三奥第14讲 等差数列(一)

三奥第14讲 等差数列(一)
三奥第14讲 等差数列(一)

第十四讲等差数列(一)

知识要点

等差数列的有关定义:若干个数列排成一列成为数列,数列中的每一个数称为一项,其中第一项叫首项,最后一项称为末项,数列中的个数称为项数。从第二项开始,后项与前项之差都相等的数列叫“等差数列”,这时后项与前项(或前项与后项的差)称为公差。举例:2,4,6,8,···98,100这是一个首项为2,末项为100,公差为2,项数为50的等差数列。有关公式:(1)第几项=首项+(项数n-1)×公差

末项=首项+(项数—1)×公差

首项=末项-(项数-1)×公差

(2)项数=(末项—首项)÷公差+1

(3)公差=(末项—首项)÷(项数-1)

(4)等差数列的和=(首项+末项)×项数÷2

导入:有一个老和尚有两个徒弟,大徒弟一次种了40棵树,第一天种2棵,然后每天种多种4棵,小和尚第一天种了3课,第二天种了6棵,第三天种了9棵……,大和尚对小和尚说你怎么都不会赶上我的,小和尚就跑过去问师傅,师傅掐指一算就知道能否赶上,同学们你们觉得能不能赶上?

师:让我们带着这个疑问进入接下来的课堂中吧。

例题精讲

例1、有一个等差数列:3、7、11、15……,这个等差数列的第30项是多少?第75项呢?

如果让我们把每项加起来算的话计算快不快?

是否能有其他的方法呢?

哦,有同学发现一头一尾加起来的和刚好都相等,都等于122,

师:很好,这位同学很善于观察和思考,那我们一起来探讨一下关于这样一组数求和的简便计算方法

1、引入等差数列的定义

2、可以先试着计算前面几项的和当做试验。

3、总结规律

例1、有一个等差数列:3、7、11、15……,这个等差数列的第30项是多少?第75项呢?

第几项=首项+(项数n-1)×公差

第30项=3+(30-1)x (7-3)=119

第75项=3+(75-1)x(7-3)=299

练求等差数列1、4、7、10 …… ,这个等差数列的第30项是多少?

刚才是告诉了首项求第几项,同学们完成的都很好,现在反过来大家试一试,

例2、已知一个等差数列共有32项,公差是6,末项是191,求这个等差数列的首项。

首项=末项-(项数-1)×公差

191-(32-1)x 6=5

练一个等差数列一共有21项,末项是180,公差是8,求首项?

例3、已知一个等差数列的第一项是1,第10项是28,求公差。

项数=(末项—首项)÷公差+1

(28-1)÷(10-1)=3

练一个等差数列的首项是3,第9项是27,求公差?

大家有没有想过一个很长的等差数列给我们,我们如何知道一共到底有多少项呢?难道要我们一个一个的数么,那要是给个非常长的等差数列,那岂不是要数到过年了啊?

例4、有一个等差数列:2、9、16、23……142,这个等差数列共有多少项?

项数=(末项—首项)÷公差+1

(142-2)÷(9-2)+1=21

练有一个数列,4、10、16、22 …… 52,这个数列有多少项?

例5、有一个等差数列:1、9、17、25……,请问:321是第几项?

项数=(末项—首项)÷公差+1

(321-1)÷(9-1)+1=41

练已知数列2、5、8、11、14 …… ,47应该是其中的第几项?

例6、1+2+3+4+5+……+100

等差数列的和=(首项+末项)×项数÷2

(1+100)x100÷2=5050

练8+18+27+36+…… +261+270=()

小兵小将大家都消灭了,现在碰到boss了,大家要小心了,不过boss也是从小兵做起的,所以一个一个克服就能解决难题了

例7、(1)有一列数:3、7、11、15……,求这个数列中前20项的和。

第几项=首项+(项数n-1)×公差

3+(20-1)x(7-3)=79

等差数列的和=(首项+末项)×项数÷2

(3+79)x20÷2=820

(2)请计算:3+12+21+30+……+363

项数=(363-3)÷(12-3)+1=41

(3+363)x41=15006

例8、请计算下面两题,你发现了什么规律?

(1)1+5+9+13+17

(1+17)x5÷2=45

9x5=45

(2)2+4+6+8+10+12+14+16+18

(2+18)x9÷2=90

9x10=90

大家仔细观察一下每个数列中间的那个数和项数有什么特点?

总结:奇数项的和=中间数x个数

练求等差数列4,7,10,13 ,16的和

求3 ,6 ,9,12,15,18 ,21,的和

总结:整章内容所讲的是等差数列求和,首项,公差,末项,项数,第几项的几个基本公式,难度不大但是要善于活学活用,以及求首项的几种方法。

练习巩固

1、下面的数列中,哪些是等差数列?如果是,请指明公差、首项、末项及项数,如果不是,说明理由。

(1)2,4,6,8,10,12,14,16

(2)20,19,18,17,16,15,14,13,12,11,10

(3)5,5,5,5,5,5,5

(4)1,0,1,0,1,0,1,0

(5)1,2,4,8,16,32,64

解:1、是的公差是2 首项是2 末项是16 项数是8

2、是的公差是1 首项是20 末项是10 项数是11

3、是的公差是0 首项是5 末项是5 项数是7

4、不是公差不确定

5、不是公差不确定

2、有一个等差数列:

3、6、9、12……,这个等差数列的第35项是多少?第60项呢?

第35项=3+(6-3)x(35-1)=105

第60项=3+(6-3)x(60-1)=180

3、已知一个等差数列共有4项,公差是5,末项是154,求这个等差数列的首项。

154-(4-1)x5=139

4、有一个等差数列:1、

5、9、13……241,这个等差数列共有多少项?

(241-1)÷(5-1)+1=61

5、有一个等差数列:3、10、17、24……,请问:283是第几项?

(283-3)÷(10-3)+1=41

6、1+2+3+4+5+……+80

(1+80)x80÷2=3240

7、有一列数:2、4、6、8……,求这个数列中前40项的和。

2+(40-1)x2=80

(2+80)x40÷2=1640

8、请计算:4+11+18+25+……+214

(214-4)÷(11-4)+1=31

(4+214)x31÷2=3379

9、有七个连续自然数的和是140,这七个连续自然数各是多少?

奇数个等差数列的和=个数x中间数

中间数=140÷7=20

这七个连续自然数是 17 18 19 20 21 22 23

10、如果一个等差数列的第3项是14,第11项是30,求它前61项的和。

公差=(30-14)÷(11-3)=2

首项=14-(3-1)x2=10

末项=10+2x(61-1)=130

(10+130)x61÷2=4270

等差数列讲义(学生版)

2.2 等差数列 2.2.1 等差数列的概念、通项公式 【学习目标】 1.理解等差数列的定义(重点); 2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题; 3.掌握等差中项的概念,深化认识并能运用(重、难点). 【要点整合】 1. 等差数列的概念 2. 等差中项 如果三个数a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项. 注意 根据等差中项的定义,a ,A ,b 成等差数列,则A =a +b 2;反之,若A =a +b 2 ,也可得到a ,A ,b 成等差数列,所以A 是a ,b 的等差中项?A =a +b 2 3. 等差数列的通项公式 如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 上述公式中有4个变量,a 1,d ,n ,a n ,在4个变量中已知其中的三个便可求出其余的一个,即“知三求一”.其作用为: (1)可以由首项和公差求出等差数列中的任一项; (2)已知等差数列的任意两项,就可以求出首项和公差,从而可求等差数列中的任一项; (3)由等差数列的通项公式可求出数列中的任意一项,也可判断某数是否为数列中的项及是第几项. 【典例讲练】 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…;

(4)1,2,4,6,8,10,…; (5)a,a,a,a,a,…. 练习1:数列{a n}的通项公式a n=2n+5,则此数列() A.是公差为2的等差数列 B.是公差为5的等差数列 C.是首项为5的等差数列 D.是公差为n的等差数列 题型二等差中项 例2在-1与7之间顺次插入三个数a,b,c使这五个数成等差数列,求此数列. 练习2:若m和2n的等差中项为4,2m和n的等差中项为5,求m和n的等差中项. 题型三等差数列的通项公式及应用 例3(1)若{a n}是等差数列,a15=8,a60=20,求a75. (2)已知递减等差数列{a n}的前三项和为18,前三项的乘积为66.求数列的通项公式,并判断-34是该数列的项吗? (3)等差数列2,5,8,...,107共有项

第五讲 数列的极限与无穷等比数列各项的和

第五讲 数列的极限与无穷等比数列各项的和 知识提要 1. 数列的极限 :n 无限增大,n a 无限趋近一个常数.A (1) 数列极限的运算法则(加法、乘法法则可推广到有限多个数列). 如果n n a ∞ →lim =A ,n n b ∞ →lim =B 存在,那么 ①B A b a b a n n n n n n n ±=±=±∞ →∞ →∞ →lim lim )(lim ; ②B A b a b a n n n n n n n ?=?=?∞→∞→∞→lim lim )(lim ; ③lim lim (0)lim n n n n n n n a a A B b b B →∞ →∞→∞ ==≠. (2)数列极限的几种类型: ①有理分式型:同除以某个非零因式; ②求和型:无限项,先求和再求极限;无穷数列各项的和. ③指数型0(1) 1(1)lim ;(1)(1)n n q q q q q →∞ ? 不存在不存在 ④{}n n S S .lim n n S →∞?????表示数列的极限,可先求,再求极限;无穷运动的归宿,直接考虑极限位置;无穷数列各项的和 2.无穷等比数列各项的和:若1q <且0q ≠,则1 lim 1n n a S S q →∞ == -存在. (1)1 1,0;1q q a S q <≠???=?-? 注意区别: (a)11lim ≤<-?∞→q q n n 存在; (b)1||0lim

小学奥数五年级精讲选讲1 等差数列求和

选讲1 等差数列求和 一、知识要点 若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项;数列中,项的个数称为项数。 从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 二、精讲精练 【例题1】有一个数列:4,10,16,22…,52.这个数列共有多少项? 练习1: 1.等差数列中,首项=1.末项=39,公差= 2.这个等差数列共有多少项?

2.有一个等差数列:2, 5,8,11…,101.这个等差数列共有多少项? 3.已知等差数列11, 16,21, 26,…,1001.这个等差数列共有多少项? 【例题2】有一等差数列:3, 7,11, 15,……,这个等差数列的第100项是多少? 练习2: 1.一等差数列,首项=3.公差= 2.项数=10,它的末项是多少?

2.求1.4,7,10……这个等差数列的第30项。 3.求等差数列2.6,10,14……的第100项。 【例题3】有这样一个数列:1, 2, 3, 4,…,99,100。请求出这个数列所有项的和。 练习3: 计算下面各题。 (1)1+2+3+…+49+50 (2)6+7+8+…+74+75

(3)100+99+98+…+61+60 【例题4】求等差数列2,4,6,…,48,50的和。 练习4:计算下面各题。 (1)2+6+10+14+18+22 (2)5+10+15+20+…+195+200 (3)9+18+27+36+…+261+270

(完整版)四年级奥数第四讲_等差数列含答案

等差数列 一、知识点: 1、数列:按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。数列中共有的项的个数叫做项数。 2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。 3、常用公式 等差数列的总和=(首项+末项)?项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差?(项数-1) 首项=末项-公差?(项数-1) 公差=(末项-首项)÷(项数-1) 等差数列(奇数个数)的总和=中间项?项数 二、典例剖析: 例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少? 分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)÷公差+1,便可求出。 (2)根据公式:末项=首项+公差?(项数-1) 解:项数=(201-3)÷3+1=67 末项=3+3?(201-1)=603 答:共有67个数,第201个数是603 练一练:在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项? 答案: 第48项是286,508是第85项 例(2 )全部三位数的和是多少? 分析::所有的三位数就是从100~999共900个数,观察100、101、102、 (998) 999这一数列,发现这是一个公差为1的等差数列。要求和可以利用等差数列求和公式来解答。 解:(100+999)?900÷2 =1099?900÷2 =494550 答:全部三位数的和是494550。 练一练:求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。 答案: 1000

数学文-第五讲列综合题37

第五讲 数列综合题 例题讲解 例1、在公差为(0)d d ≠的等差数列{}n a 和公比为q 的等比数列{}n b 中,已知 11221,a b a b ===,83a b =. (1)求数列{}n a 与{}n b 的通项公式; (2)是否存在常数,a b ,使得对于一切正整数n ,都有log n a n a b b =+成立?若存在, 求出常数a 和b ,若不存在,说明理由. 2、已知:f(x)=4 12 -x (x <—2),,点An(1 1+- n a ,n a )在曲线y =f(x)上(n ∈N +),且a 1 =1. (1)证明数列{ 21 n a }为等差数列;(2)求数列{a n }的通项公式; (3)设n b = 1 111++n n a a ,记S n =b 1+b 2+……+n b ,求n s . (4)数列{}n b 的前n 项和为n T ,且满足 3816221 21--+=++n n a T a T n n n n ,设定1b 的值,使得数列{}n b 是等差数列; 例3、已知数列{}n a 中,n s 是其前n 项和,并且)(24* 1N n a s n n ∈+=+且11=a .

(1) 设)(2*1N n a a b n n n ∈-=+,求证数列{}n b 成等比数列. (2) 设)(2 * N n a c n n n ∈= ,求证:数列{}n c 是等差数列. (3) 求数列{}n a 的通项公式及其前n 项和. 例4、已知数列{}n a ,3654=a ,且1331-+=-n n n a a )2(≥n . (1) 求1a ,2a ,3a ; (2) 若存在一个实数λ使得? ?? ?? ?+n n a 3λ为等差数列,求λ; (3) 求数列{}n a 的前n 项的和. 随堂练习 已知函数)(x f 对任意实数p 、q 都满足)()()(q f p f q p f ?=+且3 1)1(=f 。 (1)、当+∈N n 时求)(n f 的表达式 (2)、设k n k n a N n n nf a 1 * ),)((=∑∈=求。 变式 1、若将题目中的条件“)()()(q f p f q p f ?=+”改为

第01讲等差数列及其性质

【知识概述】 1.定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数, 个数列叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d 表示,即 a n a n 1 d(n N ,n 2). 2.通项公式:a n a 1 (n 1)d (n N 4.递推公式:a n+1 a n +d (n N ) 5.中项公式:若a 、M 、b 成等差数列, 2M a+b ,称M 为a 、b 的等差中项, a+b 即M 丁 ;若数列a n 是等差数列,则 2a n 6.等差数列的简单性质:(m 、n 、p 、q 、k 若 m n p q ,则 a m a n a p a q ; m n 2p ,则 a m a n 2a p ; 2a m a m 1 a m 1 ; 2a m a m k + a m k a m a n ( m n)d ; S 2m 1 (2 m 1)a m ; 那么这 3.前n 项和公式:S n nd 血卫d n(a i a n ) a n i + a n 1( n 2). (6) S m , S 2m S m ,S 3m S 2m 仍为等差数列. f(n) ' an b n f(n)是n 的一次函数 f(n) 成等差数列. n 数列 { a n } 为等差数列 2 S n an bn 是n 的二次函数且常数项为零

【学前诊断】 已知等差数列{a n}中, (1)若a7 a9 16 ,a4 1 ,则a12= 已知数列a n是等差数列, 则k= 已知等差数列a n的前n项和为S n, (〔)右a3 a? a10 g, an a4 4,则S13 (2)若S2 2,S4 10, S6 【经典例题】 n的值. 求S n的最大值及相应的n值; T n a i a2 1. [难度]易 2. (2)若a12,a2 a313, 贝U a4 a s a6= [难度]中 (〔)右a4 a? a10 17 ,a4 a5 a6 L a12 a13 a14 77 且a k =13, 3. (2)若公差为-2,且a-i a4a97 5°,则a3 *6 a? a99 [难度]中 例1 .在等差数列a n中, a2 9, a533,求a g. 例2.设S n表示等差数列a n的前n项和,且S9 18, S n 240,若a n 4 30(n 9),求例3 ?在等差数列a n中, S m 30, S2m 100 ,求S3m. 例4.已知数列a n是一个等差数列,且a2 1,a5 5,S n 为其前n项和. (1) 求a n的通项a n ;

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

小学奥数培优等差数列含答案

第四讲等差数列(一) 解题方法 若干个数排成一列,称为数列。数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 【引例】:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。 计算等差数列的相关公式: (1)通项公式:第几项=首项+(项数-1)×公差 (2)项数公式:项数=(末项-首项)÷公差+1 (3)求和公式:总和=(首项+末项)×项数÷2 注:在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。 例题1 有一个数列:4、7、10、13、…、25,这个数列共有多少项 解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷ 3+1=8,所以这个数列共有8项。 引申 1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。 答:这个数列共有27项 2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项? 答: 这个数列共有19项 3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项? 答:这个等差数列共有29项。 例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少 解:由等差数列的通项公式:第几项=首项+(项数-1)×公差,可得,第100项=2+(1OO-1)×5=497,所以这个等差数列的第100项是497。 引申 1、求1,5,9,13,…,这个等差数列的第3O项。答案:第30项是117。 2、求等差数列2,5,8,11,…的第100项。答案: 第100项是299。 3、一等差数列,首项=7,公差=3,项数=15,它的末项是多少?答案:末项是49。 例题3 计算2+4+6+8+…+1990的和。 提示:仔细观察数列中的特点,相邻两个数都相差2,所以可以用等差数列的求和公式来求。 解:因为首项是2,末项是1990,公差是2,昕以,项数=(1990-2)÷2+1=995,再根据等差数列的求和公式:总和=(首项+末项)×项数÷2,解出2+4+6+8+… +1990=(2+1990)×995÷2=991020。 计算1+2+3+4+…+53+54+55的和。 2、计算5+10+15+20+? +190+195+200的和。 3、计算100+99+98+…+61+60的和 例题4 计算(1+3+5+...+l99l)-(2+4+6+ (1990) 提示:仔细观察算式中的被减数与减数,可以发现它们都是等差数列相加,根据题意可以知道首项、末项和公差,但并没有给出项数,这需要我们求项数,按照这样的思路求得项数后,再运用求和公式即可解答。 解:被减数的项数=(1991-1)÷2+1=996,所以被减数的总和=(1+1991)×996÷2=992016;减数的项数=(l990-2)÷2+1=995,所以减数的总和=(2+1990)×995÷2=991020.所以原式=992016-991020=996。

等差数列(学生版)

等差数列 导引: 若干个数排成一列,称为数列。数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。 例如:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。 计算等差数列的相关公式: 通项公式:第几项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 求和公式:总和=(首项+末项)×项数÷2 在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。 例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项 练习: 1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。 2、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项? 3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?

例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少? 练习: 1、求1,5,9,13,…,这个等差数列的第3O项。 2、求等差数列2,5,8,11,…的第100项。 3、一等差数列,首项=7,公差=3,项数=15,它的末项是多少? 例题3 计算2+4+6+8+…+1990的和。 练习: 1、计算1+2+3+4+…+53+54+55的和。 2、计算5+10+15+20+? +190+195+200的和。

3、计算100+99+98+…+61+60的和 例题4计算(1+3+5+...+l99l)-(2+4+6+ (1990) 练习: 1、计算(1+3+5+7+...+2003)-(2+4+6+8+ (2002) 2、计算(2+4+6+...+100)-(1+3+5+ (99) 3、计算(2OO1+1999+1997+1995)-(2OOO+1998+1996+1994)。 例题5 已知一列数:2,5,8,11,14,…,80,…,求80是这列数中第几个数。 练习: 1、有一列数是这样排列的:3,11,19,27,35,43,51,…,求第12个数是多少。

(完整版)四年级奥数第四讲_等差数列含答案[1]

第四讲等差数列 一、知识点: 1、数列:按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。数列中共有的项的个数叫做项数。 2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。 3、常用公式 等差数列的总和=(首项+末项)?项数÷2 项数=(末项-首项)÷公差+1 末项=首项+公差?(项数-1) 首项=末项-公差?(项数-1) 公差=(末项-首项)÷(项数-1) 等差数列(奇数个数)的总和=中间项?项数 二、典例剖析: 例(1)在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少? 分析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)÷公差+1,便可求出。 (2)根据公式:末项=首项+公差?(项数-1) 解:项数=(201-3)÷3+1=67 末项=3+3?(201-1)=603 答:共有67个数,第201个数是603 练一练: 在等差数列中4、10、16、22、……中,第48项是多少?508是这个数列的第几项? 答案: 第48项是286,508是第85项 例(2 )全部三位数的和是多少? 分析::所有的三位数就是从100~999共900个数,观察100、101、102、 (998) 999这一数列,发现这是一个公差为1的等差数列。要求和可以利用等差数列求和公式来解答。 解:(100+999)?900÷2 =1099?900÷2 =494550

答:全部三位数的和是494550。 练一练: 求从1到2000的自然数中,所有偶数之和与所有奇数之和的差。 答案: 1000 例(3)求自然数中被10除余1的所有两位数的和。 分析一:在两位数中,被10除余1最小的是11,最大的是91。从题意可知,本题是求等差数列11、21、31、……、91的和。它的项数是9,我们可以根据求和公式来计算。解一:11+21+31+……+91 =(11+91)?9÷2 =459 分析二:根据求和公式得出等差数列11、21、31、……91的和是459,我们可以求得这9个数的平均数是459÷9=51,而51恰好是这个等差数列的第五项,即中间的一项(称作中项),由此我们又可得到S=中项?n,但只能是项数是奇数时,等差数列有中项,才能用中项公式计算。 解二:11+21+31+……+91 =51?9 =459 答:和是459。 练一练: 求不超过500的所有被11整除的自然数的和。 答案: 11385 例(4)求下列方阵中所有各数的和: 1、2、3、4、……49、50; 2、3、4、5、……50、51; 3、4、5、6、……51、52; …… 49、50、51、52、……97、98; 50、51、52、53、……98、99。 分析一:这个方阵的每一横行(或竖行)都各是一个等差数列,可先分别求出每一横行(或竖行)数列之和,再求出这个方阵的和。 解一:每一横行数列之和: 第一行:(1+50)?50÷2=1275 第二行:(2+51)?50÷2=1325

《等差数列》第一课时教案

《等差数列》第一课时教案 一、教材分析 1、教材的地位和作用: 数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。 2、教学目标 根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标 a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。 b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。 c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点 根据教学大纲的要求我确定本节课的教学重点为: ①等差数列的概念。 ②等差数列的通项公式的推导过程及应用。 由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。 二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。 二、教法分析 针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。 三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。 四、教学程序 本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,

等差数列教学目标

【教学目标】 1. 理解等差数列的概念,掌握等差数列的通项公式; 2. 逐步灵活应用等差数列的概念和通项公式解决问题. 3. 通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.【教学重点】 等差数列的概念及其通项公式. 【教学难点】 等差数列通项公式的灵活运用.“等差”的理解 【教学方法】 本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的. 【教学过程】 问题1 某工厂的仓库里堆放一批钢管(参见教材P39图2-6),共堆放了8层,试写出从上到下列出每层钢管的数量. 问题2. 小明目前会100个单词,但她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,试写出在今后的五天内他的单词量 从上例中,我们得到一个数列,每层钢管数为 (1)4、5、6、7、8、9、10、1 (2)100,98,96,94,92 1.等差数列的定义 一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d 练习一 抢答:下列数列是否为等差数列? 1,2,4,6,8,10,12,…; 0,1,2,3,4,5,6,…; 3,3,3,3,3,3,3,…; 2,4,7,11,16,…; -8,-6,-4,0,2,4,…; 3,0,-3,-6,-9,…. 注意:求公差d 2.常数列 特别地,数列3,3,3,3,3,3,3,… 也是等差数列,它的公差为0.公差为0的数列叫做常数列. 3.等差数列的通项公式(引导学生推导) 4.例题讲解 例1 求等差数列8,5,2,…的通项公式和第20项. 例2已知一个等差数列的公差为d,第m项是am,试求第n项an 5.练习 (1)求等差数列3,7,11,…的第4,7,10项. (2)求等差数列10,8,6,…的第20项. 小结 1.等差数列的定义及通项公式.

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

第四讲 等数列及其前n项和

第四讲 等差数列及其前n 项和 【知识要点】 1.等差数列的概念 如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数 d 称为等差数列的公差. 2.通项公式与前n 项和公式 ⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差. ⑵前n 项和公式2)(1n n a a n S += 或d n n na S n )1(2 1 1-+=. 3.等差中项 如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项. 即:A 是a 与b 的等差中项?b a A +=2?a ,A ,b 成等差数列. 4.等差数列的判定方法 ⑴定义法:d a a n n =-+1 (+∈N n ,d 是常数)?{}n a 是等差数列; ⑵中项法:21 2+++=n n n a a a (+∈N n )?{}n a 是等差数列. 5.等差数列的常用性质 ⑴数列 {}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列; ⑵在等差数列 {}n a 中,等距离取出若干项也构成一个等差数列,即Λ,,,,32k n k n k n n a a a a +++为等 差数列,公差为kd . ⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a ) ⑷三个数成等差,可巧设为 a-d, a, a+d 四个数成等差,可巧设为 a-3d,a-d,a+d,a+3d

【典例精讲】 题型一 等差数列基本运算 例1 (1)数列{}n a 是等差数列,,11=a 512-=n a ,1022-=n S ,求公差d ; (2)已知等差数列 {}n a 中,1952=+a a ,405=S ,求10a . 例2 在等差数列中 {}n a ,,11=a 33-=a . (1)求数列{}n a 的通项公式 (2)若数列 {}n a 的前k 项和35-=k S ,求k 的值. 题型二 证明数列是等差数列 例3已知数列{}n a ,0,N ,)2(8 1 *2>∈+= n n n a n a S , (1)求证:数列{}n a 是等差数列; (2)若302 1 -=n n a b ,求数列{}n b 的前n 项和的最小值. 例4已知数列{}n a 的前n 项和为n S 且满足021=+-n n n s s a (n ≥2),,2 11= a (1)求证:? ?? ?? ?n s 1是等差数列;

三年级计算等差数列学生版

知识要点 1.按一定次序排列的一列数叫做数列.数列中的数称为项,第一个数叫第一项,又叫首项;第二个数叫第二项;……,最后一个数叫末项.如果一个数列从第二项开始,每一项与它前一项的差都相等,就称这个数列为等差数列.后项与前项的差叫做这个数列的公差. 如:1,2,3,4, 是等差数列,公差为1;2,4,6,8, 是等差数列,公差为2;5,15,20, 是等差数列,公差为5. 等差数列的相关公式 (1)三个重要的公式 ① 通项公式:递增数列:末项=首项+(项数1-)?公差,11n a a n d =+ -?() 递减数列:末项=首项-(项数1-)?公差,11n a a n d =- -?() 同时还可延伸出来这样一个有用的公式:n m a a n m d -=-?(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1 由通项公式可以得到: 11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >). 找项数还有一种配组的方法,其中运用的思想我们是常常用到的. 譬如:找找下面数列的项数:4、7、10、13、 、40、43、46 , 分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、 、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法. ③ 求和公式:和=(首项+末项)?项数÷2 对于这个公式的得到可以从两个方面入手: (思路1) 1239899100++++++ 11002993985051=++++++++ 共50个101 ()()()()101505050=?= (思路2)这道题目,还可以这样理解: 等差数列

第四讲 等差数列与等比数列

第四讲 等差数列与等比数列 一、知识梳理 1. 等差、等比数列的定义与性质 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 1、数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数). 2、数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n

等差数列公开课教案教学设计(必修五)

《等差数列》教学设计 一.教材分析 本节内容是《普通高中课程标准实验教科书》(人民教育出版社A版教材)高中数学必修五第二章第二节——等差数列,两课时内容,本节是第一课时。研究等差数列的定义、通项公式的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。 本节是第二章的基础,为以后学习等差数列的求和、等比数列奠定基础,是本章的重点内容。在高考中也是重点考察内容之一,并且在实际生活中有着广泛的应用,它起着承前启后的作用。同时也是培养学生数学能力的良好题材。等差数列是学生探究特殊数列的开始,它对后续内容的学习,无论在知识上,还是在方法上都具有积极的意义。 二.教学目标 知识目标: (1)理解并掌握等差数列的概念; (2)能用定义判断一个数列是否为等差数列; (3)了解等差数列的通项公式,等差中项公式的推导过程及思想,会求等差数列的公差及通项公式,会应用等差中项公式,并能在解题中灵活应用它们;(4)初步引入"数学建模"的思想方法并能运用。 能力目标:

(1)培养学生观察、分析、归纳、推理的能力; (2)在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力; (3)通过阶梯性练习,提高学生分析问题和解决问题的能力。 情感目标: (1)通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;(2)通过对等差数列的研究,使学生认识事物的变化形态,养成细心观察、认真分析、善于总结的良好思维习惯。 三、教学重点、难点 重点:①等差数列的概念。 ②等差数列的通项公式,等差中项公式的推导过程及应用。 难点: ①理解等差数列"等差"的特点及通项公式的含义。 ②如何推导出等差数列的通项公式。 四.教学策略和手段 数学教学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程,结合学生的实际情况,及本节内容的特点,我采用的是“问题教学法”,其主导思想是以探究式教学思想为主导,由教师提出一系列精心设计的问题,在教师的启发指导下,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而使学生即获得知识又发展智能的目的。 教学手段:多媒体计算机和传统黑板相结合。多媒体的运用使学生获得感性知识的同时,为掌握理性知识创造条件,这样做,可以使学生有兴趣地学习,注

苏教版三下同步奥数培优 第四讲 混合运算(等差数列的项)

苏教版三下同步奥数培优第四讲混合运算(等差数列的项) 【知识概述】: 若干个数排成一列,称为数列。数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。数列中数的个数称为项数。 从第一项开始,后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差,数列中数的个数称为项数。例如1,3,5,7,9……99,这是一个首项为1,末项为99,公差为2,项数为50的等差数列。 这一讲,我们将围绕“首项、末项、公差、项数”这些知识点来学习,重点要记住以下三个公式: 求末项公式:末项=首项+(项数一1)×公差 求项数公式:项数=(末项一首项)÷公差+1 求首项公式:首项=末项一(项数-1)×公差 等差数列中,“首项、末项、公差、项数”这四个量只要知道其中三个量便能求出另外一个量。可见,能记住求项数的公式,便能推算出其他的计算公式。 例1:下列数列中,哪些是等差数列?若是,请指明公差;若不是,则说明理由。 (1)6,10,14,18,22 (98) (2)1,2,1,2,3,4,5,6 (3)1,2,4,8,16,32,64 (4)2,3,4,5,6,7,8,9 (5)3,3,3,3,3,3,3,3 (6)1,0,1,0,1,0,1,0 练习一: 1.判断下列数列哪些是等差数列。若是,请指出公差;若不是,则说明理由。 (1)2,5,8,11 (65) (2)7,8,7,8,2,5,6,4,3 (3)1,2,3,5,6,8,7,6,5,4,3 (4)4,4,4,4,4,4,4 2.下列数列中,数字如何改动,便能成为等差数列? (1)3,5,7,9,9,13,15,15 (2)4,7,10,13,14,21,22,26

第1讲 等差数列与等比数列

第1讲 等差数列与等比数列 高考定位 1.等差、等比数列基本运算和性质的考查是高考热点,经常以选择题、填空题的形式出现;2.数列的通项也是高考热点,常在解答题中的第(1)问出现,难度中档以下. 真 题 感 悟 1.(2019·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A.a n =2n -5 B.a n =3n -10 C.S n =2n 2-8n D.S n =1 2n 2-2n 解析 设首项为a 1,公差为d . 由S 4=0,a 5=5可得?????a 1+4d =5,4a 1+6d =0,解得?????a 1=-3, d =2. 所以a n =-3+2(n -1)=2n -5, S n =n ×(-3)+n (n -1) 2×2=n 2 -4n . 答案 A 2.(2020·全国Ⅱ卷)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n =( ) A.2n -1 B.2-21-n C.2-2n -1 D.21-n -1

解析 法一 设等比数列{a n }的公比为q ,则q =a 6-a 4a 5-a 3=24 12=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12得a 1=1. 所以a n =a 1q n -1=2n -1,S n =a 1(1-q n ) 1-q =2n -1, 所以S n a n =2n -1 2n - 1=2-21-n . 法二 设等比数列{a n }的公比为q ,则?????a 3q 2-a 3=12,①a 4q 2-a 4=24,② ②①得a 4 a 3 =q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3 q 2=1,下同法一. 答案 B 3.(2019·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=3 4,则S 4= ________. 解析 设等比数列{a n }的公比为q ,则a n =a 1q n -1=q n -1. ∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=3 4, 则4q 2+4q +1=0,∴q =-1 2, ∴S 4= 1×? ??? ??1-? ??? ?-124 1-? ????-12=58. 答案 58 4.(2019·全国Ⅱ卷)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1 =3b n -a n -4. (1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.

相关文档
最新文档