newman KA et al.Biology of breast cancer bone metastasis.Cancer Biology &Therapy 2008;7:3–9.

56.Yin JJ,Selander K,Chirgwin JM et al.TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone

metastases development.The Journal of Clinical Investigation 1999;103:197–206.

*57.El Hiani Y,Lehen ’kyi V,Ouadid-Ahidouch H et al.Activation of the calcium-sensing receptor by high calcium induced

breast cancer cell proliferation and TRPC1cation channel over-expression potentially through EGFR pathways.Archives of Biochemistry and Biophysics 2009;486:58–63.

58.Saidak Z,Boudot C,Abdoune R et al.Extracellular calcium promotes the migration of breast cancer cells through the

activation of the calcium sensing receptor.Experimental Cell Research 2009;315:2072–2080.

59.Huang C,Hydo LM,Liu S et al.Activation of choline kinase by extracellular Ca2tis Ca(2t)-sensing receptor,Galpha12and

Rho-dependent in breast cancer cells.Cellular Signalling 2009;21:1894–1900.

*60.Mihai R,Stevens J,McKinney C et al.Expression of the calcium receptor in human breast cancer –a potential new marker

predicting the risk of bone metastases.European Journal of Surgical Oncology:The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2006;32:511–515.

*61.Promkan M,Liu G,Patmasiriwat P et al.BRCA1suppresses the expression of surviving and promotes sensitivity to

paclitaxel through the calcium sensing receptor (CaSR)in human breast cancer cells.Cell Calcium 2011;49:79–88.

62.Bhola NE &Grandis JR.Crosstalk between G-protein-coupled receptors and epidermal growth factor receptor in cancer.

Frontiers in Bioscience:A Journal and Virtual Library 2008;13:1857–1865.

63.Tfelt-Hansen J,Yano S,John Macleod R et al.High calcium activates the EGF receptor potentially through the calcium-

sensing receptor in Leydig cancer cells.Growth Factors 2005;23:117–123.

64.Tomlins SA,Bolllinger N,Creim J et al.Cross-talk between the calcium-sensing receptor and the epidermal growth factor

receptor in Rat-1?broblasts.Experimental Cell Research 2005;308:439–445.

65.Yano S,Macleod RJ,Chattopadhyay N et al.Calcium-sensing receptor activation stimulates parathyroid hormone-related

protein secretion in prostate cancer cells:role of epidermal growth factor receptor transactivation.Bone 2004;35:664–672.

66.MacLeod RJ,Yano S,Chattopadhyay N et al.Extracellular calcium-sensing receptor transactivates the epidermal growth

factor receptor by a triple-membrane-spanning signaling mechanism.Biochemical and Biophysical Research Communica-tions 2004;320:455–460.

67.Foley J,Nickerson NK,Nam S et al.EGFR signaling in breast cancer:bad to the bone.Seminars in Cell &Developmental

Biology 2010;21:951–960.

*68.Journe F,Dumon JC,Kheddoumi N et al.Extracellular calcium downregulates estrogen receptor alpha and increases its

transcriptional activity through calcium-sensing receptor in breast cancer cells.Bone 2004;35:479–488.

69.Leclercq G.Calcium-induced activation of estrogen receptor alpha –new insight.Steroids 2012;77:924–927.

70.Janardhan S,Srivani P &Sastry GN.Choline kinase:an important target for cancer.Current Medicinal Chemistry 2006;13:

1169–1186.

71.Ackerstaff E,Glunde K &Bhujwalla ZM.Choline phospholipid metabolism:a target in cancer cells?Journal of Cellular

Biochemistry 2003;90:525–533.

*72.Liu G,Hu X &Chakrabarty S.Calcium sensing receptor down-regulates malignant cell behavior and promotes chemo-

sensitivity in human breast cancer cells.Cell Calcium 2009;45:216–225.

73.Breitwieser GE.Minireview:the intimate link between calcium sensing receptor traf ?cking and signaling:implications for

disorders of calcium homeostasis.Molecular Endocrinology 2012;26:1482–1495.

74.Silver IA,Murrills RJ &Etherington DJ.Microelectrode studies on the acid microenvironment beneath adherent macro-

phages and osteoclasts.Experimental Cell Research 1988;175:266–276.

75.Berger CE,Rathod H,Gillespie JI et al.Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts:

evidence for steady-state disposal and intracellular functional compartmentalization of calcium.Journal of Bone and Mineral Research 2001;16:2092–2102.

*76.VanHouten J,Sullivan C,Bazinet C et al.PMCA2regulates apoptosis during mammary gland involution and predicts

outcome in breast cancer.Proceedings of the National Academy of Sciences of the United States of America 2010;107:11405–11410.

77.Liao J,Schneider A,Datta NS et al.Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis.

Cancer Research 2006;66:9065–9073.J.N.VanHouten,J.J.Wysolmerski /Best Practice &Research Clinical Endocrinology &Metabolism 27(2013)403–414

414

车辆系统动力学发展1

汽车系统动力学的发展和现状 摘要:近年来,随着汽车工业的飞速发展,人们对汽车的舒适性、可靠性以及安全性也提出越来越高的要求,这些要求的实现都与汽车系统动力学相关。汽车系统动力学是研究所有与汽车系统运动有关的学科,它涉及的范围较广,除了影响车辆纵向运动及其子系统的动力学响应,还有车辆在垂向和横向两个方面的动力学内容。本文通过对汽车系统动力学的的介绍,对这一新兴学科的发展和现状做一阐述。 关键字:汽车系统动力学动力学响应发展历史 Summary:In recent years, with the rapid development of automobile industry, people on the vehicle comfort, reliability and safety are also put forward higher requirements, to achieve these requirements are related to vehicle system dynamics.Vehicle system dynamics is the study of all related to the movement of the car system discipline, it involves the scope is broad, in addition to the effects of dynamic response of vehicle longitudinal motion and its subsystems, and vehicles to and dynamic content crosswise two aspects in the vertical.Based on the vehicle system dynamics is introduced, the development and status of this emerging discipline to do elaborate. Keywords:Dynamics of vehicle system dynamics Dynamic response Development history 0 引言 车辆动力学是近代发展起来的一门新兴学科。有关车辆行驶振动分析的理论研究,最早可以追溯到100年前。事实上,知道20世纪20年代,人们对车辆行驶中的振动问题才开始有初步的了解;到20世纪30年代,英国的Lanchester、美国的Olley、法国的Broulhiet开始了车辆独立悬架的研究,并对转向运动学和悬架运动学对车辆性能的影响进行了分析。开始出现有关转向、稳定性、悬架方面的文章。同时,人们对轮胎侧向动力学的重要性也开始有所认识。 在随后的20年中,车辆动力学的进展甚微。进入20世纪50年代,可谓进入了一个车辆操纵动力学发展的“黄金时期”。这期间建立了较为完整的车辆操纵动力学线性域(即侧向加速度约小于0.3g)理论体系。随后有关行驶动力学的进一步发展,是在完善的测量和计算手段出现后才得以实现。人们对车辆动力学理解的进程中,理论和试验两方面因素均发挥了作用。随后的几十年,汽车制造商意识到行驶平顺性和操纵稳定性在汽车产品竞争中的重要作用,因而车辆动力学得以迅速发展。计算机及应用软件的开发,使建模的复杂程度不断提高。在过去的70多年中,车辆动力学在理论和实际应用方面也都取得了很多成就。在新车型的设计开发中,汽车制造商不仅依靠功能强大的计算机软件,更重要的是具有丰富测试经验和高超主观评价技能的工程师队伍。 传统的车辆动力学研究都是针对被动元件的设计而言,而采用主动控制来改变车辆动态性能的理念,则为车辆动力学开辟了一个崭新的研究领域。在车辆系统动力学研究中,采用“人—车—路”大闭环的概念应该是未来的发展趋势。作为驾驶者,人既起着控

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

关于三维图像目标识别文献综述

关于三维目标识别的文献综述 前言: 随着计算机技术和现代信息处理技术的快速发展,目标识别已经迅速发展成为一种重要的工具与手段,目标识别是指一个特殊目标(或一种类型的目标)从其它目标(或其它类型的目标)中被区分出来的过程。它既包括两个非常相似目标的识别,也包括一种类型的目标同其他类型目标的识别。目标识别的基本原理是利用雷达回波中的幅度、相位、频谱和极化等目标特征信息,通过数学上的各种多维空间变换来估算目标的大小、形状、重量和表面层的物理特性参数,最后根据大量训练样本所确定的鉴别函数,在分类器中进行识别判决。它属于模式识别的范畴,也可以狭义的理解为图像识别。三维目标识别是以物体表面朝向的三维信息来识别完整的三维物体模型目标识别需要综合运用计算机科学、模式识别、机器视觉以及图像理解等学科知识。目标识别技术已广泛应用于国民经济、空间技术和国防等领域。 正文: 图像识别总的来说主要包括目标图像特征提取和分类两个方面。但是一般情况下,图像受各种因素影响,与真实物体有较大的差别,这样,就需要经过预处理、图像分割、特征提取、分析、匹配识别等一系列过程才能完成整个识别过程。 目前,最主流的三种三维物体识别研究思路是: 1)基于模型或几何的方法;

2)基于外观或视图的方法; 3)基于局部特征匹配的方法; 一、基于模型或几何的方法: 这种方法所识别的目标是已知的,原理就是利用传感器获得真实目标的三维信息并对信息进行分析处理,得到一种表面、边界及连接关系的描述,这里,三维物体识别中有两类最经常使用的传感器:灰度传感器和深度传感器,前者获取图像的每个像素点对应于一个亮度测量,而后者对应于从传感器到可视物体表面的距离;另一方面,利用CAD建立目标的几何模型,对模型的表面、边界及连接关系进行完整的描述。然后把这两种描述加以匹配就可以来识别三维物体。其流程如下图所示: 传感器数据获取过程,就是从现实生活中的真实物体中产生待识别的模型。分析/建模过程,是对传感器数据进行处理,从中提取与目标有关的独立应用特征。模型库的建立一般式在识别过程之前,即首先根据物体的某些特定特征建立一些关系以及将这些信息汇总成一个库。在模型匹配过程,系统通过从图像中抽取出的物体关系属性图,把物体描述与模型描述通过某种匹配算法进行比较、分析,最终得到与物体最相似的一种描述,从而确定物体的类型和空间位置。 基于模型的三维物体识别,需要着重解决以下4个问题:

_现代汉语_历史与社会语言学_述评

《当代语言学》第8卷2006年第3期265-271页,北京 《现代汉语:历史与社会语言学》述评 P.Chen著李晋霞刘云述评 Chen Ping(陈平)《现代汉语:历史与社会语言学》(M odern Chinese:Its H istory and S o2 ciolinguistics)1999年由剑桥大学出版社出版。该书主要是供国外的汉语教师和学生使用的。可能是基于这样一个写作目的,作者以还原现代汉语的发展史为目标,在历史和社会的大背景下,从现代汉语口语、现代汉语书面语、现代汉语书写系统三个方面出发,对自19世纪末至1990年代的现代汉语的产生、发展过程进行了翔实、全面的考察,对外国人系统了解现代汉语和汉语的现代化过程极有帮助。 这本书是写给外国人的,但对于国人而言也很有价值。汉语是我们的母语,我们应该对它的历史有所了解。现代汉语我们再熟悉不过了,但现代汉语的发展史我们却未必都知道。特别是对于没有经历过汉语拼音化、汉字简化这些“语言运动”的年轻人来说,现代汉语是如何成为今天这个样子的更是所知甚少。读完本书,这个缺憾会得到很大的弥补。正是基于这样的认识,我们在学习了这本著作之后萌生了把它介绍给国内读者的想法。该书主要包括三个部分:现代汉语口语、现代汉语书面语、现代汉语书写系统。下面择要介绍。 1.现代汉语口语 这一部分主要论述了三个问题:现代汉语口语的建立和发展;标准现代汉语的规范和变异;标准语和方言。 1.1现代汉语口语的建立和发展 在简要回顾19世纪末以前的汉语标准口语的历史之后,作者重点论述了19世纪末以来现代汉语标准口语的建立和发展过程。 鸦片战争使国人认识到了自己的落后。从19世纪中期开始,由政府组织或民间自发的振兴中华的运动蓬勃发展,语言改革也是其中最为紧迫的一项任务。很多方言之间不能相互交流,在这一现实面前,建立和发展标准的现代汉语,并改革书写系统,就成为汉语现代化的两个最主要的任务。 受日本的启发,几位知名学者将日本的“国语”这一概念引入中国。在他们的努力推动下,国语被确立为现代标准汉语。1911年清朝灭亡前夕,《统一国语方法案》通过。由该法案可以看出,学者们在建立和发展现代标准汉语方面达成了以下共识:(1)国语的标准不止语音一个方面,还包括词汇和语法;(2)国语应主要建立在官话的基础之上,特别是建立在北京话的基础之上,应具有正确、文雅、合逻辑的特点;(3)现代标准汉语不应该只建立在某个单一方言或单一方言群的基础之上,而应包含不同特点,容纳其他方言的语音特点。这些设想和建议成为“国语运动”的基本使命。 本刊网址:htt p://https://www.360docs.net/doc/2b14066613.html, 562

多体系统动力学综述

1. 绝对节点坐标法 传统有限元方法建立的单元为非等参数单元,其使用节点处的位移梯度来描述物体的无限小的转动,但在物体发生大变形时,节点处的位移梯度已不能准确描述物体的转动变形,从而极大影响到计算的精度。 Shabana [1]提出了绝对节点坐标法(Absolute nodal coordinate formulation, ANCF ),其理论基础主要是有限元和连续介质力学理论。该方法将物体的单元节点坐标定义在全局坐标系下,使用节点处的斜率(slope)矢量作为节点坐标而不是节点处的无限小转动[2],不需要另外计算刚体位移与柔性变形之间的耦合,能较精确地计算大变形的多体系统动力学问题。其最终推导出的多体系统的微分代数方程组(DAEs )中,质量矩阵是一个常数矩阵,但刚度矩阵将是一个非线性的时间函数。 1.1梁单元的绝对节点坐标法 Shabana 首先推导出一维梁单元的绝对节点坐标法模型[1][3]。在这种模型中,梁单元用中性轴来简化,如图1所示,其上面任意一点P 在全局坐标系下的坐标表达为: 23101232320123r =Se r a a x a x a x r b b x b x b x ??+++??==????+++???? 图1 其中,x 为沿轴线的单元局部坐标,[]0,x l ∈,l 为梁单元初始长度;S 为单元形函数;e 为含有8个单元节点坐标的广义坐标矢量。 123456781102205162e []|,|,|,|, T x x x l x l e e e e e e e e e r e r e r e r ========= 1 2 1 2 304078,,,x x x l x l r r r r e e e e x x x x ====????====????

相关理论综述

二、国内外主要研究动态 (一)公发展战略研究 战略管理一词最早由安索夫在《从战略规划道战略管理》中提出。他认为,战略管理是关乎企业长期性、全局性和方向性的重要决策问题,是为了实现目标在复杂、多变的环境中谋求生存和发展,根据内外条件,确定企业组织发展路径的一个动态过程。 1、价值链理论 价值链这个概念是由哈佛商学院教授迈克尔·波特1985年在《竞争优势》一书中提出的。他认为,“每个企业都是在设计、生产、销售、发送和辅助其产品的过程中进行种种活动的集合,这些活动可以用一个价值链来表明。”1根据各个价值活动中价值创造中的重要程度不同,可把价值活动分成两类:基本活动和辅助活动。基本活动包括内部后勤、生产制造、外部后勤、市场营销、服务等;而辅助活动主要包括企业基础职能管理、人力资源管理、技术开发、采购等。 后来,波特又在其《竞争战略》一书中对价值链进行了重新定义:一系列连续的价值创造作业,从基本的原材料到供应商、到生产者、直到消费者使用的和在运输途中的最终产品。2 综合来看,价值链包括了三层含义 (1)包括企业内外部所有活动,以及供应商之间的关系、与顾客、竞争对手的关系等 (2)企业的各项活动之间有密切联系。 (3)每项活动都能给企业带来有形或无形的价值。 2、PEST分析法 公共环境是由处在企业外部同时影响多个企业的宏观因素构成的,但不一定一个国家或一个地区的所有企业都受同一个宏观因素的影响。可归纳为四个方面的因素,即P-政治因素、E-经济因素、S-社会因素和T-技术因素。对此四种因素的分析简称为PEST分析。它通过这四个方面的因素分析从总体上把握宏观环境,并评价这些因素对企业战略目标和战略制定的影响。 1、p即politics,政治因素,是指对经营有潜在或者实际影响的政治力量和法律、法规等因素。当政治制度与体制发生变化或当政府发布了对企业经营具有约束力的法律、法规时,则企业的经营战略必须随之做出调整。 2、E即Economics,经济要素,是指一个国家的经济制度、经济结构、产业布局、资源状况、经济发展水平以及未来的经济走势等。对这些要素的合理评估并作出正确的经营决策也相当重要。 3、S即Society,社会要素,是指组织所在社会中成员的文化传统、价值观念、宗教信仰、教育水平、社会环境以及风俗习惯等因素。构成社会环境的要素包括人口规模、年龄结构、种族结构、消费结构和水平、人口流动性等。 4、T即Technology,技术要素。技术要素不仅仅包括那些引起经济发展革命性变化的发明,也包括与企业生产相关的那些新技术、新工艺、新材料的出现等。在过去的半个世纪里,最迅速的变化就发生在技术领域。 3、五力分析模型 五力分析模型是迈克尔·波特于80年代初提出,用于竞争战略的分析,可以有效的分析客户的竞争环境,并对企业战略制定产生了全球性的深远影响。五力分别是:潜在竞争者的进入能力、替代品的替代能力、供应商的讨价还价能力、购

自适应PID控制综述(完整版)

自适应PID控制 摘要:自适应PID控制是一门发展得十分活跃控制理论与技术,是自适应控制理论的一个重要组成部分,本文简要回顾PID控制器的发展历程,对自适应PID控制的主要分支进行归类,介绍和评述了一些有代表性的算法。 关键词:PID控制,自适应,模糊控制,遗传算法。 Abstract: The adaptive PID control is a very active developed control theory and technology and is an important part of adaptive control theory.This paper briefly reviews the development process PID controller.For adaptive PID control of the main branches, the paper classifies,introduces and reviews some representative algorithms. Keywords: PID control, adaptive, fuzzy control, genetic algorithm 1 引言 从问世至今已历经半个世纪的PID控制器广泛地应用于冶金、机械、化工、热工、轻工、电化等工业过程控制之中,PID控制也是迄今为止最通用的控制方法, PID控制是最早发展起来的控制策略之一,因为他所涉及的设计算法和控制结构都很简单,并且十分适用于工程应用背景,所以工业界实际应用中PID 控制器是应用最广泛的一种控制策略(至今在全世界过程控制中用的80% 以上仍是纯PID调节器,若改进型包含在内则超过90%)。由于实际工业生产过程往往具有非线性和时变不确定性,应用常规PID控制器不能达到理想控制效果,长期以来人们一直寻求PID控制器参数的自动整定技术,以适应复杂的工况和高指标的控制要求。随着微机处理技术和现代控制理论诸如自适应控制、最优控制、预测控制、鲁棒控制、智能控制等控制策略引入到PID控制中,出现了许多新型PID控制器。人们把专家系统、模糊控制、神经网络等理论整合到PID控制器中,这样既保持了PID控制器的结构简单、适用性强和整定方便等优点,又通过先进控制技术在线调整PID控制器的参数,以适应被控对象特性的变化。 2 自适应PID控制概念及发展 2.1 PID控制器 常规PID控制系统原理框图如下图所示,系统由模拟PID控制器和被控对象组成。

图像分割 实验报告

实验报告 课程名称医学图像处理 实验名称图像分割 专业班级 姓名 学号 实验日期 实验地点 2015—2016学年度第 2 学期

050100150200250 图1 原图 3 阈值分割后的二值图像分析:手动阈值分割的阈值是取直方图中双峰的谷底的灰度值作为阈值,若有多个双峰谷底,则取第一个作为阈值。本题的阈值取

%例2 迭代阈值分割 f=imread('cameraman.tif'); %读入图像 subplot(1,2,1);imshow(f); %创建一个一行二列的窗口,在第一个窗口显示图像title('原始图像'); %标注标题 f=double(f); %转换位双精度 T=(min(f(:))+max(f(:)))/2; %设定初始阈值 done=false; %定义开关变量,用于控制循环次数 i=0; %迭代,初始值i=0 while~done %while ~done 是循环条件,~ 是“非”的意思,此 处done = 0; 说明是无限循环,循环体里面应该还 有循环退出条件,否则就循环到死了; r1=find(f<=T); %按前次结果对t进行二次分 r2=find(f>T); %按前次结果重新对t进行二次分 Tnew=(mean(f(r1))+mean(f(r2)))/2; %新阈值两个范围内像素平均值和的一半done=abs(Tnew-T)<1; %设定两次阈值的比较,当满足小于1时,停止循环, 1是自己指定的参数 T=Tnew; %把Tnw的值赋给T i=i+1; %执行循坏,每次都加1 end f(r1)=0; %把小于初始阈值的变成黑的 f(r2)=1; %把大于初始阈值的变成白的 subplot(1,2,2); %创建一个一行二列的窗口,在第二个窗口显示图像imshow(f); %显示图像 title('迭代阈值二值化图像'); %标注标题 图4原始图像图5迭代阈值二值化图像 分析:本题是迭代阈值二值化分割,步骤是:1.选定初始阈值,即原图大小取平均;2.用初阈值进行二值分割;3.目标灰度值平均背景都取平均;4.迭代生成阈值,直到两次阈值的灰 度变化不超过1,则稳定;5.输出迭代结果。

语言学概述

语言学概述 这就是综述一下,不过下面提到的名词的都是考过的知识点。 一、定义:什么是语言学? Linguistics is generally defined as the scientific study of language. 二、语言学研究的核心(下面的术语要尽量全都认识,不然做题时可能看不懂选项) 1、Phonetics 语音学 2、Phonology 音位学 3、Morphology 形态学 4、Syntax 句法学 5、Semantics 语义学 6、Pragmatics 语用学 三、语言(Langue)和言语(Parole) 这个考过的。Parole这个概念是 F. de Saussure(索绪尔)提出的。Langue指语言系统的整体,“所有(语言使用)个体头脑中存储的词语-----形象之总和”,这个整体相对较为稳定;Parole 指某个个体在实际语言使用环境中说出的具体话语,它是随时间和地点变化的一个动态的实体。 四、语言的功能Functions of Language (这个也考过的。考过the informative function,就是高速公路指示牌的那道题) 1、The instrumental function 2、The regulatory function 3、The heuristic function 4、The interactional function 5、The personal function 6、The imaginative function

7、The informative function 五、语言的普遍特征Design Features 这个也考过的,这五个特征由美国语言学家Charles Hockett提出。 弱弱地说一句:如果真的在临时抱佛脚,那就不要管这五个术语的具体含义了,只要能强行记下来应付考试就是了。>_< 1、Arbitrariness 任意性 2、Productivity 多产性 3、Duality 双层结构 4、Displacement 移位性 5、Cultural Transmission 文化传播性 六、语音学和音位学 (一)语音学 Phonetics: the study of the phonic medium of language. 1、三大分支 (1)Articulatory Phonetics发音语音学 (2)Auditory Phonetics 听觉语音学 (3)Acoustic Phonetics 声学语音学 2、辅音和元音(这个考过的,考过二者的区别) (二)音位学 Phonology: aims to discover how speech sounds in a language form pattern and how these sounds are used to convey meaning in linguistic communication. 1、三个术语 (1)Phone音素

显式预测控制

显式模型预测控制综述 亚历山德罗·阿莱西奥和阿尔贝托·本波拉德 摘要: 显式模型预测控制解决了模型预测控制的主要缺点,即需要解决在线的数学程序来估计控制动作。在一些文献中,这个估计阻止了MPC的应用,因为在采样时间内解决最优问题的计算技术比较困难或根本不可行,或者是计算机代码实现数值求解器时导致软件认证问题,尤其是存在安全性的关键问题。 显式MPC在给定的感兴趣的操作条件范围内允许其离线计算优化问题。显式MPC通过利用多参数的编程技术离线计算出的最优控制动作可以作为状态的显式功能和参考矢量,使上线操作简化为简单的函数求值。这样一个函数在大多数情况下是分段仿射的,所以MPC控制器可以映射成线性增益的查找表。 本文调查显式MPC在科学文献上的主要贡献。首先回顾基本概念和MPC 方案的问题,复习解决显式MPC问题的主要方法包括新颖而简单的次优实用方法以降低显式形式的复杂性。本文结尾评论了一些未来的研究方向。 关键词:模型预测控制,显式解,多参数编程,分段仿射控制器,混合系统,最小—最大控制。 1模型预测控制 模型预测控制的控制动作是通过解决在每个采样时刻的有限时域开环最优控制问题而得到的。每个优化产量的最优控制序列,只有第一步应用到过程中:在下个时间步长中,采用最新的可用状态信息作为最优控制新的初始状态通过偏移一个时间范围重复计算。因此,MPC也被成为后退或滚动时域控制。 该解决方案依赖于过程的动态模型,遵守所有的输入和输出(状态)的约束,

并优化其性能指标。这通常表示为一个二次或线性准则,因此,对于线性预测模型产生的优化问题可以转换为一个二次规划(QP )或线性规划 (LP ),而对于混合预测模型,所得到的优化问题可以转换为将在下一章节的讲述的混合整数二次或线性规划(MIQP/ MILP )。因此,MPC 和常规控制的主要区别在于,后者的控制函数在离线情况下预先计算的。MPC 在工业应用上的成功是由于其在处理有许多操纵的控制流程,控制变量及系统对它们的约束的能力。 过程控制通常是由差分方程的系统建模的 (1)((),())x t f x t u t += (1) 其中,()n x t ∈ 是状态矢量, ()m u t ∈ 是输入矢量。假设一个简单的(0,0)0f =, 控制和状态序列要满足的约束条件 ()x t ∈?,()u t μ∈ (2) m μ? ,n χ?在它们的内部封闭集包含原点。假设控制目标引导状态的起源, MPC 解决了如下的约束监管问题。假设在当前时刻t 的状态量x(t)的完整测量是可使用的,那么下面的有限视距优化监管问题可以解决。 1 0(()):min ((),())()N N z k x t l x k u k F xN -=P +∑ (3a) ..s t 1(,),0,...,1k k k x f x u k N +==- (3b) 0()x x t = (3c) ,0,...,1k U u k N μ∈=- (3d) ,1,...,1k x k N χ∈=- (3e) ,N N x χ∈ (3f) (),,...,1k k u u x k N N κ==- (3g) 其中,z ∈ 是优化变量的向量,01['...']'N z u u -=,u mN =(一般情况下,z 包括

产业结构协调理论综述

产业结构协调理论综述 1引言 产业结构协调问题是国家经济发展过程中的主要矛盾之一。产业结构协调发展既意味着产业结构本身的协调和优化,也意味着区域之间在产业发展上合理的分工。以区域的协调发展为例,区域是为管理社会、经济等活动的应用性整体,作为国家领土的一部分,区域有大有小、有强有弱、彼此相连,相互之间存在各种关系。区域之间或区域内部各组成部分之间不可避免地会发生各种经济关系,这种关系和谐则会对区域经济有积极的推动作用,反之,则会产生消极的摩擦和冲突。区域经济是国民经济的组成部分,但是,国民经济却并不等于各区域经济的简单累加。区域经济协调则会产生“1+1>2”的效果,反之,若区域经济之间摩擦和冲突不断则结果往往是“1+1<2”[1]。我国作为最大的发展中国家,区域经济发展差距一直较大,改革开放以来非平衡发展模式的实施使得这一问题更加突出。 区域经济的协调发展可以通过产业结构的地区协调来实现。目前正处于转轨期的我国经济改革,面临着错综复杂的各种矛盾的干扰,区域经济协调发展问题就是其中之一。产业结构区际矛盾的具体表现就是地区产业结构趋同以及由此导致的地方保护主义盛行、地方利益抬头、产品的过剩与短缺并存、产业过度竞争等,所有这一切都使得我国各种经济资源的配置远未达到“帕累托最优”。因此,研究探索产业结构协调的理论,以减少或协调产业发展的矛盾,促进经济资源的合理配置,具有十分重大而深远的理论和现实意义。

2产业结构协调的重要性 2.1经济发展的内在要求 在任何社会,只要存在社会化大生产,在客观上都要求按比例分配社会劳动。对一国来讲,整个国民经济是一个复杂的有机整体,各个部分相互之间存在着极为密切的联系,并保持着一定的比例关系,因此,国民经济要实现持续稳步增长,产业之间的发展必须协调,即在再生产过程中,应经常注意保持各部门、各环节之间的内在联系和比例关系。这种内在联系和数量的比例关系可以表现在多个方面,如各个部门和行业之间;每个部门和行业内部各环节之间;同类产品生产的各部门和行业之间;区域与区域之间等,产业结构协调意味着从产业的角度看这些内在联系和比例关系是协调的。 2.2提高经济效益的需要 在科技进步日新月异、社会生产力不断提高和社会分工日趋专业化的背景下,市场上的中间产品需求日益增多,产业部门之间彼此依赖程度日渐增大,结构效益的权重日益上升,以至于成为现代经济增长的一个基本支点。这种来自结构聚合的经济效益,其意义已大大超过个体劳动生产率提高对效益增长所带来的影响。 现代经济增长应该是速度与效率的统一,只有产业结构协调才能达到这一目标,否则社会商品要么是短缺与过剩并存,要么是以周期性的波动甚至经济危机爆发出来。对第二次产业而言,由于三次产业之间存在着供求关系和一系列数量比例关系,因此其发展必须与第一次产业和第三次产业的发展相适应。只有产业结构合理,才能保证各

领导理论研究综述-毕业论文

学年论文论文题目: 领导理论研究综述 学院名称:管理学院 论文提交时间: XXXXXXX

摘要 21世纪,是知识经济的时代;是人才的时代;是竞争日趋激烈的时代。当今,和平与发展早已成为时代的主题,在经济全球化及区域一体化的进程不断加快,跨国公司迅猛发展的今天,人才是企业关键的竞争优势来源,随着无形资本的重要性逐渐升高,如何将人力资本转化为生产力,其中一个影响因素就是领导的领导理论。领导理论影响着员工绩效,形成组织氛围,潜移默化构成组织文化,那么什么样的领导理论才适应新时代的发展,更好地发挥员工积极性,提高领导的有效性呢?从而提高员工绩效呢?带给我们的启示是什么?在中国背景下,特别是中国加入WTO以来研究领导理论更具实际意义,也是国内外企业管理理论和实际领域中的重要课题。 对领导理论的研究有斯托格迪尔[Stogdill],鲍莫尔为代表的特质理论,E.Fleishman(1948)为首的美国俄亥俄州立大学的领导行为的四分图理论,怀特和李皮特的三种领导方式理论,美国管理学家利克特(Rensis Likert)及密歇根大学社会研究所的有关研究人员提出的“工作中心”与“员中心”理论,里斯(Chris Argyris)的不成熟—成熟连续流理论,三隅二不二的PM模型,及中国的相关领导行为理论PM研究, 费德勒模式,豪斯的路径—目标理论,佛鲁姆(V.H.Vroum)和耶顿(P.W.Yeton)又提出了领导-参与模式等为代表的领导权变理论。 本研究综述上述领导理论,希望在这瞬息万变的社会,能够提升中国管理者的领导行为。 关键词:领导理论,特质理论,领导行为理论,领导权变理论

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

《产业结构优化升级文献综述》论文纲要

论文纲要 题目:产业结构优化升级对经济增长影响的研究理论综述 张晨曲 (广东外语外贸大学经贸学院2010级世界经济研究生) 学号:20100210018 一、文章主要内容 产业结构优化升级是实现资源有效配置的有效途径,是促进地方经济发展的关键,是加快工业化进程的战略举措,产业结构优化升级理论始于日本经济学家筱原三代平的研究,目前,在世界金融危机蔓延之时,产业结构优化升级研究缺乏动态性研究,优化升级基准与指标体系不相匹配等问题凸显出来,本文通过对国内外产业结构优化升级理论研究现状与方法进行回顾、整理、归纳、分析。以期有助于产业结构优化对维持经济持续增长这一问题的深入研究,归纳以后,我们认为进行基础理论再研究,开展优化升级,进行资源配置效率评价和培育支持体系研究,将是产业结构优化升级理论研究的方向和重点。 二、研究背景 产业结构优化升级是指在工业化进程中,地方政府根据产业结构的特征,结合经济发展的约束因素,优化升级出最佳产业,从而带动其他产业发展的积极、主动、有效的战略行为。中国已进入工业化加速发展时期,各地区在“十一五”规划中,都纷纷提出要加大产业结构调整力度发展各自的龙头产业。尤其在当今世界金融危机之时,产业结构优化升级再度成为人们关注的焦点与重点研究课题,很有必要对产业结构优化升级研究的回顾,查找出存在的问题,通过系统分析,从而促进对产业结构优化升级作进一步研究。 三、国外产业结构优化升级理论发展回顾 国外产业结构优化升级研究主要是以国家层面的产业结构为研究对象,在产业结构理论研究基础上逐步发展起来的。 (一)美籍奥地利经济学家华尔特.特曼.罗斯托(Walt Whit man Bristow ,1916 — 2003) 曾经出版过《经济成长的阶段》。他通过研究各国经济发展效率之中存在的差异,发现了经济增长过程中存在着某种行业部门,在每个阶段,甚至在一个比较成熟并继续成长的发展阶段中,都存在一些能够带动其他产业结构发展的部门,并称这些部门为行业领头羊,从而描绘出经济成长阶段的依次更替与部门依次变化之间的关系。经济学家罗斯托同时认为,经济之所以能够发展,正是这些在产业部门中占主导地位的行业迅速扩大的结果。 (二)美国人赫希曼(A.O.Hir schman)是位著名的经济学家,他在《经济发展战略》一书中也对产业结构进行了深入的研究,认为资源的稀缺性,企业家缺乏和平衡增长的不可行性等原因,从而提出发展中国家和地区在资本与资源有限的情况下,应集中有限的资本和资源,重点发展一部分拳头品牌产业,并以此逐步扩大其他产业结构的投资,带动其他产业的发展。 (三)美籍奥地利经济学家华尔特.特曼罗斯托在对发达国家与政府的各个经济成长阶段进行研究时,发现产业结构的存在,并对产业结构的特征和作用进行了论述,指出了优化

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

国外阅读理论研究概述_杨素珍

淮阴师专学报 第17卷1995年第4期(总第69期) 国外阅读理论研究概述 杨素珍 近几十年来,国外学者对阅读理论的研究给予极大关注。他们从心理语言学、社会语言学、认知心理学等各个不同角度,对第一、第二语言及外语阅读作了广泛深入的研究。本文沿阅读理论研究发展的轨迹,介绍近年来这一领域的主要研究成果,并就其对教学的指导意义作简要的论述。 一、五、六十年代的阅读教学 尽管阅读理论研究已有百年历史,但在五、六十年代,由于受生成语法和结构语言学的影响,人们普遍不重视阅读教学。在语言教学中,阅读被看成是孤立于其它各种技能的独立活动,是四项语言技能(听、说、读、写)中最不可教的(least teachable)。学习者只要掌握了一定的词汇和语法知识就自然会读。因此无阅读理论研究可言,更无描述阅读全过程的阅读模式。 到了60年代,由于受行为主义心理学的影响,阅读被看成是被动、精确、“自下而上”的过程。读者对印刷符号的刺激作出反应,由字母、单词辨认直至对更大的语言单位(如短语、句子等)的识别。通过逐词逐句的解码就可获取意义,因为意义附身于文。Caroll(1964)对当时的阅读过程作过这样的描述:“阅读沿着`视觉刺激→口头重新编码→作出字义反应’这一单向流程进行。”在这一阅读模式中,读者只对语言形式作出反应,忽视上下文及其它因素的作用,低估了读者在阅读过程中的积极能动作用,显然,用这种阅读理论指导教学,不利于学习者阅读能力的提高。 起了那里人们的生活方式,而他们原先的言语行为等只在小范围内(自己内部)发挥微小的作用。如西方民族很忌讳的数字“十三”很快为他们所接受。这“十三”并且通过电影、电视、书刊等很快印进经济落后民族人的脑海里,以致他们不知不觉地在言语行为上实践了起来。当然,并不是说落后民族的文化中没有别人可以学习、接受的东西。但就禁忌语而言,他们很难进入到经济发达的先进民族的文化中。 有些禁忌语是属于共性,如猥亵性词语,象fuck, shit等;辱骂性的词语,象“混蛋”、“蠢猪”等;涉及疾病、死亡、人体排泄的词语,象“癌症”、“艾滋病”等。在不得不使用这些禁忌语时,人们往往会选用委婉一些的词。如:英语中人们常说癌病为“the Big C”,“C、A”或者“Gro wth”等。 有些禁忌语对人们的影响是短暂的。随着科学技术的发达,“超自然”的具有一些迷信色彩的语言材料逐渐失去了“功”和“能”,如,人们对诸如“天打雷劈”等词语不再存有恐惧心理。有些禁忌语则可能是永远遭人忌讳的。如涉及到性、人体排泄、死亡的词语等,但是,不管怎样,旧的忌讳消失了,又会出现新忌讳。而且人们对一些言语虽忌讳,但有时又偏要使用,这跟人们的精神寄托、感情发泄的需要等都有直接的关系,只是由于身份、年龄、性别、社会集团等的不同在使用程度上、次数上会有所不同。 《礼记·曲礼》说:“入竟而问禁,入国而问俗,入门而问讳”;《周礼·地宫·育训》也说:“掌道方焉,以治辟忌,以知地俗。”总之,了解人们的各种言语禁忌及其价值趋向对人们增进了解,促进合作,和平相处,对人类携手共创美好的明天是一项具有深远意义的战略战术。 参考文献: ①方立天:《中国佛教与传统文化》第259页,上海人民出版社。 ②杨宗、聂喜思、郭全盛:《中国实用禁忌大全》第10页,上海文化出版社。 ③Rchard M usman,"Background to th e U.S.A"P120. ④The Bible Societies Holy Bible--Good New s Edition ,Printed in Great Britain at th e Uni v ersity Press,Cambridge. ⑤⑦Francis L.K.HSU.Am ricans&Chines e:Passage to D ifferences.Th e Univers ity Press of Haw aii,U.S.,1981. ⑥庄和诚:《英语禁忌语刍议》现代外语,1990第2期。 ⑧《上海译报》1995年9月18日。 责任编辑 吴 围 37

相关文档
最新文档