以农作物废料为基材的重金属吸附材料综述

以农作物废料为基材的重金属吸附材料综述
以农作物废料为基材的重金属吸附材料综述

Available online at https://www.360docs.net/doc/2215429640.html, Journal of Hazardous Materials157(2008)

220–229

Review

Heavy metal adsorption onto agro-based waste materials:A review

Ayhan Demirbas?

Sila Science,Trabzon,Turkey

Received13August2007;received in revised form7January2008;accepted8January2008

Available online17January2008

Abstract

Adsorption has been proved to be an excellent way to treat industrial waste ef?uents,offering signi?cant advantages like the low-cost,availability, pro?tability,easy of operation and ef?ciency.Biosorption of heavy metals from aqueous solutions is a relatively new process that has proven very promising in the removal of contaminants from aqueous ef?uents.Biosorption is becoming a potential alternative to the existing technologies for the removal and/or recovery of toxic metals from wastewater.The major advantages of biosorption technology are its effectiveness in reducing the concentration of heavy metal ions to very low levels and the use of inexpensive biosorbent materials.Metal adsorption and biosorption onto agricultural wastes is a rather complex process affected by several factors.Mechanisms involved in the biosorption process include chemisorption, complexation,adsorption–complexation on surface and pores,ion exchange,microprecipitation,heavy metal hydroxide condensation onto the biosurface,and surface adsorption.

?2008Elsevier B.V.All rights reserved.

Keywords:Heavy metal ion;Agro waste material;Adsorption;Biosorption

Contents

1.Introduction (220)

2.Chemical properties of agricultural waste materials (221)

3.Adsorption models (222)

4.Metal adsorption and biosorption studies (223)

4.1.Mechanism of metal biosorption (224)

5.Conclusion (225)

References (225)

1.Introduction

Nowadays heavy metals are among the most important pol-lutants in source and treated water,and are becoming a severe public health problem.Industrial and municipal waste waters frequently contain metal ions.Industrial waste constitutes the major source of various kinds of metal pollution in natural water [1–4].The application of biosorption in environmental treatment has become a signi?cant research area in the past10years.Heavy metal ions are reported as priority pollutants,due to their mobil-ity in natural water ecosystems and due to their toxicity[5,6].?Tel.:+904622307831;fax:+904622488508.

E-mail address:ayhandemirbas@https://www.360docs.net/doc/2215429640.html,.The heavy metal ions are stable and persistent environmental contaminants since they cannot be degraded and destroyed. These metal ions can be harmful to aquatic life and water con-taminated by toxic metal ions remains a serious public health problem for human health.Heavy metals removal from aqueous solutions has been traditionally carried out by chemical precipi-tation[7].Numerous methods exist to remove detrimental metal ions from aqueous solutions.Activated carbon has been the most used adsorbent,nevertheless it is relatively expensive.In order to obtain cheaper adsorbents,lignocellulosics materials have been studied[8].

The presence of cupper,zinc,cadmium,lead,mercury,iron, nickel and others metals,has a potentially damaging effect on human physiology and other biological systems when the tolerance levels are exceeded.Many methods of treatment

0304-3894/$–see front matter?2008Elsevier B.V.All rights reserved. doi:10.1016/j.jhazmat.2008.01.024

A.Demirbas/Journal of Hazardous Materials157(2008)220–229221

for industrial wastewater have been reported in literature[9]. Amongst these methods are neutralization,precipitation,ion exchange and adsorption.For low concentrations of metal ions in wastewater,the adsorption process is recommended for their removal.The process of adsorption implies the presence of an “adsorbent”solid that binds molecules by physical attractive forces,ion exchange,and chemical binding.It is advisable that the adsorbent is available in large quantities,easily regenerable, and cheap[10].

Biosorption of heavy metals from aqueous solutions is a rela-tively new process that has proven very promising in the removal of contaminants from aqueous ef?uents.Adsorbent materials derived from low-cost agricultural wastes can be used for the effective removal and recovery of heavy metal ions from wastew-ater streams[11,5,12–19].

The sorption capacity of lignocellulosics for metal ions is generally described as adsorption.The major advantages of biosorption technology are its effectiveness in reducing the concentration of heavy metal ions to very low levels and the use of inexpensive biosorbent materials.The major advantages of biosorption over conventional treatment methods include: low-cost;high ef?ciency;minimization of chemical and/or biological sludge;regeneration of biosorbent;no additional nutrient requirement;possibility of metal recovery[20].The cost advantage of biosorption technology would guarantee a strong penetration of the large market of heavy metal polluting industries.

In general,raw lignocellulosic biosorbents were modi?ed by various methods to increase their sorption capacities because metal ion binding by lignocellulosic biosorbents is believed to take place through chemical functional groups such as car-boxyl,amino,or phenolics.More recently,great effort has been contributed to develop new adsorbents and improve existing adsorbents.Many investigators have studied the feasibility of using low-cost agro-based waste materials[21–29].

Many conventional techniques such as chemical precipita-tion,membrane?ltration,electrolysis,ion exchange,carbon adsorption and co-precipitation/adsorption are used for the removal of heavy metals in wastewater treatment,but they are suitable for high concentrations of metals[30–41].At low con-centrations,these techniques fail in certain cases.Also they are not cost-effective.For this reason,low-cost adsorbents have been evaluated for the removal of heavy metals from aqueous solutions[42].

Modi?ed lignin obtained from lignocellulosic materials is used for the removal of trivalent and hexavalent chromium,lead and zinc from aqueous solutions[1,43–48].Lignin is known to adsorb many heavy metal ions[49].

Agricultural by-products usually are composed of lignin and cellulose as major constituents and may also include other polar functional groups of lignin,which includes alcohols,aldehydes, ketones,carboxylic,phenolic and ether groups.These groups have the ability to some extent to bind heavy metals by donation of an electron pair from these groups to form complexes with the metal ions in solution[16].

The alkali lignin produced by the alkaline pulping of soft-wood consequently contains a low content of positions reactive towards electrophiles.In natural lignin the positions on the aryl rings para-and ortho-to the hydroxyl groups are usually occu-pied by alkoxy or alkyl substituents[50].

Lignin has an aromatic,three-dimensional polymer structure with apparent in?nite molecular weight[51].The cellulose is located predominantly in the secondary cell wall[52].Lignin is covalently linked with xylans in the case of hardwoods and with galactoglucomannans in softwoods.Even though mechani-cally cleavable to a relatively low molecular weight,lignin is not soluble in water.Lignin has strong resistance to chemical reac-tions,a high surface area(180m2/g)[53].Molecular weight of the polymeric lignin changes from2000to15,000g/mol[54]. These properties of lignin reveal that it has a potential to be used as a possible adsorption material to remove heavy metals from waste waters.

The removal of heavy metal ions using low-cost abundantly available adsorbents:agricultural wastes such as tea waste and coffee[55],hazelnut shells[56–58],peanut hull[59,21],red ?r[60]and maple[61]sawdusts[62,63],pinus bark[64–67] and different bark samples[68–77],palm kernel husk[78]and coconut husk[79,80],peanut skins[81],modi?ed cellulosic materials[82,83],chemically modi?ed cotton[84],corncobs [85]and modi?ed corncob[86],rice hulls[87],apple wastes [88],coffee grounds[89],bark[90,91],modi?ed bark[37], wool?bers[92],tea leaves[93],and wool,olive cake,pine nee-dles,almond shells,cactus leaves,charcoal[94],modi?ed lignin [48,95,96],banana and orange peels[97],modi?ed sugar beet pulp[98],modi?ed sun?ower stalk[25],palm fruit bunch[99], maize leaf[20]and different agricultural by-products[100–107] were used and investigated.

2.Chemical properties of agricultural waste materials

The term biomass(Greek,bio,life+maza or mass)refers to wood,short-rotation woody crops,agricultural wastes,short-rotation herbaceous species,wood wastes,bagasse,industrial residues,waste paper,municipal solid waste,sawdust,biosolids, grass,food processing waste,aquatic plants,algae animal wastes,and a host of other materials[108].It is a rather sim-ple term for all organic materials that seems from plants,trees, crops and algae.Two larger carbohydrate categories that have signi?cant value are cellulose and hemicelluloses(holocellu-lose).The lignin fraction consists of non-sugar type molecules [109].

Cellulose is a remarkable pure organic polymer,consist-ing solely of units of anhydroglucose held together in a giant straight chain molecule[110].These anhydroglucose units are bound together by?-(1,4)-glycosidic linkages.Due to this link-age,cellobiose is established as the repeat unit for cellulose chains(Fig.1Cellulose must be hydrolyzed to glucose before fermentation to ethanol.

By forming intramolecular and intermolecular hydrogen bonds between OH groups within the same cellulose chain and the surrounding cellulose chains,the chains tend to be arranged parallel and form a crystalline supermolecular structure.Then, bundles of linear cellulose chains(in the longitudinal direction) form a micro?bril which is oriented in the cell wall structure[29].

222 A.Demirbas /Journal of Hazardous Materials 157(2008)

220–229

Fig.1.The structure of cellulose.Anhydroglucose is the monomer of cellulose,cellolbiose is the dimmer (Ref.[29]

).

Fig.2.Schematic illustration of xylans:(A)Partial xylan structure from hardwood and (B)Partial xylan structure from softwood (Ref.[29]).

Cellulose is insoluble in most solvents and has a low accessibility to acid and enzymatic hydrolysis.

Unlike cellulose,consist of different monosaccharide units.In the polymer chains of hemi-celluloses have short branches and are amorphous.Because of the amorphous morphology,hemicelluloses are partially soluble or swellable in water.Hemicelluloses (arabinoglycuronoxylan and galactoglucomannans)are related to plant gums in composi-tion,and occur in much shorter molecule chains than cellulose.Hemicelluloses are derived mainly from chains of pentose sug-ars,and act as the cement material holding together the cellulose micells and ?ber [111].

Among the most important sugar of the hemicelluloses component is xylose.In hardwood xylan,the backbone chain consists of xylose units which are linked by ?-(1,4)-glycosidic bonds and branched by ?-(1,2)-glycosidic bonds with 4-O -methylglucuronic acid groups [29].In addition,O -acetyl groups sometime replace the OH groups in position C 2and C 3(Fig.2A).For softwood xylan,the acetyl groups are fewer in the back-bone chain.However,softwood xylan has additional branches consisting of arabinofuranose units linked by ?-(1,3)-glycosidic bonds to the backbone (Fig.2B).Hemicelluloses are largely

soluble in alkali and,as such,are more easily hydrolysed [112–114].

Lignins are polymers of aromatic compounds.Their func-tions are to provide structural strength,provide sealing of water conducting system that links roots with leaves,and protect plants against degradation [115].Lignin is a macromolecule,which consists of alkylphenols and has a complex three-dimensional structure.Lignin is covalently linked with xylans in the case of hardwoods and with galactoglucomannans in softwoods [116].The basic chemical phenylpropane units of lignin (primarily syringyl,guaiacyl and p -hydroxy phenol)as shown in Fig.3are bonded together by a set of linkages to form a very complex matrix.This matrix comprises a variety of functional groups,such as hydroxyl,methoxyl and carbonyl,which impart a high polarity to the lignin macromolecule [29,117].Cellulose and lignin structures were extensively investigated in the earlier studie s [118,119,51,120–122].3.Adsorption models

Isotherm adsorption models have been used in waste stream treatment to predict the ability of a certain adsorbent to remove

A.Demirbas/Journal of Hazardous Materials157(2008)220–229

223

Fig.3.Schematic illustration of building units of lignin.

a pollutant down to a speci?c discharge value.When a mass of adsorbent and a waste stream are in contact for a suf?ciently long time,equilibrium between the amount of pollutant adsorbed and the amount remaining in solution will develop.For any system under equilibrium conditions,the amount of material adsorbed onto the media can be calculated using the mass balance of Eq.

(1):

X

=(C o?C e)V

(1)

where X/M(typically expressed as mg pollutant/g media)is the mass of pollutant per mass of media,C o is the initial pollutant concentration in solution,C e is the concentration of the pollutant in solution after equilibrium has been reached,V is the volume of the solution to which the media mass is exposed,and M is the mass of the media.

Adsorption data for wide range of adsorbate concentrations are most conveniently described by adsorption isotherms,such as the Langmuir[123]or Freundlich[124]isotherms.The gen-eral Langmuir model de?ned by Eq.(2):

X M =

K L C e

1+a L C e

(2)

were K L and a L are the isotherm constants.K L and a L values can be determined using linear regression.The Langmuir isotherm can be linearized to the following equation:

1 X/M =1

K L C e

+

a L

K L(3)

The general Freundlich equation is:

X

=K F(C e)1/n(4)The Freundlich isotherm can also be linearized by the following:

ln

X

M

=ln K F+1

n ln C e(5) where K F and n are adsorption capacity and af?nity,respecti-vely.

The Langmuir and Freundlich isotherm models are only applicable to batch adsorber systems where suf?cient time is provided to allow equilibrium between the pollutant in solution and the pollutant adsorbed on the media to occur.During the ?ow through the adsorbent,many of the pollutants are expected to come into contact with active surface sites and thus be retained on the surface of the adsorbing media.Table1shows the Lang-muir and Freundlich constants for the adsorption of Cu(II)and Cd(II)from aqueous solution onto rice husk and modi?ed rice husk.

The bed depth-service time(BDST)model,this is based on the Bohart and Adams quasi-chemical rate law[125].The assumption behind the equation(Bohart and Adams Equation, 1920)is that equilibrium is not instantaneous and therefore,the rate of the sorption reaction is proportional to the fraction of sorption capacity still remaining on the media.The linearized BDST model equation is as follows[125–127]:

t b=

N o

1000ενC o

D?1

o

ln

C o

b

?1

(6)

where t b is the time until breakthrough(min),C o is the initial concentration of pollutant(mg/L),C b is breakthrough concen-tration of pollutant(mg/L),νis the?uid velocity or loading rate (m/min),εis the porosity of the?lter,k is quasi-chemical rate constant from Bohart and Adams theory(L/mg s),N o is capacity of the media for each pollutant in a multi-component solution (mg pollutant per cubic meter of?lter volume),and D is depth of the?lter bed.

Several empirical models proposed in the literature (Bohart–Adams,Yan,Belter and Chu models)were investigated in order to obtain the best?t of column data,describing in a simple manner the breakthrough curves[128].

4.Metal adsorption and biosorption studies

Adsorption has been proved to be an excellent way to treat industrial waste ef?uents,offering signi?cant advantages like the low-cost,availability,pro?tability,easy of operation and ef?ciency,in comparison with conventional methods espe-cially from economical and environmental points of view [29,129–131].A search for a low-cost and easily available

Table1

Langmuir and Freundlich constants for the adsorption of Cu(II)and Cd(II)from aqueous solution onto rice husk and modi?ed rice husk

Adsorbent Heavy metal K L R2L C e K F1/n R2F Rice husk Cu 2.480.9960.1430.6930.2880.968 Cd8.820.9360.0660.6300.4540.993 Modi?ed rice husk Cu9.360.9940.0800.8660.4800.931 Cd11.030.9930.069 1.2650.4950.952

From Ref.[161].K L,C e and R2

L are Langmuir constants.K F,n and R2

F

are Freundlich constants.

224 A.Demirbas/Journal of Hazardous Materials157(2008)220–229

adsorbent has led to the investigation of materials of biological origin as potential metal biosorbents.Biosorption is becoming a potential alternative to the existing technologies for the removal and/or recovery of toxic metals from wastewater[132,133]. The study of biosorption is of great importance from an environmental point of view,as it can be considered as an alter-native technique for removing toxic pollutants from wastewaters [134,135].

In general,raw lignocellulosic biosorbents were modi?ed by various methods to increase their sorption capacities because metal ion binding by lignocellulosic biosorbents is believed to take place through chemical functional groups such as carboxyl or phenolics.Mechanisms and measurement of chemical mod-i?cation were studied by Kunin et al.[136].Simple classical pyrolysis technologies that only apply heating will result in con-version of lignin mainly to solid coke with high surface area and gas in a disproportionation process[118,120].These prop-erties of lignin reveal that it has a potential to be used as a possible adsorption material to remove heavy metals from waste waters.

Chemical modi?cation became popular and many researchers devised elaborate modi?cation procedures[137].Biomass chemical modi?cations include deligni?cation,esteri?cation of carboxyl and phosphate groups,methylation of amino groups,and hydrolysis of carboxylate groups.Odozi et al. [138]polymerized corncob,sawdust and onion.Sawamiap-pan and Krishnamoorthy[139]replaced phenol-formaldehyde cationic matrices with sulfonated bagasse.Freeland et al.[140] used polyethylenimine-modi?ed wood to adsorb mercury.Sny-der and Vigo[141]modi?ed cotton ethylenediamine with chlorodeoxycellulose to remove mercury.Gasparrini et al.[142] captured mercury ions using cellulose derivatives.Marchant [143]removed mercury using cellulose modi?ed by changing the pH from1to9.Treatment of soybean hulls and sugar beet ?ber with epichlorohydrin to improve cation-exchange capacity was studied by Laszlo and Dintzis[144].

Randall et al.[145]chemically modi?ed peanut skins using formaldehyde for heavy metal removal in aqueous waste solu-tions.The work of Kumar and Dara[146]included bagasse, acacia bark,husk,paddy straw,wheat?our,and waste peanut skin,and Kumar and Dara[147]included onion skin.

The role of lignin in removal of copper is controversial and inconclusive.Camire and Clydesdale[148]found that lignin and pectin have a high metal binding capability.They also tested the effect of pH and heat on removal of the copper ions.Varma et al.[149,150]removed copper between the pH4.4and5.0.

Platt and Clysdale[151]studied binding of iron by lignin in the presence of other ions.Nasr and MacDonald[152]did stoichiometric studies with carboxylic acids groups on lignin compounds toward aluminum and iron ions at lower pHs. Lignin was used in removal of copper at pH5.5,cadmium at pH6.5.

Carbonized coir pith was used as an adsorbent for the removal of toxic ions,dyes and pesticides from wastewaters[153]. Removal of copper(II)by adsorption onto peanut hull carbon from water and copper plating industry wastewater was investi-gated[154].4.1.Mechanism of metal biosorption

Metal biosorption is a rather complex process affected by several factors.Mechanisms involved in the biosorption process include chemisorption,complexation,adsorption–complexation on surface and pores,ion exchange,microprecipitation,heavy metal hydroxide condensation onto the biosurface,and surface adsorption[155–157].

In order to understand how metals bind to the biomass,it is essential to identify the functional groups responsible for metal binding.Most of the functional groups involved in the binding process are found in cell walls.Plant cell walls are generally con-sidered as structures built by cellulose molecules,organized in micro?brils and surrounded by hemicellulosic materials(xylans, mannans,glucomannans,galactans,arabogalactans),lignin and pectin along with small amounts of protein[68,158,159].

The behavior of cellulose as a substrate is highly depen-dent upon the crystallinity,speci?c surface area,and degree of polymerization of the?bers being studied[160].The cellulose is located predominantly in the secondary cell wall.Bundles of cellulose molecules are aggregated together in the form of micro?brils in which highly ordered(crystalline)regions exist with less ordered(amorphous)regions.The proportions of crys-talline and amorphous regions in cellulose vary depending upon the type of the sample and the method of measurement.Cotton cellulose is usually more crystalline than wood cellulose[119].

Laszlo and Dintzis[144]have shown that lignocellulosics have sorption capacity,which are derived from their constituent polymers and structure.The polymers include extractives,cel-lulose,hemicelluloses,pectin,lignin and protein.These are adsorbents for a wide range of solutes,particularly divalent metal cations[144].

Lignocellulosics are hygroscopic and have an af?nity for water.Water is able to permeate the non-crystalline portion of cellulose and all of the hemicellulose and lignin.Thus,through absorption and adsorption,aqueous solution comes into contact with a very large surface area of different cell wall compo-nents.Because of its disordered structure,amorphous cellulose should be much more accessible to reagents than highly struc-tured crystalline cellulose.Cellulose can also sorb heavy metals from solution[162].

The molecular structure and supramolecular structure have a strong in?uence on sorption properties.Water adsorption of ?bers,orientated in one particular direction,invariably causes swelling.The bigger the amount of water adsorption,the bigger is the swelling.Swelling also depends on the?ber’s structure, on the degree of crystallinity and on the amorphous and void regions[163].Swelling occurs when polar solvents such as water and alcohols are contacted with wood[164].Wood swelled extremely fast at high temperatures.The polar solvent molecules are attracted to the dry solid matrix and held by hydrogen bond-ing forces between the–OH or–COOH groups in the wood structure.

More recently sorption potential of pretreated crab and arca shell biomass for lead and copper from aqueous media was explored.The effects of pH,initial concentration,biosorbent dosage and contact time were studied in batch experiments

A.Demirbas/Journal of Hazardous Materials157(2008)220–229225 Table2

Removal capacity of copper(II)ion(mg/g substrate)at pH5.5

Common name Botanical name Classi?cation Lignin(%)Capacity Sugar cane,bagasse Saccharum of?cinarum Straw?ber19.90.3 Oak Quercus spp.Hardwood?ber23.20.5 Aspen Populus grandidentata Hardwood?ber21.80.9 Spruce Eastern Picea orientalis Softwood?ber26.3 1.3 Coconut,shell Cocos nucifera Shell35.5 2.6 Flax Linum usitatissimum Bast?ber 2.9 5.5 Kudzu,bark Pueraria lobata Bast?ber19.38.2 Kenaf,?ber Hibiscus cannabinus Bast?ber9.98.5 Hemp Cannabis sativa Bast?ber 3.09.5 Tobacco,?ber Nicotina tabacum Bast?ber16.510.5 Tobacco,bark Nicotina tabacum Bast?ber9.514.3

[165].Effects of common ions like Na,K,Ca and Mg on the sorption capacity of pretreated crab and arca biomasses were also studied.At equilibrium,the maximum uptake by crab shell biomass was19.83±0.29and38.62±1.27mg/g for lead and copper,respectively.In case of arca shell biomass the maximum uptake capacity was18.33±0.44mg/g and17.64±0.31mg/g for lead and copper,respectively.

Cellulose is a natural polymer.Cellulosic graft copolymers were prepared by the reaction of bast?bers of the kenaf plant (Hibiscus cannabinus)with acrylonitrile and methacrylonitrile monomers in aqueous media initiated by the ceric ion–toluene redox pair.The cellulose–polyacrylonitrile(Cell–PAN)and cellulose–polymethacrylonitrile(Cell–PMAN)graft copoly-mers were used for the removal of Zn(II)and Cr(III)ions from aqueous solutions at303K.Zn(II)ion was more sorbed than Cr(III)ion by both copolymers by an average factor of 1.80±0.40.For each metal ion,the Cell–PAN graft copolymer was a more effective sorbent than the Cell–PMAN derivative [166].Chemical modi?cation has either been too expensive or it has caused other problems,such as bleeding of excessive quan-tities of colored organic compounds,odor,or further pollution through the use of toxic chemicals.

The?ber with the highest level of heavy metal removal was kenaf bast that had a very low level of lignin,showing that removal of heavy metals does not correlate with lignin con-tent.Cotton,with about1%lignin,was very low in metal ion sorption while all of the?bers containing lignin did remove heavy metal ions showing that lignin does play a role in metal ion sorption[167].Cellulose,a homopolysaccharide of glucose units,is the most abundant lignocellulosic material and a stable compound.Cotton with high cellulose content shows very low sorption capacity.

Agro-based?bers such as kenaf,roselle,and tobacco have been shown to be effective in sorption of heavy metal ions from stormwater?ltration systems.In contrast,most wood-based ?bers have a relatively low capacity for?ltering heavy metals [168].Although researchers have tried to increase the sorption capacity of lignocellulosic?bers through chemical modi?cation, more success has been achieved with bark and marine?bers [144,169–171].

Kenaf was most effective at removing cadmium ion.Alfalfa was most effective at removing cadmium,copper and zinc ions. As individual ions,all three ions had about the same ion-exchange capacity at40mg/L and6days of residence time. Residence time had the greatest effect on the rate of copper removal.The rate of removal increased with length of residence time.These results suggest that at higher ion concentrations, removal rate increases with an increase in residence time[168]. Removal capacities of different agro wastes for copper(II)ion are given in Table2.

5.Conclusion

In this review,the inexpensive and effective metal ion adsor-bents from agro waste materials to offer these adsorbents as replacements for existing commercial materials were investi-gated.

Agricultural by-products and in some cases appropriately modi?ed have shown to have a high capacity for heavy metal adsorption.Toxic heavy metals such as Pb(II),Cd(II),Hg(II), Cu(II),Ni(II),Cr(III),and Cr(VI),as well as some elements from lanthanide and actinides groups have been successfully removed from contaminated industrial and municipal waste waters using different agro waste materials.

Biosorption is a relatively new process that has proven very promising in the removal of contaminants from aque-ous ef?uents.Chemical modi?cation improves the adsorption capacity and stability of biosorbents.Biosorption experiments over Cu(II),Cd(II),Pb(II),Cr(III),and Ni(II)demonstrated that biomass Cu(II)adsorption ranged from8.09to45.9mg/g,while Cd(II)and Cr(VI)adsorption ranged from0.4to10.8mg/g and from1.47to119mg/g,respectively[155].

The Langmuir and Freundlich isotherm models are only applicable to batch adsorber systems where suf?cient time is provided to allow equilibrium between the pollutant in solution and the pollutant adsorbed on the media to occur. References

[1]K.Pastircakova,Determination of trace metal concentrations in ashes

from various biomass,Mater.Energy Edu.Sci.Technol.13(2004) 97–104.

[2]A.Demirbas,E.Pehlivan,F.Gode,T.Altun,G.Arslan,Adsorption behav-

ior of Cu(II),Zn(II),Ni(II),Pb(II),and Cd(II)from aqueous solution on Amberlite IR-120synthetic resin,J.Colloid Interface Sci.Surf.282 (2005)16–21.

226 A.Demirbas/Journal of Hazardous Materials157(2008)220–229

[3]A.Celik,A.Demirbas,Removal of heavy metal ions from aqueous solu-

tions via adsorption onto modi?ed lignin from pulping wastes,Energy Sour.27(2005)1167–1177.

[4]A.Demirbas,A.Sari,O.Isildak,Adsorption thermodynamics of stearic

acid onto bentonite,J.Hazard.Mater.135(2006)226–231.

[5]B.V olesky,Z.R.Holan,Biosorption of heavy metals,Biotechnol.Prog.

11(1995)235–250.

[6]S.Qaiser,A.R.Saleemi,M.M.Ahmad,Heavy metal uptake by agro based

waste materials,Environ.Biotechnol.10(2007)409–416.

[7]W.S.Peternele, A.A.Winkler-Hechenleitner, E.A.Gomez Pineda,

Adsorption of Cd(II)and Pb(II)onto functionalized formic lignin from sugar bagasse,Biores.Technol.68(1999)95–100.

[8]C.Gabaldon,P.Marzal,A.Seco,Cadmium and zinc adsorption onto

activated carbon:in?uence of temperature,mpH and metal/carbon ratio, J.Chem.Technol.Biotechnol.66(1996)279–285.

[9]S.V.Dimitrova,D.R.Mehandgiev,Lead removal from aqueous solution

by granulated blast-furnace slag,Water Res.32(1998)3289–3292. [10]M.A.Hashem,Adsorption of lead ions from aqueous solution by okra

wastes,Int.J.Phys.Sci.2(2007)178–184.

[11]Z.R.Holan,B.V olesky,Biosorption of lead and nickel by biomass of

marine algae,Biotechnol.Bioeng.43(1994)1001–1009.

[12]H.S.Lee,B.V olesky,Interaction of light metals and protons with seaweed

biosorbent,Water Res.31(1997)3082–3088.

[13]D.Kratochvil,P.Pimentel,B.V olesky,Removal of trivalent and hexava-

lent chromium by seaweed biosorbent,Environ.Sci.Technol.32(1998) 2693–2698.

[14]D.Kratochvil,B.V olesky,Advances in the biosorption of heavy metals,

J.Trends Biotechnol.16(1998)291–300.

[15]M.C.Basso,E.G.Cerrella,A.L.Cukierman,Lignocellulosic materials

as potential biosorbents of trace toxic metals from wastewater,Ind.Eng.

Chem.Res.41(2002)3580–3585.

[16]F.Pagnanelli,S.Mainelli,F.Veglio,L.Toro,Heavy metal removal by

olive pomace:biosorbent characterization and equilibrium modeling, Chem.Eng.Sci.58(2003)4709–4717.

[17]B.V olesky,Sorption and Biosorption,BV Sorbex Inc.,Montreal,St.

Lambert,Quebec,Canada,2003.

[18]E.W.Shin,R.M.Rowell,Cadmium ion sorption onto lignocellulosic

biosorbent modi?ed by sulfonation:the origin of sorption capacity improvement,Chemosphere60(2005)1054–1061.

[19]D.Park,Y.-S.Yun,J.H.Jo,J.M.Park,Biosorption process for treatment of

electroplating wastewater containing Cr(VI):laboratory-scale feasibility test,Ind.Eng.Chem.Res.45(2006)5059–5065.

[20]N.Ahalya,T.V.Ramachandra,R.D.Kanamadi,Biosorption of heavy

metals,Res.J.Chem.Environ.7(2003)71–79.

[21]A.Hashem,E.S.Abdel-Halim,Kh.F.El-Tahlawy,A.Hebeish,Enhance-

ment of adsorption of Co(II)and Ni(II)ions onto peanut hulls though esteri?cation using citric acid,Adsorp.Sci.Technol.23(2005)367–380.

[22]A.Hashem,A.A.Aly,A.S.Aly,Preparation and utilization of cationized

sawdust,Polym.Plast.Technol.Eng.45(2006)395–401.

[23]A.Hashem,M.M.Elhammali,A.H.Hussein,M.A.Senousi,Utilization

of sawdust-based materials as adsorbent for wastewater treatment,Polym.

Plast.Technol.Eng.45(2006)821–827.

[24]A.Hashem,Amidoximated sun?ower stalks(ASFS)as a new adsorbent

for removal of Cu(II)from aqueous solution,Polym.Plast.Technol.Eng.

45(2006)35–42.

[25]A.Hashem,A.Abou-Okeil,A.El-Sha?e,M.El-Sakhawy,Grafting of

high?-cellulose pulp extracted from sun?ower stalks for removal of Hg(II)from aqueous solution,Polym.Plast.Technol.Eng.45(2006) 135–141.

[26]E.S.Abdel-Halim,A.Abou-Okeil,A.Hashem,Adsorption of Cr(VI)

oxyanions onto modi?ed wood pulp,Polym.Plast.Technol.Eng.45 (2006)71–76.

[27]A.Hashem,A.A.Aly,A.S.Aly,A.Hebeish,Quaternization of cotton

stalks and palm tree particles for removal of acid dye from aqueous solutions,Polym.Plast.Technol.Eng.45(2006)389–394.

[28]A.Hashem,M.M.Elhmmali,A.Ghith,E.E.Saad,M.M.Khouda,Uti-

lization of chemically modi?ed Alhagi residues for the removal of Pb(II) from aqueous solution,Energy Edu.Sci.Technol.20(2007)1–19.[29]A.Hashem,R.A.Akasha,A.Ghith,D.A.Hussein,Adsorbent based on

agricultural wastes for heavy metal and dye removal:a review,Energy Edu.Sci.Technol.19(2007)69–86.

[30]S.E.Bailey,T.J.Olin,R.M.Bricka,D.D.Adrian,A review of potentially

low-cost sorbents for heavy metals,Water Res.33(1999)2469–2479.

[31]B.G.Lee,R.M.Rowell,Removal of heavy metals ions from aqueous

solutions using lignocellulosic?bers,J.Nat.Fibres1(2004)97–108. [32]S.H.Min,J.S.Han,E.W.Skin,J.K.Park,Improvement of cadmium

ion removal by base treatment of juniper?ber,Water Res.38(2004) 1289–1295.

[33]J.E.Phalman,J.E.Khalafalla,Use of Lignochemicals and Humic Acids

to Remove Heavy Metals from Process Waste Streams,U.S.Department of Interior,Bureau of Mines,RI9200,1998.

[34]S.R.Shukla,V.D.Sakhardande,Metal ion removal by dyed cellulosic

materials,J.Appl.Polym.Sci.42(1991)825–829.

[35]A.C.Waiss,M.E.Wiley,J.A.Kuhnle,A.L.Potter,R.M.McCready,

Adsorption of mercuric cation by tannins in agricultural residues,J.

Environ.Qual.(1973)2369–2371.

[36]S.Kamel,H.Abou-Yousef,M.El-Sakhawy,Copper(II)ions adsorption

onto cationic Oxycellulose,Energy Edu.Sci.Technol.14(2004)51–60.

[37]J.M.Randall,E.Hautala,A.C.Waiss,J.L.Tschernitz,Modi?ed barks as

scavengers for heavy metal ions,For.Prod.J.26(1976)46–50. [38]A.Hashem,R.A.Akasha,D.M.Hussein,A.Ghith,Synthesis,charac-

terization and application of cellulose maleate based on sawdust for Pb (II)removal from aqueous solution,Energy Edu.Sci.Technol.18(2007) 67–83.

[39]K.Mohanty,M.Jha,M.N.Biswas,B.C.Meikap,Removal of chromium

(VI)from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride,Chem.Eng.Sci.60 (2005)3049–3059.

[40]D.Park,Y.-S.Yun,S.-R.Lim,J.M.Park,Kinetic analysis and mathe-

matical modeling of Cr(VI)removal in a differential reactor packed with ecklonia biomass,J.Microbiol.Biotechnol.16(2006)1720–1727. [41]K.C.Sekhar,C.T.Kamala,N.S.Chary,Y.Anjaneyulu,Removal of heavy

metals using a plant biomass with reference to environmental control,Int.

J.Miner.Proc.68(2003)37–45.

[42]S.Chaiyasith,P.Chaiyasith,C.Septhu,Removal of cadmium and nickel

from aqueous solution by adsorption onto treated?y ash from Thailand, Thammasat.Int.J.Sci.Technol.1l(2006)13–20.

[43]M.Morita,M.Higuchi,I.Sakata,Binding of heavy metal ions by chem-

ically modi?ed woods,J.Appl.Polym.Sci.34(1987)1013.

[44]K.V.R.Verma,T.Swaminathan,P.V.R.Subrehmnyam,Heavy metal

removal with lignin,J.Environ.Sci.Health A25(1990)242–265. [45]https://www.360docs.net/doc/2215429640.html,lvani,T.S.Wiltowski,D.Murphy,https://www.360docs.net/doc/2215429640.html,lvani,Metal removal

from process water by Lignin,Environ.Technol.18(1997)1163–1168.

[46]https://www.360docs.net/doc/2215429640.html,lvani,T.S.Wiltowski,D.Murphy,https://www.360docs.net/doc/2215429640.html,lvani,Metal removal

from process water by lignin,Environ.Technol.18(1997)1163. [47]R.-C.Sun,https://www.360docs.net/doc/2215429640.html,wther,W.B.Banks,Isolation and characterization

of organosolv lignins from wheat straw,Wood Fiber Sci.30(1998) 56–63.

[48]A.Demirbas,Adsorption of toxic metal ions in aqueous solutions onto

lignin from alkali glycerol deligni?cation,J.Hazard.Mater.109(2004) 221–226.

[49]V.V.Dobrovol’skii,Humic acids and water migration of heavy metals,

Eurasian Soil Sci.39(2006)1183–1189.

[50]K.V.Sarkanen,C.H.Ludwig,Lignins-Occurrence,Formation,Structure

and Reactions,Wiley-Interscience,New York,1971.

[51]H.L.Hergert,E.K.Pye,Recent history of organosolv pulping,in:Tappi

Notes—1992Solvent Pulping Symposium,1992,pp.9–26.

[52]G.I.Mantanis,R.A.Young,R.M.Rowell,Swelling of compressed cellu-

lose?ber webs in organic liquids,Cellulose2(1995)1–7.

[53]E.Sj¨o tr¨o m,Wood Chemistry Fundamentals and Applications,Academic

Press Inc.,New York,1981.

[54]G.R.McDonald,The Pulping of Wood,vol.1,second ed.,1992,pp.

56–63.

[55]Y.Orhan,H.Buyukgungor,The removal of heavy metals by using agri-

cultural wastes,Water Sci.Technol.28(1993)247.

A.Demirbas/Journal of Hazardous Materials157(2008)220–229227

[56]G.Cimino,A.Passerini,G.Toscano,Removal of toxic cations and

Cr(VI)from aqueous solution by hazelnut shell,Water Res.34(2000) 2955–2962.

[57]M.Dakiky,M.Khamis,A.Manassra,M.Mer’eb,Selective adsorption

of Cr(VI)in industrial wastewater using low-cost abundantly available adsorbents,Adv.Environ.Res.6(2002)533–540.

[58]E.Demirbas,Adsorption of Cobalt(II)from aqueous solution onto acti-

vated carbon prepared from hazelnut shells,Adsorp.Sci.Technol.21 (2003)951–963.

[59]P.D.Johnson,M.A.Watson,J.Brown,I.A.Jefcoat,Peanut hull pellets

as a single use sorbent for the capture of Cu(II)from wastewater,Waste Manage.22(2002)471–480.

[60]P.S.Bryant,J.N.Petersen,J.M.Lee,T.M.Brouns,Sorption of heavy

metals by untreated red?r sawdust,Appl.Biochem.Biotechnol.34–35 (1992)777–778.

[61]Y.Bin,Adsorption of copper and lead from industrial wastewater by

maple sawdust,Thesis,Lamar University,Beaumont,USA,1995. [62]M.Ajmal,A.H.Khan,S.Ahmad,A.Ahmad,Role of sawdust in the

removal of copper(II)from industrial wastes,Water Res.22(1998) 3085–3091.

[63]M.A.Zarraa,A study on the removal of chromium(VI)from waste solu-

tion by adsorption on to sawdust in stirred vessels,Adsorp.Sci.Technol.

12(1995)129.

[64]G.Vazquez,G.Antorrena,J.C.Parajo,Studies on the utilization of Pinus

pinaster bark Part1:chemical constituents,Wood Sci.Technol.21(1987)

65.

[65]J.Freer,J.Baeza,H.Maturana,G.Palma,Removal and recovery of

uranium by modi?ed Pinus Equilib D.Don bark,J.Chem.Technol.

Biotechnol.46(1989)41–48.

[66]G.Vazquez,G.Antorrena,J.Gonzalez,M.D.Doval,Adsorption of heavy

metal ions by chemically modi?eded Pinus pinaster bark,Biores.Technol.

48(1994)251.

[67]G.Vazquez,J.Gonzalez-Alvarez,S.Freire,M.L.opez-Lorenzo,G.

Antorrena,Removal of cadmium and mercury ions from aqueous solu-tion by sorption on treated Pinus pinaster bark:kinetics and isotherms, Biores.Technol.82(2002)247.

[68]S.Al-Asheh,Z.Duvnjak,Sorption of cadmium and other heavy metals

by pine bark,J.Hazard.Mater.56(1997)35–51.

[69]M.K.Aoyama,K.Seki,S.Honma,A.Kasia,Adsorption of heavy metals

ions by hardwood barks,Cellulose Chem.Technol.27(1993)39–46. [70]A.M.Deshkar,S.S.Bokade,S.S.Dara,Modi?ed Hardwickia-Binata

bark for adsorption of mercury(II)from water,Water Res.24(1990) 1011–1016.

[71]I.Gaballah,G.Kilbertus,Recovery of heavy metal ions through decon-

tamination of synthetic solutions and industrial ef?uents using modi?ed barks,J.Geochem.Explor.62(1998)241–286.

[72]V.Gloaguen,H.Morvan,Removal of heavy metal ions from aqueous

solutions by modi?ed barks,J.Environ.Sci.Health A32(1997)901–912.

[73]P.Kmiecik,A.S.Lyons,I.Wh?te,L.K.Brown,R.M.Rowell,Use of

wood and bark residues to remove copper ions from water,Biuletyn Informacyjny No.1–2(2005)75–78.

[74]P.Kumar,S.S.Dara,Modi?ed barks for scavenging toxic heavy metal

ions,Indian J.Environ.Health22(1980)196–202.

[75]P.Kumar,S.S.Dara,Utilisation of agricultural wastes for decontaminat-

ing industrial/domestic wastewaters from toxic metals,Agric.Wastes4 (1982)213–223.

[76]J.M.Randall,R.L.Bermann,V.Garrett,A.C.Waiss,Use of bark to remove

heavy metal ions from waste solutions,For.Prod.J.24(1974)80–84.

[77]K.Seki,N.Saitp,M.Aoyama,Removal of heavy metal ions from solu-

tions by coniferous barks,Wood Sci.Technol.31(1997)441–447. [78]J.A.Omgbu,V.I.Iweanya,Dynamic sorption of Pb2+and Zn2+with Palm

(Eleasis guineensis)kernel husk,J.Chem.Ed.67(1990)800.

[79]W.T.Tan,S.T.Ooi,C.K.Lee,Removal of Cr(VI)from solution by coconut

husk and palm pressed?bres,Environ.Technol.14(1993)277–282. [80]N.A.A.Babarinde,Adsorption of zinc(II)and cadmium(II)by coconut

husk and goat hair,J.Pure Appl.Sci.5(2002)81–85.

[81]J.M.Randall,F.W.Reuter,A.C.Waiss Jr.,Removal of cupric ions from

solution with peanut Skins,J.Appl.Polym.Sci.19(1975)563.

[82]S.R.Shukla,V.D.Sakhardande,Cupric ion removed by dyed cellulosic

materials,J.Appl.Polym.Sci.41(1990)2655.

[83]B.Acem?oglu,M.H.Alma,Equilibrium studies on the adsorption of

Cu(II)from aqueous solution onto cellulose,J.Colloid Interface Sci.

243(2001)81.

[84]E.J.Roberts,S.P.Rowland,Removal of mercury from aqueous solution by

nitrogen-containing chemically modi?ed cotton,Environ.Sci.Technol.

7(1973)552.

[85]E.T.Hawrhorne-Costa, A.A.Winkler Hechenleitner, E.A.Gomez-

Pineda,Removal of cupric ions from aqueous solutions by contact with corn cobs,Sep.Sci.Technol.30(1995)2593.

[86]T.Vaughan,C.W.Seo,W.E.Marshall,Removal of selected metal ions

from aqueous solution using modi?ed corncobs,Biores.Technol.78 (2001)133–139.

[87]K.S.Low,C.K.Lee,A.Y.Ng,Column study on the sorption of Cr(VI)

using quaternized rice hulls,Biores.Technol.68(1999)205–208. [88]E.Maranon,H.Sastre,Heavy metal removal in packed beds using apple

wastes,Biores.Technol.38(1991)39–43.

[89]G.Macchi,D.Marani,G.Tirivanti,Uptake of mercury by exhausted

coffee grounds,Environ.Technol.Lett.7(1986)431–444.

[90]J.M.Randall,Variation in effectiveness of barks as scavengers for heavy

metal ions,For.Prod.J.27(1977)51–56.

[91]A.M.Deshkar,S.D.Dara,Sorption of mercury by Techtona grandis bark,

Asian Environ.10(1988)3–11.

[92]D.Balkose,H.Baltacioglu,Adsorption of heavy metal cations from aque-

ous solutions by wool?bers,J.Chem.Technol.Biotechnol.54(1992) 393–397.

[93]T.W.Tee,R.M.Khan,Removal of lead,cadmium and zinc by waste tea

leaves,Environ.Technol.Lett.9(1988)1223–1232.

[94]M.Dakiky,M.Khamis,A.Manassra,M.Mer’eb,Selective adsorption of

chromium(VI)in industrial wastewater using low-cost abundantly avail-able adsorbents,Adv.Environ.Res.6(2002)533–561.

[95]A.Demirbas,Adsorption of Cr(III)and Cr(VI)ions in aqueous solutions

onto modi?ed lignin,Energy Sour.27(2005)1449–1455.

[96]A.Demirbas,Adsorption of Co(II)and Hg(II)from water and wastewater

onto modi?ed lignin,Energy Sour.Part A29(2007)117–123.

[97]G.Annadurai,R.S.Juang,D.L.Lee,Adsorption of heavy metals from

water using banana and orange peels,Water Sci.Technol.47(2002) 185–190.

[98]Z.Reddad,C.Gerente,Y.Andres,M.-C.Ralet,J.-F.Thibault,P.L.

Cloirec,Ni(II)and Cu(II)binding properties of native and modi?ed sugar beet pulp,Carbohyd.Polym.49(2002)23–31.

[99]M.M.Nassar,The kinetics of basic dyes removal using palm fruit bunch,

Adsorp.Sci.Technol.15(1997)609–617.

[100]W.E.Marshall,E.T.Champangne,Agricultural byproducts as adsor-bents for metal ions in laboratory prepared solutions and manufacturing wastewater,J.Environ.Sci.Health Part A:Environ.Sci.Eng.30(1995) 241–261.

[101]A.Hashem,M.A.Senousi,H.A.Hussien,M.M.El-Hmmali,H.A.

Maauof,Preparation and utilization of amidoximated acrylic?ber(AAF) for wastewater treatment,Energy Edu.Sci.Technol.18(2006)25–35. [102]A.Hashem,M.M.Elhmmali,A.Ghith,Equilibrium isotherm,kinet-ics and thermodynamic studies of Hg(II)onto amidoximated Alhagi residues,Energy Edu.Sci.Technol.18(2006)37–58.

[103]A.Hashem,R.A.Akasha,H.A.Hussein,Utilization of some starch hydrogels for cationic dye removal:Equilibrium kinetics and mechanism, Energy Edu.Sci.Technol.18(2006)85–89.

[104]A.Hashem,R.A.Akasha,D.M.Hussein,Chemically modi?ed Alhagi residues as a new adsorbent for Pb(II)ions from aqueous solution,Energy Edu.Sci.Technol.19(2007)17–36.

[105]A.Hashem,E.Abdel-Halim,H.A.Maauof,M.A.Ramadan,A.Abo-Okeil,Treatment of sawdust with polyamine for wastewater treatment, Energy Edu.Sci.Technol.19(2007)45–58.

[106]K.H.Chong,B.V olesky,Metal biosorption equilibria in a ternary system, Biotechnol.Bioeng.49(2000)629–638.

[107]I.A.H.Schneider,J.Rubio,R.W.Smith,Biosorption of metals onto plant biomass:exchange adsorption or surface precipitation?Int.J.Miner.Proc.

62(2001)111–120.

228 A.Demirbas/Journal of Hazardous Materials157(2008)220–229

[108]A.Demirbas,Recent advances in biomass conversion technologies, Energy Edu.Sci.Technol.6(2000)19–40.

[109]A.Demirbas,Biomass resources for energy and chemical industry,Energy Edu.Sci.Technol.5(2000)21–45.

[110]A.Demirbas,Mechanisms of liquefaction and pyrolysis reactions of biomass,Energy Convers.Manage.41(2000)633–646.

[111]O.Theander,in:R.P.Overand,https://www.360docs.net/doc/2215429640.html,e,L.K.Mudge(Eds.),Fundamen-tals of Thermochemical Biomass Conversion,Elsevier Applied Science Publisher,New York,1985.

[112]T.E.Timell,Recent progress in the chemistry of wood hemicelluloses, Wood Sci.Technol.1(1967)45–70.

[113]H.F.J.Wenzl,F.E.Brauns,D.A.Brauns,The Chemical Technology of Wood,Academic Press,New York,1970.

[114]I.S.Goldstein,Organic Chemical from Biomass,CRC Press,Boca Raton, FL,1981.

[115]W.G.Glasser,S.Sarkanen(Eds.),Lignin:Properties and Materials,Amer-ican Chemical Society,Washington,DC,1989.

[116]SarkanenF K.V.,C.H.Ludwig,Lignins:Occurrence,Formation,Structure and Reactions,John Wiley&Sons,Inc.,New York,1971.

[117]A.Demirbas,M.M.Kucuk,Deligni?cation of Ailanthus altissima nd spruce orientalis with glycerol or alkaline glycerol at atmospheric pres-sure,Cellulose Chem.Technol.27(1993)679–686.

[118]D.Mohan,C.U.Pittman Jr.,P.H.Steele,Pyrolysis of wood/biomass for bio-oil:a critical review,Energy Fuels20(2006)848–889.

[119]R.A.Young,Structure,swelling and bonding of cellulose?bers,in:Cel-lulose:Structure,Modi?cation,and Hydrolysis,Wiley and Sons,New York,1986,pp.91–128.

[120]A.V.Bridgwater,Renewable fuels and chemicals by thermal processing of biomass,Chem.Ind.J.91(2003)87–102.

[121]G.I.Mantanis,R.A.Young,R.M.Rowell,Swelling of compressed cellu-lose?ber webs in organic liquids,Cellulose2(1995)1–22.

[122]R.Garcia-Valls,T.A.Hatton,Metal ion complexation with lignin deriva-tives,Chem.Eng.J.94(2003)99–105.

[123]https://www.360docs.net/doc/2215429640.html,ngmuir,The constitution and fundamental properties of solids and liquids,Am.Chem.Soc.38(1916)2221–2295.

[124]H.Freundlish,Over the adsorption in solution,J.Phys.Chem.57(1906) 385–470.

[125]D.O.Cooney,Adsorption Design for Wastewater Treatment,Lewis Pub-lishers,Boca Raton,FL,1999.

[126]G.McKay,Use of Adsorbents for the Removal of Pollutants from Wastew-aters,CRC Press,Boca Raton,FL,1996.

[127]J.Goel,K.Kadirvelu,C.Rajagopal,V.K.Garg,Removal of lead(II)by adsorption using treated granular activated carbon:batch and column studies,J.Hazard.Mater.125(2005)211–220.

[128]P.Lodeiro,R.Herrero,M.E.Sastre de Vicente,The use of protonated Sargassum muticum as biosorbent for cadmium removal in a?xed-bed column,J.Hazard.Mater.137(2006)244–253.

[129]K.Ravikumar,B.Deebika,K.Balu,Decolourization of aqueous dye solu-tions by a novel adsorbent:application of statistical designs and surface plots for the optimization and regression analysis,J.Hazard.Mater.122 (2005)75–83.

[130]S.J.Allen,Q.Gan,R.Matthews,P.A.Johnson,Kinetic modeling of the adsorption of basic dyes by kudzu,J.Colloid Interface Sci.286(2005) 101–109.

[131]A.Mittal,L.Krishnan,V.K.Gupta,Removal and recovery of malachite green from wastewater using an agricultural waste material,Sep.Purif.

Technol.43(2005)125–133.

[132]S.Basha,Z.V.P.Murthy,Seaweeds for engineering metal biosorption:a review,in:L.G.Mason(Ed.),Focus on Hazardous Materials Research, Nova Science Publishers,Hauppauge,New York,2007,pp.165–209.

[133]R.V.Fogarty,P.Dostalek,M.Patzak,J.V otruba,E.Tel-Or,J.M.Tobin, Metal removal by immobilised and non-immobilised Azolla?liculoides, Biotechnol.Technol.13(1999)533–538.

[134]F.Veglio,F.Beolchini,Removal of heavy metal ions by biosorption:a review,Hydrometallurgy44(1997)301–316.

[135]R.H.S.F.Vieira,B.V olesky,Biosorption:a solution to pollution?Int.

Microbiol.3(2000)182–204.[136]R.Kunin,A.Tavares,G.Wilber,New developments in the use of ion exchangers and adsorbents as precoat?lter,in:D.Naden,M.Streat(Eds.), Ion Exchange Technology,Horwood,Chichester,UK,1984.

[137]M.Morita,M.Higuchi,I.Sakata,Binding of heavy metal ions by chem-ically modi?ed Woods,J.Appl.Polym.Sci.34(1987)1013–1023. [138]T.O.Odozi,S.Okeke,https://www.360docs.net/doc/2215429640.html,rtey,Studies on binding metal ions with polymerized corncob and a composite resin with sawdust and onion, Agric.Waste12(1985)13–21.

[139]N.Sawamiappan,S.Krishnamoorthy,Phenol formaldehyde cationic matrices substitutes by bagasse-charcoal,Res.Ind.29(1984)293–297. [140]G.N.Freeland,R.N.Hoskinson,R.J.May?eld,Adsorption of mercury from aqueous solutions by polyethylenamine-modi?ed wood?bers,Env-iron.Sci.Technol.8(1974)953–956.

[141]S.L.Snyder,T.L.Vigo,Removal of mercury from aqueous solution by n-(2-aminoethyl)aminodeoxycellulose cotton,Environ.Sci.Technol.8 (1974)944–946.

[142]F.Gasparrini,G.Palnni,G.Cancelliere,M.Ghedini,G.Dolcetti,Capture of Hg2+ions from ef?uent stream by cellulose derivatives,Environ.Sci.

Technol.10(1976)931–934.

[143]W.N.Marchant,Modi?ed cellulose adsorbent for removal of mercury from aqueous solutions,Environ.Sci.Technol.8(1974)993–996. [144]https://www.360docs.net/doc/2215429640.html,szlo,F.R.Dintzis,Crop residues as ion exchange materials.Treat-ment of soybean hull and sugar beet?ber(pulp)with epichlorohydrin to improve cation-exchange capacity and physical stability,J.Appl.Polym.

Sci.52(1994)531–538.

[145]J.M.Randall,E.Hautala,G.McDonald,Binding of heavy metal ions by formaldehyde polymerized peanut skins,J.Appl.Polym.Sci.22(1978) 379–387.

[146]P.Kumar,S.S.Dara,Studies on binding of copper ions by some natural polymeric materials,Chem.Era.P(1979)20–23.

[147]P.Kumar,S.S.Dara,Binding heavy metal ions with polymerized onion skin,J.Appl.Polym.Sci.,Polym.Chem.Ed.19(1981)397–402. [148]A.L.Camire,F.M.Clydesdale,Effect of pH and heat treatment on the binding of calcium,magnesium,zinc,iron to wheat bran and fractions of dietary?bers,J.Food Sci.46(1981)548–551.

[149]K.V.R.Varma,T.Swaminathan,P.V.R.Subrahmanyam,Studies on copper removal by lignin solution/suspension,J.Environ.Sci.Health A24(1989) 847–861.

[150]K.V.R.Varma,T.Swaminathan,P.V.R.Subrahmanyam,Heavy metal removal with lignin,J.Environ.Sci.Health A25(1990)243–265. [151]S.R.Platt,F.M.Clysdale,Binding of iron by lignin in the presence of various concentrations of calcium,magnesium,and zinc,J.Food Sci.50 (1985)1322–1326.

[152]M.S.Nasr,D.G.MacDonald,Colour removal from kraft mil caustic extraction ef?uent using aluminum and iron,Can.J.Chem.Eng.56(1978) 87–93.

[153]C.Namasivayam,K.Kadirvelu,Carbonized coir pith as an adsorbent for the removal of toxic ions,dyes and pesticides from wastewaters,Ind.J.

Chem.Technol.5(1998)334–335.

[154]K.Periasamy,C.Namasivayam,Removal of copper(II)by adsorption onto peanut hull carbon from water and copper plating industry wastew-ater,Chemosphere32(1995)769–789.

[155]J.L.Gardea-Torresdey,G.de la Rosa,J.R.Peralta-Videa,Use of phyto?l-tration technologies in the removal of heavy metals:a review,Pure Appl.

Chem.76(2004)801–813.

[156]B.V olesky,Detoxi?cation of metal-bearing ef?uents:biosorption for the next century,Hydrometallurgy59(2001)203–216.

[157]P.A.Brown,S.A.Gill,S.J.Allen,Metal removal from wastewater using peat,Water Res.34(2000)3907–3916.

[158]T.W.Goodwin,E.I.Mercer,Introduction to Plant Biochemistry,Perga-mon Press,UK,1975.

[159]P.Nobel,Physicochemical and Environmental Plant Physiology,Aca-demic Press,New York,1991.

[160]S.B.Lee,I.H.Kim,D.D.Y.Ryu,Structural properties of cellulase reaction mechanism,Biotechnol.Bioeng.25(1983)33–51.

[161]S.-A.Ong,C.-E.Seng,P.-L.Lim,Kinetics of adsorption of Cu(II)and Cd(II)from aqueous solution on rice husk and modi?ed rice husk,Elec-tron.J.Environ.Agric.Food Chem.6(2007)1764–1774.

A.Demirbas/Journal of Hazardous Materials157(2008)220–229229

[162]B.Acemioglu,M.H.Alma,Equilibrium studies on adsorption of Cu(II) from aqueous solution onto cellulose,J.Colloid Interface Sci.243(2001) 81–83.

[163]R.M.Rowell,Removal of metal ions from contaminated water using agricultural residues,in:ECOWOOD2006–2nd International Confer-ence on Environmentally–Compatible Forest Products,Fernando Pessoa University,Oporto,Portugal,20–22September2006,2006.

[164]G.I.Mantanis,R.A.Young,R.M.Rowell,Swelling of wood Part III.

Effect of temperature and extractives on rate and maximum swelling, Holzforschung49(1995)239–248.

[165]S.Dahiya,R.M.Tripathi,A.G.Hegde,Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass,Biores.

Technol.99(2008)179–187.

[166]I.C.Eromosele,S.S.Bayero,Adsorption of chromium and zinc ions from aqueous solutions by cellulosic graft copolymers,Biores.Technol.71 (2000)279–281.[167]B.-G.Lee,R.M.Rowell,Removal of heavy metal ions from aque-ous solutions using lignocellulosic?bers,J.Nat.Fibers1(2004)97–108.

[168]J.S.Han,Stormwater?ltration of toxic heavy metal ions using l?gnocellulosic materials selection process,?berization,chemical mod-i?cation,and mat formation,in:2nd Inter—Regional Conference on Environment–Water99,Lausanne,Switzerland,September1–3, 1999.

[169]D.Aderhold,C.J.Williams,R.G.J.Edyvean,The removal of heavy-metal ions by seaweeds and their derivatives,Biores.Technol.58(1996) 1–6.

[170]G.Vazquez,G.Antorrena,J.Gonzalez,M.D.Doval,Adsorption of heavy metal ions by chemically modi?ed pinus pinaster bark,Biores.Technol.

48(1994)251–255.

[171]K.Seki,M.Saito,M.Aoyama,Removal of heavy metals from solutions by coniferous barks,Wood Sci.Technol.31(1997)441–447.

土壤重金属污染作物体内分布特征和富集能力研究_周振民

第31卷第4期2010年8月华 北 水 利 水 电 学 院 学 报 Journa l o f N orth Ch i na Institute ofW ate r Conse rvancy and H ydro electr i c Pow er V o l 131N o 14A ug 12010 收稿日期:2010-05-05 基金项目:水利部公益性科研资助项目(200801015). 作者简介:周振民(1953)),男,河南封丘人,省级特聘教授,博士,主要从事农业水土环境方面的研究. 文章编号:1002-5634(2010)04-0001-05 土壤重金属污染作物体内分布特征和富集能力研究 周振民 (华北水利水电学院,河南郑州450011) 摘 要:随着污水灌溉面积的持续扩大,研究污水灌溉带来的土壤重金属污染问题,特别是重金属污染物对土壤-作物系统的影响显得尤为重要.通过玉米作物污水灌溉实验、采样分析和生态调查,研究了由于污水灌溉造成的土壤重金属污染(Pb ,Cd ,C r ,Cu)在玉米体内分布特征和富集能力.研究结果证明,重金属Pb ,Cr 和Cu 主要富集在玉米根部,少量向玉米作物地上部分迁移.玉米籽粒中4种重金属(P b ,Cd ,C r ,Cu)的含量均在粮食及其制品中重金属元素限量之内,说明玉米籽粒基本没有受到污染,粮食生产处于安全状态.关键词:土壤重金属污染;作物影响;分布特征;富集能力中图分类号:X 53 文献标识码:A 重金属是农业生态系统中一类具有潜在危害的化学污染物.重金属Pb ,Cd ,C r ,Cu 是污水的主要组 分之一,它们对作物、土壤和地下水都有潜在的威胁.土壤重金属污染在世界范围内广泛存在且日趋严重,全世界平均每年排放汞约1.5万t 、铜约340万t 、 铅约500万t 、锰约1500万t 、镍约100万t [1] .中国受汞、铬、镉、铅、镍等重金属污染的耕地面积超过2@1011 m 2 ,约占总耕地面积的1/5[2] ,每年受重金属 污染的粮食约1200万t [3] ,重金属污染土壤对农作物生长的影响研究已迫在眉睫. 国内外研究成果大多是在土壤重金属污染条件下,农作物受到的定性影响[4] ,而在土壤重金属污染下,作物的生理机理影响以及定量指标研究成果较少 [5] ,尤其是对作物的生长生理过程和作物产 量指标以及遗传性毒理指标等方面的研究很少[6] . 1 试验场地基本情况 [3] 污灌试验区选定在位于开封市东15km 的兴隆乡太平岗村二组.试验区紧邻惠济河,惠济河是淮河的一条重要支流,是开封市污染严重的一条河流.该区多年平均地下水埋深3.40m.该地区地势平坦,地面比降为1/2500~1/3000.土壤为黄河冲积平 原土质,质地为壤土或沙壤土,有机质少,p H 值为8.45~8.60,孔隙度为43.40%~50.26%,密度为 1.32~1.50g /c m 3 .主要作物有水稻、玉米、棉花、花生、大豆等,自然条件在河南省平原地区有一定的代表性. 2 采样与分析方法 2.1 污水灌溉水源采样与水质分析 每次灌溉前,沿引水处的河流横断面(即左岸,中,右岸)取水样,利用火焰原子吸收分光光度计分别测水样中Pb ,Cd ,Cr 和Cu 的含量.2.2 土壤含水率与土壤理化性质分析 用对角线布点法采集土壤样品,采样点有5个,取土深度为0~20c m,20~40c m 和40~60c m.每月1日、11日和21日以及玉米收获时间为取样时间.土壤含水率采用/田间法0进行测定[7] ;土壤容 重采用/环刀法0[7];p H 值采用玻璃电极法[8] ;土壤中总氮、全磷以及速效钾分别采用过硫酸钾氧化紫外分光光度法、钼锑抗分光光度法和醋酸铵提取法进行测定;有机质采用油浴外加热-重铬酸钾容量法. 将土样放置实验室风干后碾磨,过200目筛,称

几种吸附材料处理重金属废水的效果

摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法 [1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h,4000转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3放入研钵中研细,混匀,置于高温炉中,控制温度在800 ℃,恒温3 h。活性炭直接取自于资环实验室。黄褐土采自于安徽科技学院种植科技园,土壤样品采集后,风干,过100目筛备用[4]。

生物吸附法去除重金属离子的研究进展

生物吸附法去除重金属离子的研究进展 摘要:本文主要对生物吸附去除重金属离子污染的研究现状进行了综合评述。 首先,介绍了重金属污染的危害和传统去除重金属离子的技术存在的局 限性,指出生物吸附法作为新兴的处理方法的优势;然后,讨论了生物 吸附剂的来源及特点,生物吸附重金属的机理研究,影响重金属生物吸 附的因素以及重金属离子的解析;最后,展望了生物吸附在去除重金属 离子的前景,也提出了其存在的局限性。 1前言 重金属一般指密度大于4.5克每立方厘米的金属,如铅(Pb)、砷(As)、镉(Cd)、汞(Hg)、铜(Cu)、金(Au)、银(Ag)等。这些难降解的重金属随工业废水的超量排放对环境构成威胁,通过食物链在生物体富集,破坏生物体正常代活动,危害人体健康。自从日本发生轰动世界的水俣病(汞中毒)和痛疼病(镉中毒)后,如何治理重金属废水,已经受到科学家们的普遍关注[1]。因此,有效地处理重 金属废水、回收贵重金属已经成为当今环保领域和食品安全领域中重要的课题。 目前处理含重金属废水的方法主要有化学沉淀、溶解、渗析、电解、反渗透、蒸馏、树脂离子交换与活性炭吸附等。各种方法的优缺点如表一所示. 表1 去除重金属离子传统技术[2] Table 1 Conventional technologies for heavy metal removal 处理方法优点缺点 化学沉淀和 过滤简单、便宜对于高浓度的废水,分离困难效果较差,会产 生污泥 氧化和还原无机化 需要化学试剂生物系统速率慢 电化学处理可以回收金属价格较贵 反渗透出水好,可以回用 需要高压膜容易堵塞价格较贵 离子交换处理效果好,金属可以回 收 对颗粒物敏感 树脂价格较贵 吸附可以利用传统的吸附剂 (活性炭) 对某些金属不适用 蒸发出水好,可以回用 能耗高价格较贵产生污泥

几种吸附材料处理重金属废水的效果

几种吸附材料处理重金属废水的效果 摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理 效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是 在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务 1材料与方法 1.1试验材料 1.1.1吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室 ,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g 硅藻土加入到0.1 mol/L 的Na2CO3 溶液中,边搅拌边慢慢地加入饱和的CaCl2 溶液。反应结束后,过滤,置于烘箱内105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100 目筛,在850 ℃煅烧5 h 后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h ,4000 转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g 高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3 放入研钵中研细,混匀,置于高温炉中,

重金属离子吸附剂

重金属离子吸附剂的策划书随着我国IT 行业、化学和冶金工业的快速发展,来自电解液、电镀液中的铅、铜、铬、锌等重金属离子的废水对环境的污染越来越严重,采用重金属离子吸附剂技术处理后可以达标排放,也可回收。 重金属离子吸附剂的实际消费者是化工、冶金、电镀、IT生产企业,使用者和购买决策者是污水处理人员和厂长,实际购买者是采购部门。市场特征呈现为使用者、购买决策者与实际购买者分离的特殊性。随着我国节能减排政策的大力实施,这将会极大地推动企业的实际需求以及决策者的购买意愿。 重金属离子吸附剂市场是集团市场,购买过程属集团购买行为,人员推销及技术服务是最有效的销售方式。工厂首先根据污水类型和要求选择吸附剂种类、规格,同时会受使用习惯、品牌好坏、地域差异等因素的影响。 重金属离子吸附剂属于化工污水处理设备类,环保管理机构如国家环保管理局制定的宏观政策法规会对其发展产生重要影响。 对于化工污水处理设备的销售国家没有严格的要求,只要产品合格,能满足企业需求即可,所以其生产过程主要执行《企业标准》。 一. 生产工艺流程 (一).生产要求: 1.生产周期:从原料到吸附剂产品的生产周期为15天。 2.工人要求:相关专业大专以上学历、经过三个月的专业培训。 3.技术关键:重金属离子吸附剂制备的工艺。 (二).厂址选择: 原材料采用汽车运输,运输量不大,对道路要求不高;每月用水300吨左右,用电1000千瓦,一般投资环境均能满足;公司坐落于风景宜人的国家级(合肥)高新技术产业开发区,邻近中国科学院合肥分院与大蜀山自然风景区,交通便利。

公司占地3500多平方米,分为生产厂区、办公区、设有生产加工车间、销售部、售后服务中心、研发中心、质检部、企划部以及办公室等多个部门。 (三).生产工艺流程: 1.原材料: 废水处理设备以重金属离子吸附剂为核心材料;通过它的阴、阳离子交换基团来吸附、分离重金属离子。 2.生产设备 表1. 生产设备一览表 3.生产工艺流程

吸附重金属离子

几种吸附材料处理重金属废水的效果 来源:考试吧(https://www.360docs.net/doc/2215429640.html,)2006-3-5 13:27:00【考试吧:中国教育培训第一门户】论文大全 摘要用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处

不同类型睡莲对重金属Cu、Pb的吸收及富集特征

Botanical Research 植物学研究, 2019, 8(4), 366-369 Published Online July 2019 in Hans. https://www.360docs.net/doc/2215429640.html,/journal/br https://https://www.360docs.net/doc/2215429640.html,/10.12677/br.2019.84044 Absorption and Accumulation of Heavy Metals of Pb, Cu by Different Waterlilies Kuan Yang Shanghai Chenshan Botanical Garden, Shanghai Received: Jul. 1st, 2019; accepted: Jul. 23rd, 2019; published: Jul. 30th, 2019 Abstract Objective: This study investigated the distribution of heavy metals including Cu and Pb in dif-ferent organs of different type waterlilies to research ecological restorations of heavy metals pollution in water bodies. Method: The contents of heavy metals in waterlilies planted in Shanghai Chenshan Botanical Garden were detected and analyzed. Result: Different organs of waterlilies absorbed Cu and Pb in different ways and these metals were distributed in different parts with different contents. Result: Waterlily is not the hyperaccumulator but have good ap-plication prospects in remediation of copper-lead contaminated soils because of the fast growth rate and high biomass. Keywords Waterlily, Heavy Metals, Accumulation 不同类型睡莲对重金属Cu、Pb的吸收及 富集特征 杨宽 上海辰山植物园,上海 收稿日期:2019年7月1日;录用日期:2019年7月23日;发布日期:2019年7月30日 摘要 目的:为探索受污染水体的生态修复方法,分析了Cu和Pb在不同类型睡莲的不同器官中的分布。方法:

水中重金属离子吸附研究

水中重金属离子吸附研究 1 引言 重金属作为一类常规的水体污染物,因其具有毒性较高,无法降解等特点,成为水体污染物中危害极大且备受关注的一种.随着工业的发展,重金属的污染问题日益突出.目前为止,对于水体的重金属污染,主要的处理方法包括吸附法、化学沉淀法、离子交换法、膜分离法、生物絮凝法等.其中,吸附法拥有材料便宜易得,操作简单,重金属处理效果较好等优点,因而被研究者所重视. 吸附法是使重金属离子通过物理或者化学方法粘附在吸附剂的活性位点表面,进而达到去除重金属离子目的的方法,常用的吸附剂包括天然材料和人工材料两种,天然材料包括活性炭(Mouni et al., 2011)、矿物质(Kul and Koyuncu, 2010)、农林废弃物(谭优等,2012)、泥沙(夏建新等,2011)等,人工材料包括纳米材料(黄健平和鲍姜伶,2008)等.一般来说,天然材料较易获取,成本较低,但吸附效果较差,人工材料制备成本高于天然材料,但吸附效果较好. 由Kasuga于1998年首次合成的钛酸盐纳米管(Titanate Nanotubes,TNTs)是近年来新兴的人工吸附材料(Kasuga et al., 1998).由于TNTs表面积大,管径小,表面富含大量离子交换位点(Liu et al., 2013;Wang et al., 2013a; Wang et al., 2013b),使得TNTs拥有极强的重金属离子吸附性能,研究证明其对水中的Pb(Ⅱ)和Cd(Ⅱ)吸附能力分别超过了500 mg·g-1和200 mg·g-1,远超于其他吸附材料(Xiong et al., 2011).同时,由于其良好的沉降性能和极快的吸附速率,以及易于解吸再生的特点(Wang et al., 2013b),使得TNTs拥有良好的研究价值和应用潜力. 然而,传统的TNTs合成方法以P25型TiO2为钛前驱体,需130 ℃水热反应72 h(Wang et al., 2013a; Liu et al., 2013),较长的高温反应时间带来了较高的能量消耗,限制了其在工业上的应用前景(Ou and Lo, 2007).为了克服这此缺陷,本文采用纳米级锐钛矿作为反应的原材料,成功的将水热反应时间缩短为6 h,大大节约了生产制备的成本,为TNTs在实际工业领域的应用创造了便利条件.同时,文章中利用TEM、XRD和FT-IR等多种表征手段对新制备的材料进行了表征,并研究了其对重金属离子的吸附行为,证实了新制备的材料具有良好的重金属吸附效果及吸附选择性. 2 材料与方法 2.1 实验试剂与仪器 本研究中的使用的化学试剂均为分析纯或以上.TiO2(锐钛矿颗粒,99.7%,平均粒径25 nm)购于Sigma-Aldrich 公司;NaOH、HCl、无水乙醇等(分析纯)和KBr(光谱纯)购于国药集团化学试剂有限公司;PbCl2(>99.5%)、CdCl2·2.5H2O(>99.0%)和CrCl3·6H2O(>99.0%)用以配制相应的重金属储备液,均购自天津市光复精细化工研究所.分别称取0.6711 g PbCl2、1.0157 g CdCl2·2.5H2O和2.5622 g CrCl3·6H2O于500 mL容量瓶中,用以配制1000 mg·L-1的Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)储备液. 2.2 TNTs的合成与表征

无机吸附材料在处理含重金属离子废水中的应用进展

2007,Vol.24No.6 化学与生物工程 Chemistry &Bioengineering 8  基金项目:国家自然科学基金资助项目(20571039),鲁东大学教学改革基金项目(Y0527,Y0715)和大学生科技创新基金项目收稿日期:2007-03-14 作者简介:吕晓凤(1982-),女,山东招远人,主要从事无机多孔材料的研究与应用;通讯联系人:殷平(1971-),女,江苏东台人,博 士,副教授,主要从事无机多孔材料的研究和开发。E 2mail :yinping426@https://www.360docs.net/doc/2215429640.html, 。 无机吸附材料在处理含重金属离子废水中的应用进展 吕晓凤,殷 平,胡玉才,徐晓慧 (鲁东大学化学与材料科学学院,山东烟台264025) 摘 要:综述了近年来无机吸附材料在处理含重金属离子废水中的应用,简要介绍了几种主要无机吸附材料对各种重金属离子的吸附能力等方面的研究成果,并对此类材料的发展前景进行了探讨。 关键词:无机吸附材料;重金属离子;工业废水 中图分类号:TQ 42412 X 703 文献标识码:A 文章编号:1672-5425(2007)06-0008-03 现在每年冶炼、电解、电镀、医药、染料等工矿企业排放大量含有重金属离子的工业废水,造成水体的严重污染,对生态安全以及人类自身的生存和健康都会产生极大危害。因此,工业废水的处理和再生利用问题已成为倍受国内外科研工作者关注的一个热点。吸附法[1]是重金属离子废水处理应用中一种重要的物理化学方法,现今的研究重点主要集中在廉价、高效、易处理吸附剂的开发应用上。传统的吸附剂活性炭[2]是孔性炭素材料,具有大孔隙结构和表面积,故而其优点是吸附能力强和去除效率高,但高昂的价格在一定程度上限制了其应用。作者在此介绍了近年来几类主要的无机吸附材料在处理重金属废水方面的研究进展和今后的发展趋势。 1 价格低廉的工业废料及天然矿物材料 粉煤灰是燃煤电厂等企业常年排放的大量工业废渣,是从烧煤粉的锅炉烟气中收集的粉状灰粒,因细度小且比表面积高而具有一定的重金属吸附能力[3,4]。使用粉煤灰等工业废渣作为废水处理的吸附剂,既有原料价廉易得、工业操作简单等优点,又可解决废水废渣的环境污染以及回收再利用的问题,达到以废治废的目的,具有明显的经济效益和社会意义。席永慧等[5]利用X 2射线荧光研究了粉煤灰等去除溶液中有毒金属离子Zn 2+的吸附过程,结果表明吸附过程快速,在0~2h 内Zn 2+浓度可降低40%~50%,24h 后基本达到吸附平衡状态。由其Langmuir 吸附等温线求得Zn 2+在粉煤灰中的最大吸附量可达到57180mg ?g -1,约为粘土、粉质粘土的4~5倍。彭荣华等[6]对粉煤灰进行适当改性,加入一定量的硫铁矿烧渣和适量的固体NaCl ,在90℃用硫酸废液搅拌浸取后在300℃进行焙制。经原子吸收分光光度法测定,改性粉煤灰处理电镀废水,对Cr 6+、Pb 2+、Cu 2+、Cd 2+的去除率高于9715%,达到国家排放标准。进行对比实验后发现改性粉煤灰对金属离子的去除率比未改性粉煤灰高,分析其中原因在于粉煤灰中含有较多类似于活性炭的残碳,用酸在较高温度下浸提可使其表面和微孔内粗糙,显著增加其比表面积,相当于对粉煤灰进行了活化处理;再者,粉煤灰中的金属氧化物与硫酸反应后生成的硫酸盐使其改性后又具有混凝性能。 焦化厂出炉的热焦炭在熄焦塔用水熄焦过程中从焦炭表面脱落的焦粉被称为熄焦粉,由于在产生的过程中受到水和汽的作用被活化而具有吸附性能。张劲勇等[7]用混有少量硫酸的硝酸对熄焦粉进行氧化改性,可显著增加其表面酸性基团含量,提高熄焦粉的表面亲水性。改性熄焦粉可大幅提高其对原始水的处理效果,对Fe 3+优先吸附,具有较强的选择性吸附能力。 在作为吸附材料的天然矿产中,膨润土是研究得较多的一种,它是以蒙脱石为主要矿物成分的粘土矿。蒙脱石是一种层状铝硅酸盐类矿物,其单位晶胞系由硅氧四面体和铝氧八面体按2∶1组成的晶层,在晶层内存在广泛的同晶置换,使晶层中产生永久性负电荷,这样层间可通过吸附阳离子来达到电荷平衡,同时层

3种园林植物对土壤重金属的吸收富集特征

第29卷 第3期中南林业科技大学学报V ol.29 N o.3 2009年6月Jo ur nal o f Cent ral South U niv ersit y o f Fo restr y&T echno log y Jun.2009 文章编号:1673-923X(2009)03-0021-05 3种园林植物对土壤重金属的吸收富集特征 金文芬1,2,方 晰1,2,唐志娟1,2 (1.中南林业科技大学,湖南长沙410004;2.城市森林生态湖南省重点实验室,湖南长沙410004) 摘 要: 通过选择南方城市常见的3种园林绿化植物(杜鹃花、桂花、栀子花)为研究对象,分析其对6种重金属元素(M n、Zn、Cu、Ni、Cd、Pb)的吸收富集特征.结果表明:绿地土壤中6种重金属的平均含量由高到低的顺序为Zn>M n>Pb>C u>Ni>Cd,平均含量分别为221.111、104.791、82.238、57.289、42.673、5.113mg/kg,且Cu、Ni、C d、Pb元素的来源可能相同;杜鹃花、桂花、栀子花对6种重金属元素的总平均富集能力分别为0.34、0.28、0.19,且均表现出对M n的富集能力最强,平均富集系数分别为1.23、0.73、0.31,而对Zn、Ni的富集能力最小;杜鹃花对6种重金属的转移能力最大,总平均转移系数为1.92,其次是桂花,总平均转移系数为1.62,栀子花最小,总平均转移系数为1.09;杜鹃花对M n元素同时具有超富集植物两个基本特征. 关键词: 环境生态学;土壤重金属;园林植物;吸收富集 中图分类号: X53 文献标志码: A Absorption and Accumulation Characteristics of 3Ornamental Plants to Soil Heavy Metals JIN Wen-fen1,2,FANG Xi1,2,T ANG Zhi-juan1,2 (1.C entral South University of Fores tr y and Techn ology,Ch ang sha410004,Hunan,China; 2.Key L aboratory of Urban Forest Ecology of Hun an Province,Ch ang sha410004,Hunan,China) Abstract:T he s tu dy analyzed the characteris tics of absorption an d accumulation for6kinds of h eavy metal elemen ts(M n,Zn,Cu, Ni,C d,Pb)in3com mon ornamental plants(Rhododend ron simsii,Osmanthus f rag rans,Gard enia j asminoid es)from cities in the South.Resu lts show that the order of average contents of6h eavy metal elements in green s oil goes from h igh to low as follow s:Zn >M n>Pb>Cu>Ni>Cd,their averag e contents are res pectively221.111,104.791,82.238,57.289,42.673and5.113mg/kg, an d Cu,Ni,Cd and Pb elements m ay come from th e s ame sour ces;that th e overall average enrichment capacity of R hod od end ron sim-sii,Osmanthus f rag rans and Gar denia j asminoides to the6elements are res pectively0.34,0.28and0.19,s how img a strongest to M n w ith average coefficien ts b eing1.23,0.73an d0.31and a w eakest to Zn and Ni;that Rh odode ndron simsii has th e highest transloca-tion capacity to the6elements,its average coefficient being up to1.92,Osmanthus f rag rans comes the next,its average coefficient being1.62,and G ard enia j asm inoides is the last,its average coefficient being only1.09;and that R hod od endr on simsii,as hyper-ac-cumu lator to M n,h as tw o b asic characteris tics at the s ame tim e. Key words:environmental ecology;soil heavy metals;orn amental plants;absorp tion and accumulation 土壤是人类赖以生存的重要自然资源之一,也是人类生存环境的重要组成部分.随着城市化、工业化、矿产资源的开发利用以及大量化学产品的广泛使用,土壤重金属污染日趋严重,威胁着人类的生存和发展.土壤中的重金属污染物不仅具有隐蔽性、不可逆性等特点,而且可经水、植物等介质进入人体,最终影响人类健康.因此,如何控制和减轻土壤重金属污染及其危害已成为了一个日益突出的问题.也正由于土壤重金属污染治理和 收稿日期:2008-05-10 基金项目:科技部基础条件平台建设项目(20070822);湖南省重点实验室(06FJ3083、2007FJ4046);中南林业科技大学青年基金项目(2008023B);2006年度湖南省普通高校青年骨干教师培养对象项目. 作者简介:金文芬(1982—),女,湖南常德人.助教,硕士研究生,主要从事城市景观生态学研究.E-mail:jw f.420@https://www.360docs.net/doc/2215429640.html,. 通讯作者:方 晰(1968-),女,广西邑宁人.教授,博士,主要从事生态教学和生态系统定位研究.E-mail:fang xizhang@sin https://www.360docs.net/doc/2215429640.html,

碳材料对重金属离子的吸附性实验

碳材料对重金属的吸附及gamma射线辐照还原 一:碳材料的选择 活性炭;活性炭纤维;碳纳米管;磁性多孔碳材料;氧化石墨烯①。 材料的选择主要考虑材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。然后再对材料进行一系列的预处理。 常用的处理方法: 1 化学试剂处理 2 辐射照射处理 3 共聚接枝 比如具有吸附能力碳纳米管(CNTs)的预处理,就是选用一定浓度的过氧化氢,次氯酸钠,硝酸,高锰酸钾溶液。吸附能力增强的几个原因。 二:材料的吸附 材料的吸附性实验,即是一种探究性优化实验。 资料中一般用材料吸附一些生活生产中常见的重金属污染物。如:镉离子,铜离子,铅离子,铬离子等等。随即研究这种材料在不同时间,不同的pH,不同的吸附剂用量。依此得出这种材料最佳的吸附条件。 最后绘制等温吸附曲线。用朗缪尔,弗罗因德等温吸附方程式拟合。继而进一步分析这种材料的吸附机理。 三:gamma射线的辐照还原 辐照还原的实质就是对已经吸附的重金属离子进行解析。使这种吸附材料能够重复利用。 附录: ①:其吸附机理可大致分为三大类:10 不发生化学反应,由分子间的相互引力

产生吸附力即物理吸附。20 发生化学反应,通过化学键力引起的化学吸附。30 由于静电引力使重金属离子聚集到吸附剂表面的带电点上,置换出吸附剂原有的离子的交换吸附。 活性炭对金属离子的吸附机理是金属离子在活性炭表面的离子交换吸附,同时还有金属离子同其表面含氧基团之间的化学吸附以及金属离子在其表面沉积而产生的物理吸附。 两个常用的等温式:langmuir,freundlich

斜对角线原则 材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。孔径跟比表面积。 材料对金属离子吸附效果的依赖性。 酸处理跟碱处理 酸处理会增加含氧官能团,酸性官能团,从而提高亲水性跟离子交换性能 碱处理会增加微孔数目。 典型制备方法: 将ACF GAC反复用蒸馏水冲洗至溶液的pH不变,再于80℃干燥过夜。 干燥过的ACF GAC 中分别加入1.0mol/l 硝酸溶液加热煮沸3h,再用蒸馏水洗涤,于80℃干燥过夜。 碱处理即把硝酸改为KOH溶液。 负载ZnO-GAC 碳纳米管吸附性好坏明显依赖溶液的PH和碳纳米管的表面状态。

活性炭与碳纳米管材料改性及其对重金属的吸附

活性炭与碳纳米管材料改性及其对重金属的吸附Absorption of heavy mental ions on modified materials:active carbon and Carbon nanotubes ---- 摘要:总结多种不同原材料制备和改性活性炭及碳纳米管的方法、吸附机理。通过吸附等温线、表面结构性质(比表面积、总表面酸性官能团、等电点等特征)分析这两类材料改性后对单一重金属的吸附性能。论述多种重金属共存时改性材料对金属离子的吸附影响。最后展望改性材料的存在问题及应用前景。 关键词:材料改性活性炭碳纳米管吸附重金属Abstract:Sum the methods of making and modifying active carbon and carbon nanotubes from differents of raw materials and adsorption mechanism of modified materials. The single heavy mental ions adsorption performance on these two materials is investigated by measuring different properties such as specific surface area, PZC, total surface acidic groups as well as adsorption isotherm. The adsorption capacities of many heavy mental ions on modified material were studied. Modify of materials has some defects as well as widely used. Key words:modification of material active carbon Carbon nanotubes absorption heavy mental ions 引言:目前冶炼、电解、医药、油漆、合金、电镀、纺织印染、造纸、陶瓷与无机颜料制造等行业每年排放大量含有多种重金属离子的工业废水[1].污水中大部分重金属属于有效态,具有生物富集、生物浓缩、生物放大效应,对生物体危害很大,受到国内外的重视。很多国外学者研究利用秸秆、花生壳、活性炭

岷江下游11种杂草对重金属的富集特征

随着社会经济的快速发展和城市化进程的不断 加剧,重金属污染物通过各种途径进入生态系统, 引起大气污染、土壤污染、地下水污染等,造成重金属在 食物链中的富集, 严重威胁人类生存安全[1-3]。重金属污染具有范围广、持续时间长、污染隐蔽等特点,如何 减轻重金属污染已成为国内外研究热点之一[4-5]。植物修复是治理重金属污染最切实可行的手段,但前提是 找到对某种(些) 重金属具有特殊吸收富集能力的植物种或基因型,即重金属的“超富集植物”[6-7] 。然而,在国内外已经报道的700多种重金属超富集植物中,大多数还处在实验摸索阶段,较少用于大规模的环境 治理工程[8]。究其原因, 除土壤中重金属的有效性差、难以被植物吸收外,另一个重要的制约因素是已知的 超富集植物不同程度地存在着不能同时超量积累多 摘要:为了解岷江下游11种杂草不同部位(根、地上部)中5种重金属(As 、Cd 、Cu 、Pb 、Zn )的含量特征,选取五通桥段典型集水 区,采用野外调查与室内分析相结合的方法,探讨该区杂草对重金属的富集和转运能力。结果表明,集水区土壤除Cd 污染严重外,整体污染较轻。11种草本植物重金属含量为Zn>Pb>Cu>As>Cd ,且根系都对As 有明显的滞留效应。淡竹叶、巴天酸模、一点红、云南海金沙、铁芒箕、麦冬、绣球藤、酸浆草和蜈蚣草植株都存在地上部均有2种或者2种以上的重金属含量高于根部。11种杂草对重金属As 富集能力都不强,富集系数和转运系数均小于1。铁芒箕和蜈蚣草对重金属Cd 、Cu 、Pb 、Zn ,淡竹叶、一点红、云南海金沙和酸浆草对Cd 、Pb 、Zn ,麦冬对Cd 和Cu ,绣球藤对Cd 和Zn 的富集系数和转运系数都大于1,这些植物均具有超富集植物的一些重要特征,具有成为超富集植物的潜力。关键词:集水区;杂草;重金属;富集特征中图分类号: X53文献标志码: A 文章编号:1672-2043(2015) 11-2063-07doi:10.11654/jaes.2015.11.004 岷江下游11种杂草对重金属的富集特征 简 毅,张 健*,杨万勤,林 静 (四川农业大学林业生态研究所,四川温江611130) 收稿日期: 2015-05-26基金项目:国家“十二五”科技支撑计划(2011BAC09B05);四川省教育 厅科技创新团队项目(11TD006);四川省应用基础项目 (2012JY047);四川省科技支撑计划 (12ZC0017)作者简介:简毅(1982—),男,四川崇州人,博士研究生,从事农业面 源污染研究。E-mail : 163jianyi@https://www.360docs.net/doc/2215429640.html, *通信作者:张健E-mail : sicauzhangjian@https://www.360docs.net/doc/2215429640.html, Accumulation Characteristics of Heavy Metals in Weed Plants from a Catchment of Lower Minjiang River JIAN Yi,ZHANG Jian *,YANG Wan-qin,LIN Jing (Institute of Ecological &Forestry,Sichuan Agricultural University,Wenjiang 611130,China ) Abstract :Phytoremediation of soil heavy metals has drawn much attention.In this study,we investigated content and distribution of 5heavy metals (As,Cd,Cu,Pb and Zn )in different parts of 11weed plants collected from a typical catchment of Minjiang River in Wutongqiao District of Sichuan Province.(1)Soil pH and organic matter were 5.57and 12.94μg ·g -1,respectively.(2)The soils were polluted heavily by Cd,but less by the others.(3) The content of heavy metals in weed plants was Zn>Pb>Cu>As>Cd,with As mainly accumulated in the roots.(4) The plants with two or more heavy metals higher in above-ground than in below-ground were Lophatherum gracile ,Rumex patientia ,Emilia sonchifolia ,Lygodium yunnanense ,Dicranopteris dichotoma ,Ophiopogon Japonicus ,Clematis montana ,Oxalis corniculata and Pteris vittata .(5)All weed plants showed a weaker capacity to accumulate As,as indicated by As bio-accumulation and transfer index of lower than 1.Both bio-accumulation and transfer index were more than 1for Cd,Cu,Pb,Zn in D.dichotoma and P.vittata ,Cd,Pb and Zn in L . gracile ,E.sonchifolia ,L.yunnanense and O.corniculata ,Cd and Cu in O.Japonicus ,and Cd and Zn in C.montana .The results indicate that these weeds have the potential to rehabilitate heavy metal-polluted soils.Keywords :catchment;weed;heavy metal;enrichment characteristics

重金属离子的吸附性材料

摘要:许多工业废水如金属冶炼和矿物开采过程中含有铬,铜,铅,锌,镍等重金属离子这些废水中有可能含有较高浓度的重金属离子,这些重金属离子必须要从水中去除这些废水如果不经处理直接进入排水系统将对后续的生物处理产生影响含有CO32-的碳羟磷灰石碳羟磷灰石比纯羟基磷灰石HAP在室温下能更好地固化水溶性重金属离子Pb2+、Cd2+、Hg2+等在前人研究的基础上,为降低污水处理的成本,本文以废弃的鸡蛋壳为原料,尿素为添加剂,采用掺杂技术,合成新型的碳羟磷灰石吸附剂,用以处理含重金属离子废水最佳的制备条件是将经过预处理的鸡蛋壳磨成粉末,过30目筛,按摩尔质量比为11的比例加入到H3PO4溶液中并控制pH值在1~3,在30~40℃反应2~3h,过滤去除不溶物,按照11的比例添加尿素和CaOH2粉末,用NaOH调节pH值在9~12,在50~60℃条件下热处理24h,反应产物经冷却后,用1%的NH4Cl洗涤至中性,在60℃下干燥并粉碎得到碳羟磷灰石粉末利用扫描电镜和能谱仪对产物进行了观察、分析本研究中对碳羟磷灰石吸附重金属分为两个部分,包括碳羟磷灰石对单种重金属的吸附和碳羟磷灰石对重金属的同时吸附,分别考察单种金属离子和混合溶液的重金属离子浓度、pH值、时间、吸附温度对吸附效果的影响绘制了吸附等温线,对吸附过程的动力学和热力学进行了研究,然后又对吸附了重金属离子的产品进行了观察、分析最后对吸附了Zn2+的碳羟磷灰石分别用0.2molL的NaCl、0.2molL的NaNO3、pH=3.93的HAC、pH=4.93的HAC、0.05molL的CaCl2和0.1molL的CaCl2和超声波进行解吸研究结果表明碳羟磷灰石对Cd2+、Cu2+、Zn2+和Pb2+具有较强的吸附效果用2.5gL的碳羟磷灰石处理Cd2+废水,在Cd2+初始浓度为80mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93%左右碳羟磷灰石对Cd2+的吸附等温线符合Freundlich和Langmuir两种模式用2.5gL的碳羟磷灰石处理Cu2+废水,在Cu2+初始浓度为60mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93.17%碳羟磷灰石对Cu2+的吸附等温线符合Freundlich和Langmuir 两种模式用2.5gL的CHAP处理Zn2+废水,在Zn2+初始浓度为100mgL、温度为40℃左右、pH值为6~7、作用时间45min的条件下,去除率为98.67%CHAP对Zn2+的吸附等温线符合Langmuir和Freundlich两种模式CHAP对重金属离子的吸附在低pH条件下主要是离子交换吸附和表面吸附,在高pH条件下易形成氢氧化物沉淀碳羟磷灰石对Zn2+的热力学研究表明,碳羟磷灰石吸附Zn2+的过程是吸热过程共存离子吸附研究表明四种重金属离子共存时使得每种重金属离子的吸附容量均降低,因为共存的金属离子对结合位点相互竞争结合解吸实验表明各种解吸剂对Zn2+的解吸能力有限,这表明碳羟磷灰石对重金属离子有较好的亲和力在对吸附了重金属离子的碳羟磷灰石进行观察发现,吸附了重金属的样品表明有针尖状结构 标题:工业废水重金属离子吸附剂碳羟磷灰石吸附性能 桔子皮纤维素化学改性生物吸附剂制备方法重金属吸附吸附动力学

相关文档
最新文档