无线充电的展望

无线充电的展望
无线充电的展望

无线充电技术的发展与展望

张帅

(郑州升达经贸管理学院资讯系河南郑州451191)

【摘要】:无线充电技术是一个新的电力传输技术,也是信息时代的核心,从信息的检测到传输处理,从能量的变换到传送是信息又是能量。“无线传输”顾明思议就是利用一种特殊的设备在不依赖电线,也无需任何物理上的链接直接对电子设备供电。本文主要就是介绍无线充电技术的历史、发展、现状、前景以及实现无线充电的方式,并提出了要实现相应应用所应该注意的一系列问题。

【关键词】:无线充电应用展望意义

【Abstract】: The technology of wireless charging is a new way to transmit power.It’s also the core of information era.From the information detection to transmission processing and from change of energy to transmit.It’s both information and energy . “Wireless Transmission”,apparently ,it’s a specialized device that doesn’t rely on the wire and physical connection between electronic devices . The passage mainly introduced the history of wireless charging,the current achievement and its outlook . The author also recommended a way to wireless charging and mentioned some problems that may occur in engineering application. 【Keywords】: Wireless Charging Application Outlook Significance

一、无线充电技术的历史

实际上无线供电的设想早在一百多年前就已经出现,在1890年,尼古拉·特斯拉,这位现代交流电系统的奠基者就开始构想无线供电方法,最后提出了一个非常宏大的方案——把地球作为内导体;在地球与电离层之间建立起大约8Hz 的低频共振,再利用环绕地球表面电磁波来远距离传输电力。在当时,特斯拉也利用线圈进行了一系列的实验,开创了无线电力传输的先河。在1990年,特斯拉开始了他的研究,并设法让电能像广播一样跨越大洋,后来因为投资巨大,这项技术“胎死腹中”。尽管特斯拉的研究最终没有结果,但是他当初的无线供电技术构想绝对是足够的大胆。

二、无线充电技术的发展

虽然特斯拉线圈在当时没有得到推行,但是到了20世纪20年代中期,日本的H.Yagi和S.Uda从理论上完全证实了这种方案是一种区别于有线传输的特殊

供电方式,目前无线供电技术主要有电磁耦合、光电耦合、电磁共振等三种不同的方式。

1、电磁耦合

电磁耦合对电源工程师来说,在熟悉不过了,变压器就是利用者个原理来传递能量的。如果把变压器的两个绕组分开,就是某种意义上的无线供电。电动呀刷的充电就是一个典型的案例,但是用电磁耦合的方式有很大的缺点,没有高磁导率的磁芯作为介质,磁力线会严重发散到空气中,导致传递效率下降,特别在两个线圈远离的时候,下降得非常厉害。所以此种方式只适合小功率、近距离的传输,对于大功率、远距离的无线供电这种方式就不太好。

2、光电耦合

光电耦合就是把电能转化成光能,比如激光,通过光将能量传递到目的地再转化成电能。这种无线供电技术比较直观,光电耦合还能很好的抑制干扰,而且光电转化技术的应用相对广泛。但是由于光传播的单向性,决定了其传递路径有一定的缺陷,即传递路径中不能有障碍物。所以这种技术,也有相应的缺陷。

3、电磁共振耦合

人们对电磁共振着个名词比较陌生,其原理类似声波共振的原理,如果两种介质具有相同的共振频率,就可以用来传递能量。电磁共振室目前正在研究的一种电力传输方式。2008年,英特尔公司的工程师们曾以该项技术作为基础,在据电源3英尺的地方点亮一个60W的灯泡。经过有关科学家测算,该方式的功率可达几千瓦,距离也可达3~4m,但是由于目前的实验所需要的线圈直径较大,还仅停留在实验阶段,另外,必须对其相应频率进行保护,防止相同频率的电磁波进行干扰,降低效率。

三、无线充电技术的现状

无线充电技术在国外很多研究机构和企业团体还在大量精力研究和论证可行性以及工业化,可是中国国内在清华大学、北京科技大学、哈工大、北方工大等一些科研院校以及深圳、上海等城市的一些高科技企业已经完全进入这个热门又前卫的行业,在手机、笔记本等电子信息产品以及美容美颜等生活小家电产品中广泛试用,并小规模量产,深圳冲戈科技有限公司董事长,刘冲更是青睐这个行业,组织深圳多家企业和研究机构攻克这个行业。

目前无线充电技术也越来越频繁地在各大通信技术展,电源新技术展上露面,各大公司也纷纷推出自己的研究成果。2007年6月,美国麻省理工学院的研究小组发布了“向距离约2m远的60W的电灯泡输送电力,并将其点亮”的实验报告,令全球为之瞩目。以此为开端,众多厂商及研究机构为了实现“无线供电”的实用化,也都开始了积极研发。

2008年8月,无线充电联盟在北京举行新闻发布会,宣布将无线充电国际标准引入中国,无线充电联盟副主席布雷特·刘易斯介绍,联盟成员近60家包括劲量、LG电子、诺基亚等。在2009年Windows 7发布会上,微软CEO鲍尔默更是带来了最新的无线视频输出和无线供电技术。

无线充电技术在市政交通方面也有所建树,2010年3月,第一量无线充电电动车在韩国首尔大公园试运行。

2010年9月报,富士通的无线充电技术利用磁共振在充电器与设备之间的

空气中传输电荷,线圈和电容器在充电器与设备之间形成共振。富士通表示这一系统可以在未来得到广泛应用,例如针对电动汽车的充电区以及针对电能芯片的电量传输,采用这项技术研制的充电系统所需要的充电时间只有当前的一百五十分之一。目前,日本计划在2012年设置充电网点。

另外由富尔顿开发的eCoupled技术源于19世纪法拉第发现的电磁感应原理,当电流通过线圈产生磁场时,相应的装备就会受磁场影响产生电流,电的输送就以“无线”方式完成了,而且eCoupled技术还可以对不同功能的同一电器加以甄别,并且适配相应的电量。最初,富尔顿将研发的eCoupled技术运用在母公司安利的净水器中,为净水器的灯泡无线供电。据《Protable Design》2010年第10期报道,预计2013年,无线充电设备的全球潜在市场容量接近140亿美元,到2014年,无线充电设备的出货量将达到2.5亿台。

目前无线充电联盟的企业包括:Atmel、Callpod、LG电子、美国国家半导体、诺基亚、奥林巴斯、飞利浦、Rohm、三星电子、桑菲通讯、索爱、德州仪器、中光电等60家企业。中国作为世界上最大的无线移动通信市场,应用需求庞大。中国桑菲通讯是无线充电联盟的十家常委企业之一,该公司董事长称,标准的发布,必将推动无线充电市场向纵深方向发展。

四、无线充电技术的前景展望

1,无线充电在手机上的应用

我国是最大的手机市场,且世界上60%的手机都是在中国制造,所以无线充电技术必然要在中国生根发芽。要在手机上实现无线充电,目前必须有两个部分:发射器,与电源连接,负责向广阔空间发射电能;接受器,一般安装在电子产品上,用来接受电能。目前只有部分手机支持无线充电而且充电器的尺寸还有点大,据介绍,在最近两年内,无线充电接受器会充分“瘦身”,成为手机产品中内置的无线充电接受芯片,只有指甲盖那么大。“目前,诺基亚、飞利浦、三星、索尼爱立信以及RIM等众多国际知名手机厂商都很支持这一技术,无线充电器也有可能会与手机一起捆绑进行销售。”手机只是第一个目标,以后PMP\MP3播放器、数字照相机、手提电脑等产品都可以使用全新的低能耗、高兼容的无线充电器。预计5年内实现远距离无线充电。

未来,无线充电技术将怎样改变我们的生活?方便自不必说,除此之外,无线充电还更安全,没有外漏的连接器,漏电、跑电等安全隐患可彻底避免。有人担心辐射问题,这以技术最先在净水器中运用,至今已经有8年时间了,安全性已经得到了36个国家的验证,不会对人体和环境带来危害。据介绍,无线充电大致上是通过电磁场输送能量的,而人类以及人类身边的绝大多数物件都是非磁性的。

摩托罗拉移动技术亚太区消费产品总经理冯捷认为,无线充电首先会在消费电子行业得到广泛应用。“起码在手机这个领域,无线充电已经具有很强的实用性,以充电设备的能量转换率而言,Qi标准的无线充电技术已经能够得到70%左右的转换率,和有线充电设备相等,但是它具备电满自动关闭功能,避免了不必要的能耗。目前,这个效能接受率还在不断提高,很快将能达到98%。“但这还不是最重要的,无线充电的实现还将为手机设计领域带来巨大的创新空间,现在在智能手机上,数据传输基本已经实现了无线化,WiFi、蓝牙等技术不仅能够

实现手机和电脑之间的数据无线交换,甚至还支持图片、视频、音频的无线传输,手机的传输接口基本上只有充电接口是必须的。一旦无线充电技术普及,那么充电接口也可以取消,这样一来手机的外观设计上就可以真正实现全封闭,原来因为接口问题而必须保持的机身厚度也可以进一步变小,这些都会为设计师带来更多的创作空间。”

2,无线充电技术在电动汽车上的应用

随着我国经济迅速发展,国家相应的优惠政策、补贴政策、依旧换新政策等一系列政策的能源气出台,进一步促进了私家车增加,国际上能源与环境已成为当前全球最为关注的问题,能源的紧缺与替代、环境的污染与保护共同促使了环保新车的大力发展。

电动汽车是首先发展起来的一种环保新能源汽车,包括蓄电池电动汽车、混合动力电动汽车和燃料电池电动汽车。其中蓄电池电动汽车技术已经渐渐成熟,很多厂商已经开始大力生产,各地也在进行充电站的建设。但是蓄电池充电问题一直令研究者头疼,因此,充电技术的解决,将极大推动蓄电池电动汽车的发展。

无线充电技术要想应用在电动汽车上,一方面在道路及建筑工程建设中,由电力供应单位根据规划图事先在路口、公共停车场的车位、单位或小区的停车位和车库下面预埋无线充电的充电器,并做好充电器与电网或太阳能电池板连接;另一方面,汽车生产厂家要在汽车底部安装无线充电的接受装置,并与徐电磁等设备连接;另外,国家相关部门要同一发射、接受信号的频率,使其能都通用。

在应用无线充电技术运用到电动汽车上时,还应注意以下问题

1)国家要出台相应的政策,鼓励、扶持并规范无线充电汽车的发展和

充电设施的建设,无线充电是一个刚刚起步甚至可以算还未起步的领域,其有效发展可以很大程度上解决电动汽车发展的一个瓶颈。

2)无论最终采取何种方式充电、采用何种蓄电池,国家及各地方有关部门都要对其频率、安全、环保、节能等方面做好研究,避免对人体和环境造成危害。

3)在实际使用过程中,由于发射端置于地下,要对其进行保护,在雨水多的地方要采用防水设施。

3,无线充电技术在医辽设备上的应用

目前植入式医疗设备的供电主要依靠植入电池,其最大弊端在于电量耗尽后的处理问题,无论是取出更换电池还是永久买入体内,均存在隐患,因此,便携的外部无线供充电可以实现为低功耗无线传感器网络,可以与病人体内的医用植入设备进行充电,也可以为特殊坏境下的自动检测系统充电。某些植入装置体积非常小,无法容纳电池。如人工耳蜗,它需要手术植入替代内耳毛细胞发挥作用的一项电子装置。采用外部电源无线供充电方式能为植入式医疗电子设备连续提供高点能。利用无线射频连接,不但可以实现能量的传递,同时可以对植入式医疗电子设备进行控制和查询。另外,植入式医疗电子设备的使用寿命和存储寿命不再受电池的限制。

例如,心脏起搏器(必要时候供电信号激活心脏复苏与维持正常),目前,心脏起搏器植入人体之后,8-10年左右就需要更换电池。也就是说,虽然安装了心脏起搏器,那么每隔8-10年就还需要再动一次手术来进行起搏器电池的更换。试想一下如果心脏起搏器采用了无线充电的技术,是不是省事多了?更不会发生手术失败、胸腔感染等情况,患者的术后生活质量竟会得到极大的提升。

4,无线充电技术在移动智能终端设备上的应用

在无线充电联盟的技术规划中,未来125W左右的大功率电子设备也将支持

无线充电技术,这意味着我们日常接触较多的移动智能终端设备例如平板电脑、笔记本电脑、GPS导航设备甚至是一些小功率的家用电器,例如台灯、床头音响甚至是液晶电视等都将掀起全新的移动终端功能和设计革命。

去年6月,苹果公司向美国专利审核机构提交了“在本地计算环境中无线利用电源”的专利申请,准备通过无线充电技术实现在同一房间内对多个设备同时进行无线充电。

2010年9月,广州出云企业管理咨询公司的消费电子行业分析师张星也表示,随着无线充电技术的不断成熟,尤其是在500W功率之类的无线充电技术在转换率、低辐射等方面实现突破,无线智能家居在未来几年有可能掀起一场消费革命,以目前的智能家居市场来看,无线概念主要是停留在数据传输和系统智能化层次,只要加入了无线电力传输技术,最终,真正的无线时代就会到来。

五、意义和影响

无线充电技术的优势在于便携性和通用性,可使得多种设备使用一台充电基站,也许在不久的将来,各种电源适配器剪不断理还乱的情况将不复存在,而利用公共移动设备充电站成为现实。其给大众带来的意义与影响非同凡响。

(1)便携性

由于电波的传输与设备的充电接口无关,所以如果无线充电技术一旦普及,不仅将使得电子产品不受插座和线缆束缚,充电更方便,而且将使不同品牌、不同接口的充电器不兼容的问题得到解决。在不久的将来,全球性的无线充电设施就会遍布每个家庭、咖啡厅、机场和其他公共场所,消费者可以利用这些无线充电设备随时随地充电。这一切因为无线充电的存在而变得非常便捷。

(2)美观性

没有了电线和充电接口,便携式移动类的电子设备体积将进一步缩小,从而增加携带的美观性与方便性。将来在解决了能效转化问题,电磁人体辐射安全的情况下,如果所有的家电都进入无线供电时代,将能够有效解决家庭布线、家电固定化、居室墙面、景观破坏等问题,为人们的生活提供更多的美化效果。同时,还将节省大量大量的人力、材质等。

(3)安全性

由于无线电子设备的外壳上可以省去金属接点或者充电开口,电子产品的防水性和密封性将进一步增强,如是用无线充电技术的电动牙刷和电动剃须刀的防水性将进一步得到提高。医疗仪器制造商也希望经由无线充电的方法来取代插头,因为这将使电池供电的设备具有防水性能,并且便于消毒。

而且对于消费者来说,无线充电的意义还不仅仅如此,随着无线充电技术从手机、平板等小功率设备向笔记本电脑、智能电视甚至电动汽车等大型设备的拓展,更多的惊喜值得期待。

六、总结

无线充电技术目前还处于研发阶段,但有许多国家已经将其应用到手机、电脑、随身听等设备上,其中美国、韩国、日本等国家也开始了无线充电汽车相关的研发。无线充电技术拥有坚实的群众基础,相关调查报告显示,人们对通过无线供电解决方案有浓厚的兴趣,无线充电技术被消费者列为前20%的重要科技,

另有超过80%的受访者认为,他们将会把无线充电技术用于所以的电子设备上,而且每次充电都会尽可能使用无线充电。相信随着该技术的不断完善和发展,必定会给我们的生产生活带来很大的福利,也将减少我们对现有能源的依赖。

参考文献:

[1] 王洪博.无线供电技术的发展和应用前景.工业和信息化部电信研究院,2010.9

[2] 王任.无线充电技术及其在电动汽车上的应用探索.济南市市政工程设计研究院,2010.10

[3] 《宁波经济时报》陈亮.无线充电时代来临,2010.11

[4] 《电子报》徐惠民.无线充电正向我们现实生活走来,2012年2月第7期

[5] 《电子报》徐惠民.无线充电的广阔应用前景,2012年2月第8期

[6] 王莹.无线充电动向.电子产品世界,2011.10

浅析无线充电技术的发展历史与最新趋势

浅析无线充电技术的发展历史与最新趋势 摘要:文章主要追溯了国内外无线充电技术在近一百年里的发展历史。通过对无线充电技术最新发展现状的解读,浅析其当今发展的四大趋势,即发展领域扩展化、发展动力多重化、实现方式多样化与智能化以及发展瓶颈明朗化,并就该技术未来的发展进行展望。 关键词:无线充电;历史;发展现状;趋势 随着科技与社会的进步,人们对充电方式也提出了新的要求,无线充电,顾名思义,就是在不借助金属导线以及其他物理连接的条件下,以空气为介质实现电能传输,为设备进行充电。现阶段无线充电技术主要实现方式有三种,第一种是利用变化的电流通过线圈产生磁场实现电能传输的电磁感应式,第二种是利用电磁耦合共振效应的电磁共振式,第三种是将电力以微波的形式辐射到接收端的电磁波辐射式。目前,无线充电技术是国内外研究的热点问题之一,具有很好的发展前景。 1 发展历史与现状 1.1 国外发展历史与现状 无线充电技术(Wireless Charging Technology,WCT)并不是一项新兴的技术,早在1890年,克罗地亚的发明家、物理学家——尼古拉·特斯拉(Nikola Tesla)就提出一个大胆的构想:把地球作为导体,在地球与电离层之间建立起低频共振,利用环绕地球的表面电磁波来远距离传输电力,并且将这一设想付诸于实践。虽然这项研究最终因经费被撤、危险系数过高等原因终止,但却为人们打开了无线充电技术梦想的大门。在随后的几十年中,研究人员沿着特斯拉的脚步,对该技术有了非常多的探索,也取得了一些成就。 2007年6月,美国麻省理工学院研究团队利用电磁共振器和电源隔空点亮了一盏2 m开外的60 W电灯泡。日本昭和飞机工业公司在2009年At International 会展上展出了基于电磁感应原理无线传输电力的非接触式电源供应系统。2010年9月,日本富士通公司利用磁共振技术实现设备无线充电。2011年7月第一辆无线充电电动车在韩国首尔公园试运。2012年9月,诺基亚发布的两款智能手机:Lumia920和Lumia 820,可实现无线充电,引发公众热议。2013年芬兰首都机场,为乘客免费提供无线充电器。2013年3月,苹果公司的一项名为“保护外套综合感应充电技术”的发明专利申请书曝光。在各经济大国的研究团队与企业的共同努力下,无线充电技术有了质的飞跃,它已经从最初的概念设想发展到如今的生活实用地步。 1.2 国内发展历史与现状 我国在无线充电技术领域的起步滞后于国外,目前还处于研究的初级阶段。在国外市场旋风般的影响下,近十年来我国的无线充电技术取得了一些进展。

无线通信的发展历程

无线通信系统的发展历程与趋势 现代无线通信系统中最重要的两项基础是多址接入(Multiple Access)和双工(Multiplexing)。从1G到4G的无线通信系统演进史基本上就是在这两项技术上进行不断改进。 多址接入技术为不同的用户同时接入无线通信网提供了可能性。给出了三种最典型的多址接入技术:FDMA、TDMA和CDMA的比较。 双工技术为用户同时接收和发送数据提供了可能性。两种最典型的双工技术:FDD模式和TDD模式。 中国无线通信科技发展史和未来走向范文 当今,全球无线通信产业的两个突出特点体现在:一是公众移动通信保持增长态势,一些国家和地区增势强劲,但存在发展不均衡的现象;二是宽带无线通信技术热点不断,研究和应用十分活跃。 1 无线通信技术的发展历程 随着国民经济和社会发展的信息化,人们要通信息化开创新的工作方式、管理方式、商贸方式、金融方式、思想交流方式、文化教育方式、医疗保健方式以及消费与生活方式。无线通信也从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段:第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短

波频及电子管技术,至该阶段末期才出现150MHZ VHF单工汽车公用移动电话系统MTS。 第二阶段为50年代到60年代,此时频段扩展至UHF450MHZ,器件技术已向半导体过渡,大都为移动环境中的专用系统,并解决了移动电话与公用电话网的接续问题。 第三阶段为70年代初至80年代初频段扩展至800MHZ,美国Bell研究所提出了蜂窝系统概念并于70年代末进行了AMPS试验。 第四阶段为80年代初至90年代中,为第二代数字移动通信兴起与大发展阶段,并逐步向个人通信业务方向迈进;此时出现了D-AMPS、TACS、ETACS、GSM/DCS、cdmaOne、PDC、PHS、DECT、PACS、PCS等各类系统与业务运行。 第五阶段为90年代中至今,随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第三代移动通信开始兴起,其全球标准化及相应融合工作与样机研制和现场试验工作在快速推进,包括从第二代至第三代移动通信的平滑过渡问题在内。 2 第一代无线通信系统 采用频分多址(Frequency Division Multiple Access)技术组建的模拟蜂窝网也被称为第一代(First Generation,下称1G)无线通信系统。这些系统中,话务是主要的通信方式。由于采用模拟调制,这些

手机充电器原理分解和图

USB用电池充电器电路图 如图是USB用电池充电器电路。它是在5.25V/500mA最大额定功率时,使用通用串联总线(USB)以最大电流对锤离子充电的电路。电路中,LM3622为锤离子电池充电控制器。设计的充电电路使USB具有最大功率工作的能力,为了满足USB的技术指标,在正常工作情况下,最大功率工作能力从总线中取出的电流不能大于5OOmA。通过限流电阻R1将其最大充电电流设定为400mA,而剩下的100mA电流供给充电器控制电路等。在系统启动期间,LM3525电源开关使电池充电器与总线保持隔离状态,充电电流不会超过总线提供的最大电流。 在总线输出口经过适当的计算后,USB控制信号将USB电源通过LM3525与充电电路连接起来。在开关通/断工作时,LM3525具有过电流与欠电压防止功能。在设计充电电路时,应认真考虑总线电源与充电电路之间的电压降,因此,VT1和VD1要选用低电压降的器件,使输入电压较低时电路也能有效地对电池进行充电。在优选元件的情况下 LM3525输入与电池正极之目的电压降的典型值为53OmV,或对电池的充电电流大于400mA。最佳充电时间为从以最大电流对电池开始充电直到电池达到满充电电压为止。 对于4.2V锤离子电池,要求充电电路的输入电压典型值为4.7V。USB规格规定的最小输出电压为4.75V,但USB电缆和接线电阻上电压降为35OmV,因此,在最坏情况下,充电电路的输入电压低至4.4V,而在USB规格中充电电路仍然有效。要说清楚的是,要防止USB电压规格下限的系统对电池进行慢充电,或防止对满度电池充电。4.2V电池的最佳充电电压是充电电路的输入电压,其典型值为4.7V。当电路的输入电压低到4.6V以及电池电压接近满充电4.2V时,VT1和VD1的电压降使电路不能有效地提供充电电流。 在VT1和VD1的电压降仅为400mV时,电路为电池提供的充电电流不大于2OOmA。在低输入情况下,充电电流降为50%对电池恒压充电。当输人电压低到4.5V时,电池不能满充电到4.2V。在设计USB电源时,要采用低阻抗电缆和低电阻接线,使充电电路的输入电压足够高,确保不会出现慢充电或不完全充电的情况。

无线充电原理图文详解

无线充电原理图文详解 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放置在充电座上即可为电池充电。今后NTT DoCoMo 将在电影院、餐厅、酒店、机场休息室等公共场所设置充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、

韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯·奥斯特(Hans Oersted)发现了这种电磁效应。

用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔·法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。

未来通信技术展望

未来通信技术展望 数据通信是通信技术和计算机技术相结合而产生的一种新的通信方式。要在崐两地间传输信息必须有传输信道,根据传输媒体的不同,有有线数据通信与无线崐数据通信之分。但它们都是通过传输信道将数据终端与计算机联结起来,而使不崐同地点的数据终端实现软、硬件和信息资源的共享。 移动通信事业的飞速发展与当前的现状 中国的移动通信发展史是超常规的发展史。自1987年中国电信开始开办移动电话业务以来到1993年用户增长速度均在200%以上,从1994年移动用户规模超过百万大关,移动电话用户数每年几乎比前一年翻一番。1997年7月17日,我国移动电话第1000万个用户在江苏南京诞生,意味着中国移动电话用10年时间所发展的用户数超过了固定电话110年的发展历程。2001年8月,中国的移动通信用户数超过美国跃居为世界第一位。2003年底移动电话用户总数已达到2.69亿户,普及率为20.8%。而在2002年底世界上已有10个国家的移动电话普及率超过83%。其中,英国为84.4%,意大利为92.65%,卢森堡为101.34%;当时,中国为16.09%。所以,我国移动通信业务尚具有巨大的发展潜力。 自中国加入WTO协议以来,对于中国电信企业整体素质的提高以及产业结构的优化升级是一次难得的机遇。具体说来,体现在如下方面: 1、促进中国电信业的进一步成熟。通过开放基础电信设施和服务的市场,引入良好的竞争机制和运营体系,能够加快中国电信市场形成有效竞争的局面。中国电信运营在突破调整探索学习曲线的瓶颈之后,会逐步与国际接轨,从而提高中国电信业的整体水平。 2、提高中国电信企业的竞争力。中国电信工业企业可以利用WTO协定对发展中国家的普惠政策,获得多边无条件最惠国待遇,这将使中国通信工业企业能获得和采购最先进的电信技术与设备,降低通信工业企业的生产运营和市场准入成本,增强中国通信工业企业产品与服务的竞争力。 3、利于中国通信企业的国际市场拓展。中国在打开电信业大门的同时,实际上也是跨进了世界电信市场的门槛。随着中国电信运营企业日益成熟,中国运营业也可走出国门,展开国际市场运营。同时,对于日益崛起的中国通信制造业,将会在国际市场上如鱼得水,占取更大国际市场份额,在国际电信舞台打造“中国牌”。 4、形成整体经济增长的助推器。作为推动中国经济增长支柱产业的电信业在经过与国际电信厂商交锋碰撞之后,也会优化资源配置,促进产业结构升级和业务的丰富。 事实证明,机遇与挑战并存的。对中国运营业而言,其面临的挑战将主要体现在以下几个方面: 1、中国电信运营企业在运营经验、资金实力、技术实力和市场运作方面同国际电信主导厂商相比,还有较大差距。 2、中国电信由于长期垄断经营和低效率运作,尚未形成有效竞争的局面。中国政府自1994年成立第二家运营公司———中国联通公司以来,五年过去了,其业务规模同原中国电信相比,仍相差悬殊。中国电信运营业这种非有效竞争的格局伴随中国“入世”,将会被打破。根据WTO基础电信协议的规定,中国在加入WTO以后应采取成本定价和支持互联互通的鼓励竞争的调控原则。这使得中国

电动车充电器图解原理与维修

电动车充电器原理和维修-两种充电器 常用电动车充电器根据电路结构可大致分为两种。第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。其电原理图和元件参数见(图表1) 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V 左右的直流电。U1 为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为uc3842提供工作电源。D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。调整w2(微调电阻)可以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。 R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。 通电开始时,C11上有300v左右电压。此电压一路经T1加载到Q1。第二路经R5,C8,C3, 达到U1的第7脚。强迫U1启动。U1的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左

充电器工作原理

电动车充电器参数的调节

LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压当电池电压上升到44.2V左右时,充电器进入恒压充电阶段,输出电压维持在44.2V左右,充电器进入恒压充电阶段,电流逐渐减小当充电电流减小到200mA-300mA时,R27上端的电压下降,LM358的3脚电压低于2脚,1脚输出低电压,Q2关断,D6熄灭同时7脚输出高电压,此电压一路使Q3导通,D10点亮另一路经D8,W1到达反馈电路,使电压降低充电器进入涓流充电阶段1-2小时后充电结束 如图,这就是应用最多的普通三段式充电器电路原理图。一般市面上便宜的垃圾充电器大多使用这种电路。只是有不少充电器的运放使用的是四运放LM324,电路有些小小的不同,原理一样。 按照电路原理图,对电路进行分析后得知,调节W2将同时改变充电器的高恒压值(即恒压充电时期的输出电压)和低恒压值(即涓流充电时期的输出电压),而调节W1将只改变充电器的低恒压值。以前网友的结论大多有错误,那是没有仔细分析电路。 第一步,首先找到电路板上的精密妊乖碩L431。找到其上、下偏流电阻以及和TL431 REF端相连的二极管。在原电路图中,R7和R11为上偏流电阻,R28和W2 为下偏流电阻,D8即是要找的二极管。 第二步,调节高恒压值。断开二极管D8一端(即图上所示二极管),此时电路输出即为高恒压值。在输出端接上假轻负载(我用的是一个300欧10瓦的电阻),调节W2(或TL431的下偏流电阻),使输出电压为44.2V。W2增大,输出电压降低。 第三步,调节低恒压值。接上D8,调节和二极管串联的电阻(原理图中的W1),使输出电压为42.2V。W1增大,输出电压升高。

全面解析无线充电技术

摘要:扔掉电源线,给自己的智能手机进行无线充电。相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。 扔掉电源线,给自己的智能手机进行无线充电。这对于许多人来说可能有点天方夜谭。但事实上,无线充电技术很快就要进入大规模的商用化,这项此前不为大众所熟悉的技术,正悄然来到我们的面前。 老技术、新技术 以无线的方式传输电能,其实是一项非常古老的技术,它可以追溯到人类开始拥有电力的19世纪。当时对于电力的传送有两种思路,一种是以爱迪生为代表的有线派,即架设线缆用于电力的远距离传输,这种方案成熟可靠,缺点是工程量巨大,并且成本高昂。还有一种就是尼古拉·特斯拉(Nikola Tesla,世界上第一台交流电发电机的发明者)在19世纪末提出的无线传输方式,特斯拉当时构想通过电磁感应的方式,让电能以大地和天空电离层为介质进行低损耗的传送。这项实验据说获得成功,但是因政治和经济因素被中止。无线传输技术后来只是被用于电信号发送领域,也就是信息的交流,远距离能量传输从来都没有进入实用化,虽然它在物理学上是完全可行的。 诺基亚Lumia 920智能手机可实现无线充电

直到一百年后的今天,这种局面才获得改变。在电动牙刷、剃须刀等不少低功率的日用家电产品中,我们看到了非接触式无线充电技术的应用,给用户带来相当的便利。随着无源式RFID电子标签的实用化和无线网络技术的大发展,诸如隔空点亮灯泡的无线供电实验也屡见报端,这一切都点亮了人们对“无线”未来生活的无限憧憬,科学界也不遗余力地朝着这个方向努力。 2001年5月,国际无线电力传输技术会议在印度洋上的法属留尼汪岛(Reunion Island, France)召开,法国国家科学研究中心的皮格努莱特(G. Pignolet)作了一个公开实验:他利用微波技术,将电能以无线的方式传输,最后点亮了一个40米外的200瓦灯泡。其后,据研究者有关文章介绍2003年在岛上建造的10千瓦试验型微波输电装置,已开始以2.45GHz 频率向接近1km的格朗巴桑村(Grand-Bassin)进行点对点无线供电。 到2006年末,也有报道称麻省理工学院在无线电力传输技术上获得突破:以物理学助教授马林·索尔贾希克为首的研究团队试制出的无线供电装置,可以点亮相隔2.1米远的60瓦电灯泡,能量效率可达到40%,相关内容刊登在2007年6月7日的《ScienceExpress》在线杂志上。这个“隔空点灯泡”实验引起了欧美及全球各大媒体的极大关注。后来英特尔西雅图实验室的Joshua R.Smith在这一成果上进行改进研究,并将供电效率提高到75%(1米范围内),这样的效率相当了不起,对于笔记本电脑、智能手机、平板这样的设备来说已足够优秀,而英特尔也在2008年8月的信息技术峰会上对此作了演示。 不过,相对于大功率电能传输,小功率的无线充电技术更具实用价值,需要频繁充电的智能手机是该项技术最大的受益者。在四年后的今天,我们在诺基亚Lumia 920智能手机上看到了商用级无线充电技术的身影,与此同时大量的手机厂商和外设厂商跟进,针对智能手机的无线充电技术一夜之间就进入爆发前夜。 无线充电四大“流派” 无线充电技术可以分为四种类型,第一类是通过电磁感应“磁耦合”进行短程传输,它的特点是传输距离短、使用位置相对固定,但是能量效率较高、技术简单,很适合作为无线充电技术使用。第二类是将电能以电磁波“射频”或非辐射性谐振“磁共振”等形式传输,它具有较高的效率和非常好的灵活性,是目前业内的开发重点。第三类是“电场耦合”方式,它具有体积小、发热低和高效率的优势,缺点在于开发和支持者较少,不利于普及。第四类则是将电能以微波的形式无线传送——发射到远端的接收天线,然后通过整流、调制等处理后使用,虽然这种方式能效很低,但使用最为方便,英特尔是这项方案的支持者。

无线通信技术应用与发展

无线通信技术应用及发展 无线通信技术热点领域 近几年来,全球通信技术的发展日新月异,尤其是近两三年来,无线通信技术的发展速度与应用领域已经超过了固定通信技术,呈现出如火如荼的发展态势。其中最具代表性的有蜂窝移动通信、宽带无线接入,也包括集群通信、卫星通信,以及手机视频业务与技术。 蜂窝移动通信从上世纪80年代出现到现在,已经发展到了第三代移动通信技术,目前业界正在研究面向未来第四代移动通信的技术;宽带无线接入也在全球不断升温,近几年来我国的宽带无线用户数增长势头强劲。宽带无线接入研究重点主要包括无线城域网(WMAN)、无线局域网(WLAN)和无线个域网(WPAN)技术;模拟集群通信的应用开始得比较早,但随着技术的发展,数字集群通信技术越来越赢得大家的关注;卫星通信以其特殊的技术特性,已经成为无线通信技术中不可忽视的一个领域;手机视频广播作为一种新的无线业务与技术,正在成为目前最热门的无线应用之一。 无线通信技术演进路线 2.1 无线技术与业务发展趋势

无线技术与业务有以下几个发展趋势: (1)网络覆盖的无缝化,即用户在任何时间、任何地点都能实现网络的接入。 (2)宽带化是未来通信发展的一个必然趋势,窄带的、低速的网络会逐渐被宽带网络所取代。 (3)融合趋势明显加快,包括:技术融合、网络融合、业务融合。 (4)数据速率越来越高,频谱带宽越来越宽,频段越来越高,覆盖距离越来越短。 (5)终端智能化越来越高,为各种新业务的提供创造了条件和实现手段。 (6)从两个方向相向发展—— ①移动网增加数据业务:1xEV-DO、HSDPA等技术的出现使移动网的数据速率逐渐增加,在原来的移动网上叠加,覆盖可以连续;另外,WiMAX的出现加速了新的3G增强型技术的发展;

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

无线充电技术介绍

无线充电技术介绍 支持无线充电的智能手机从2011年夏季前后开始上市。任何厂商的任何机型均可使用的“Qi”规格将成为全球标准。停车即可充电的EV(电动汽车)用充电系统也在推进研发。 无线充电已经在电动牙刷、电动剃须刀、无线电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域。 NTT DoCoMo在2011年夏季以后陆续上市了多款支持无线充电的智能手机和充电座。这些手机无需在手机上插上充电线缆,只需放臵在充电座上即可为电池充电。今后NTT DoCoMo将在电影院、餐厅、酒店、机场休息室等公共场所设臵充电座,便于用户在外出时使用。 软银移动也预定2012年1月上市支持无线充电的智能手机。KDDI正在开发车载式智能手机的无线充电座。 未来无线充电的应用范围将有望扩大到EV的充电系统。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”,以松下、韩国三星电子、英国索尼爱立信、芬兰诺基亚、电装为首,许多国家的家电厂商和汽车厂商都相继加盟了WPC。 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。 19世纪发现的物理现象 电磁感应方式采用了19世纪上半期发现的物理现象。众所周知,电流流过线圈时,周围会产生磁场。1820年,丹麦物理学家汉斯〃奥斯特(Hans Oersted)

发现了这种电磁效应。 用没有通电的其他线圈接近该磁场,线圈中就会产生电流,由此点亮灯泡。1831年,英国物理学家迈克尔〃法拉第(Michael Faraday)发现了这个可从线圈向线圈供电的物理现象,并称之为电磁感应现象。 无线充电使用的充电座和终端分别内臵了线圈,使二者靠近便开始从充电座向

无线通信发展现状及展望

无线通信发展现状及展望 发表时间:2018-07-24T12:02:46.640Z 来源:《基层建设》2018年第14期作者:黄凯[导读] 摘要:随着科学技术的发展,我国的无线通信技术有了很大进展。 中国恩菲工程技术有限公司北京 100038 摘要:随着科学技术的发展,我国的无线通信技术有了很大进展。无线通信技术应用空间非常巨大,对于目前无线通信技术的飞速发展,本文对于它的研究可能还是有很多的地方研究的不到位,但是,我们值得肯定的是,无线通信技术的功能是越来越趋于完善的,所以,笔者希望更多的业内人士对于现代的无线通信技术要更加的重视,对于无线通信的现状及未来的发展前景要结合实际情况去分析,从 而使其得到更好的发展,基于此,笔者现针对无线通信的发展及展望进行具体的分析,希望能对同行有所帮助。 关键词:无线通信;发展现状;展望引言 近些年,我国的信息技术和互联网技术取得了突飞猛进的发展,人们的生活也相应地走进了信息化的时代。无线通信技术作为信息时代下的必然产物,它的出现使得人们在工作及生活上的沟通和交流与以往相比方便了很多,受到了各行各业的广泛青睐,也因此成为了当前社会上的一大热点话题。因此,对无线通信技术动态发展的前景和展望加以分析,有着非常重要的意义。 1无线通信的发展特点无线通信在发展和应用过程中,通过分析研究其主要有两方面特点:其一现在移动用户与日俱增,需要通过提高其技术水平,满足用户的增长需要,现在用户的需求不断变化,现在通信公司可以为用户提供很多增值服务,这些服务费用都很高,能给运营商带来一定的经济效益,同时能促进无线通信技术的发展。其二无线通信技术根据用户的需求变化,移动通信技术需要不断升级和更新。现在智能手机的普及,给无线通信技术的发展提供了机遇和挑战,大力发展无线移动通信技术,是通信技术的发展需要,也是社会发展对通信行业提出了新要求,在用户不断增加的过程中,要保障无线通信服务的质量,提高用户的满意度,这是无线通信技术可持续发展的基础。 2目前我国无线通信技术的发展现状 2.1移动通信技术 现在,对于全球的发展来说,我们国家的移动通信技术算是发展很快的国家了,它的发展不仅可以使平台的方向更广阔,并且,还可以使其朝向更多方面的客户发展,我们通过调查发现,现在,中国90%以上的人都在使用4G网的服务,而且,用户的数量也在不断的增加,而且,4G的服务已经不能满足人们的需求,我们国家正在朝着5G的服务时代进行飞速的发展。 2.2蓝牙技术的不断发展 蓝牙技术在短距离内无线通信优势较大。通过借助蓝牙技术,我们能够通过通信设备进行连接,设备之间的信息不仅能够实现交换,还能实现共享,其能够较好地解决短距离无线通信问题。 2.3宽带固定无线接入技术快速发展 无线通信技术最近几年发展快速,无线通信用户不断增加,宽带固定无线接入技术是无线通信技术的重要组成部分。无线通信技术发展受到频段限制,同时还受到外界环境影响比较大。无线通信技术很多新技术都在研发的过程中,有的技术还不成熟,这给无线通信技术的发展带来一定的弊端,在无线技术的应用过程中,要根据实际情况,选择适宜的通信技术,发挥其无线通信技术的最大作用。 3现代无线通信技术的发展前景及展望 3.1通过群体传输转向个人信息传输 无线通信技术的发展,为人们提供了很多的方便,而个人的信息传递则是以后我们在发展的过程中必须要进行的一步,为人们的个人信息进行传输,也将成为以后的主流形式,在当今的社发展中,人们对个人信息的需求越来越大,所以,无线通信的发展必然是一种具有客观性的发展方向,而且,我们在推广的时候也是很自由的,它与移动网络会共同的为人们的更好的服务。 3.2构建系统、完善、优良的无线通信技术 在今后的信息发展中,我们对于无线通信技术的发展要有一个明确的目标,那就是把无线的传输速度提高上去,让其能够更好的为人们服务,把以前传统的通信方式进行改变,让其往更高的层次上发展,在接入的方式上来说,我们不能拘泥于现状,要朝着更先进的人工智能化方面发展,让它的工作效率越来越强,对无线通信技术还要不断的进行完善和优化,让其能更好的为人们服务。 3.3对无线通讯技术内部结构进行优化 对无线通讯技术内部的结构进行转变则是进一步提高其效率的重要措施之一,在传统的无线通信网络当中,已经很难满足现当代高速度、大容量的运用上的发展速度及需求,因此需要不断的研究和探索之后,才能够更好的发挥其重要的优势以及高频率的特点,促进增强其中的频段通信技术,进而实现高效率的发展。 3.4无线通信技术的融合趋势 (1)无线通信技术将会和蜂窝网络技术相融合。在电子产品领域,一些厂家为了使电子产品能够拥有计费功能和检测功能,一种适合短距离情况应用的无线通信技术被研发了出来。在无线通信技术飞速发展的形势下,未来必将产生更多类型的无线接入技术应用在短距离的信息传输工作上,这就说明,蜂窝网络技术和无线通信技术的相互融合,会有着非常良好的发展前景。(2)无线通信技术将会和移动通信技术相融合。在竞争愈发激烈的通信领域,无线接入技术能够在很多层面实现与移动通信技术之间的互补,这就表示在 4G 网络的时代环境下,无线通信技术必将会和移动通信技术有机的结合起来。(3)无线通信技术将会和多媒体技术相融合。地面数字系统的出现,极大地刺激了各行各业对数字电视的视频和广播等业务的进一步需求,而移动通信业务为用户提供的多种语音服务和视频服务,正是无线通信技术和多媒体技术相互融合的成果,这也必将成为无线通信技术在未来的另一大发展前景。 3.5运用新技术对无线通信格局进行转变 对于今后的无线通信技术发展上来说,它的发展形式肯定是趋于综合和多元化的,现在看来,有一种技术将会成为以后发展的主体,那就是LTE技术,它的发展会把全世界的移动网络进行全面的覆盖,而对于现在WLAN等宽带的接入技术来说,也会根据它们自身的特点,在覆盖的区域会使其与移动通信进行取长补短的互补形式发展,以后,无线通信技术会以一种特别的方式把宽带化逐渐代替出现在我们的生活中。

上海地铁TETRA无线通信系统网络

上海地铁TETRA无线通信系统网络介绍 全国已有30多个城市轨道交通线获国务院批准在建。目前我国轨道交通线路运营里程约2000公里。到2020年我国轨道交通线路总里程将达到6000公里以上。十二五期间全国地铁建设投资规模将超过1万亿元。 2013年底上海地铁开通运营14条地铁(含磁浮线),331座车站,通车里程达567公里,配属车辆逾4000辆,最高日客流量超过800万人次,承担全市公交出行量近40%;至2015年,上海将建成15条线路、350余座车站、超过600公里的轨道交通基本网络;至2020年,上海将实现800公里的轨道交通网络建设目标。 上海地铁曾创造100台盾构齐头并进、100座车站同时建设、100公里新线同时投运等工程奇迹。上海地铁,作为我国现代化轨道交通的先行者,已成为中国城市轨道交通建设史上的一个亮点,其运营里程和客流量均已进入世界前列,并正在向“地铁世界第一”逼进。 上海地铁TETRA无线通信系统网络 上海地铁TETRA无线通信系统网络构成框图

上海地铁TETRA无线通信系统开通时间表

上海地铁800MHz专用无线设施设备 上海地铁800MHz专用无线设施设备用的是摩托罗拉增强型数字集群通信系统,具体如下。 主要的Dimetra系统架构

射频站点和移动交换局(MSO)射频站点: ——是一个地理区域,双向移动对讲机能够在其中进行通信。 移动交换局(MSO): ——负责操作多站点系统的中央控制点;

——执行控制、呼叫处理和网络管理等功能。 上海地铁的射频站点和MSO 上海地铁无线系统资源分配情况

上海地铁专用无线系统结构 采用Motorola基于TETRA的Dimetra IP系统,由三个区域(ZONE)组成一个大区,一个大区最多可包含7个区域,大区中部署了系统级服务器负责控制大区的运行;一个区域中包含一个移动交换局、区域级服务器和最多100个收发系统(BTS)站点,BTS为移动台提供RF接口。 移动交换局(MSO)分主、备用,主用MSO设置在3号线东宝兴路控制中心,备用MSO设置在8号线西藏北路控制中心。MSO依托上海地铁上层网传输系统连接区域内的各个基站。

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供 电。 以下是四种主要无线充电方式: 无线充电方式 充电 效率 使用频率范围 传输距离 电场耦合方式 电磁感应方式 92% 22KHz 数mm-数cm 磁共振方式 95% 13.56MHz 数cm-数m 无线电波方式 38% 2.45GHz 数m- 1.电磁感应方式

无线供电驱动一枚60W电灯泡,效率高达75%。 电磁感应无线充电产品示意图

电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。稍有错位的话,传输效率就会急剧下降。下图靠移动送电线圈对准位置来提高效率。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦 敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图 一种无线充电器发送和接收原理图

2. 磁共振方式 磁共振方式的原理与声音的共振原理相同。排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。 相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。 应用: 三菱汽车展示供电距离为20cm,供电效率达90%以上。线圈之间最大允许错位为20cm。如果后轮靠在车挡上停车,基本能停在容许范围内。 索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。 还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。 磁共振方式由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量。

充电器原理与维修图例

充电器原理与维修实例 ?一、维修理论基本阐述所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行”. 电动车充电器由、、、 ?一、维修理论基本阐述?所有得电子产品都有一定生命周期,使用中得不规范行为都会导致产品得损坏,电动车充电器就是电动车得重要得部件,一旦充电器损坏,电动车将“举步艰难",继而“寸步难行"。 电动车充电器由于就是定位与价格竞争等等问题造成其寿命相对较短,有些厂家为了降低成本,不惜牺牲产品得质量,使用劣质器件造成在使用过程当中会出现这样那样得毛病,最严重得就是出现了一些影响深远得问题,如:充电过程中不转灯,充电器各项参数混乱等,以致蓄电池寿命缩短!维修电动车充电器,考究:望、听、闻、问、切。(实际应用中有一定得次序排列)下面就这些技巧一一讲解其目得与方法 望:我们拿到一个充电器首先要瞧一瞧这个充电器得外观,由此来判断使用环境会对充电器造成什么影响,如:充电器外壳有发热变形现象,表面比较脏,或者进风口严重阻塞,我们在实际案例里面发现有用户过份得爱惜充电器,在外面包裹了塑料袋,充电时也不拿下;又有些用户不太注意充电器,天天带在电动车后箱,长期得振动颠簸会使充电器出现虚焊;更有用户雨天也会使用充电器,充电器进水出现得后果可能会比较严重得损坏充电器,以至于直接报废. 听:拿起充电器来,在耳边上下摇晃几下,初步得听一下,充电器内部就是否有不应该有得异响,主要就是用来判断,器件就是否有掉落,松动与破摔,另外我们还由此来断定里面会不会有导电物体得存(器件掉落,小孩子顽皮,都会有导电物质在充电器内部存在) 闻:(wen _)核名思义用我们自己得鼻子去嗅一嗅,这个可以在不拆外壳得情况下,快速得判断充电器毛病得大小有极其重要得作用,当然这个需要一些基本得常识,您要学会分辨几种不同气味。?问:与客户交流,充电器就是在怎样得情况得下面坏掉得,比如,客户告知充电器在一插电得情况下“啪"得一声巨响后损坏得,我们就可以大致荒判断,这个会不会由于高压整流部分出问题了?400V电容爆炸了等等,以此(dian rong baozhaledeng deng _yi ci)获娶第一手得资料。?切:基本就可以理解为把充电器上电(插电),这个举动最终就是来自于以上得4妇铟程做下来得最后决定,而这里面得风险,直接来自您自己对于插电带来后果评估就是否准确直接得考验. 经过望、听、闻、问、切、步骤后我们基本就会锁定毛病得大致范围,在与客户得短暂沟通以后,我们开始“开膛破肚”. 电路部分从外壳分离出来以后,我们就电路部分进(bu fenjin)行消化。由于电路部分涉及电路理论,结合工作原理我们可以快速判断毛病点,但就是实际当中,我们可以完佺抛开理论知识,使用一些其她手段,也可以对充电器进行维修。 处理电路部分,首先一个应该注意自身安佺,做好一些防护措施十分得有必要,比如:使220V得隔离变压器,湿手不要去触碰线路板,夏天不要穿拖鞋去操作,地下铺设一块绝缘橡皮等等!

无线充电技术简介

无线充电技术 无线充电技术(Wireless charging technology;Wireless charge technology )。无线充电技术,源于无线电力输送技术。无线充电,又称作感应充电、非接触式感应充电,是利用近场感应,也就是电感耦合,由供电设备(充电器)将能量传送至用电的装置,该装置使用接收到的能量对电池充电,并同时供其本身运作之用。由于充电器与用电装置之间以电感耦合传送能量,两者之间不用电线连接,因此充电器及用电的装置都可以做到无导电接点外露。[1] 概述 麻省理工学院的研究团队在2007年6月7日美国《科学》杂志的网站上发表了他们的研究成果。研究小组把共振运用到电磁波的传输上而成功“抓住”了电磁波。他们利用铜制线圈作为电磁共振器,一团线圈附在传送电力方,另一团在接受电力方。当传送方送出某特定频率的电磁波后,经过电磁场扩散到接受方,电力就实现了无线传导。这项被他们称为“无线电力”的技术经过多次试验,已经能成功为一个两米外的60瓦灯泡供电。这项技术的最远输电距离还只能达到2.7米,

但研究者相信,电源已经可以在这范围内为电池充电。而且只需要安装一个电源,就可以为整个屋里的电器供电。 共振原理 麻省理工学院的科研组不是第一个提出无线能量转换的组织。科学家早在19世纪就发现了电磁转换现象,从理论上说,电力可转化为通过无形的介质传播的电磁波,实现电力的无线输送。但是电磁波向四面八方辐射,能量大量散失,因此“无线输电”的研究始终进展不大,19世纪的物理学家和工程师尼古拉·特斯拉进行了远程无线能量转换系统实验,但是当他的财力用尽后,这项最有野心的尝试(29米高的瓦登克莱弗塔)宣告失败。其他尝试包括激光等定向能量转换机制。然而,它们与麻省理工学院的工作不同,这些都需要连续的可视线路,这对住宅周围的电力设施不好。 无线充电技术给两个手机无线充电[2] 研究组成员,助理教授马林·索亚克教授和他的科研组正在改进这个设备。“这是一项还未得到发展的系统,它证明能量转换行得通。但

未来无线通信技术的展望

未来无线通信技术的展望 无线通信技术的飞速发展,源于人们摆脱束缚的愿望。近年来,3G、WiMAX、WLAN、UWB和Zigbee等各种无线通信技术层出不穷,人们在享受自由通信的同时也不得不面对这样一个问题:无线技术将朝着怎样的方向发展? “4化”成为发展趋势 当前,无线通信技术和市场飞速发展,在新技术和市场需求的共同作用下,未来的无线通信技术呈现出网络异构化、扁平化、IP化、泛在化等几大趋势。 异构化异构无线网络融合是移动通信系统发展的重要趋势。为了适应不同的通信环境以及满足用户业务的宽带化、个性化、智能化要求,无线接入网络出现了多种技术并存的情况。一方面,3G技术拥有强大的网络管理和业务提供能力;另一方面,IEEE 802系列的技术研发和商业应用的速度非常迅速,并且其鲜明的技术特征、清晰的市场定位成为这些技术快速占领市场的关键。此外,包括超宽带(UWB)、蓝牙等在内的短距离无线通信为用户提供了更高速、更快捷的无线接入。因此,异构性更强、多样化更明显成为今后无

线通信发展的主旋律。 扁平化未来无线通信的发展中,扁平化也是一个重要的特征。层次复杂的网络结构,会造成一些严重的问题:首先,全网多级投资计划建设,建设模式不尽相同,缺乏统一规划和管理,难以达到全网最优化设计;其次,网络结构层次和网络管理层次增多,会造成网络的性能指标下降,同时加大了建设和维护成本;第三,较多的网络层次,会使业务开展成本和业务维护成本增加,尤其是给全网性增值业务的开放带来困难。因此,网络结构的简单化、扁平化已成为未来无线通信发展的一个重要趋势。 IP化随着IP技术的发展,移动网络逐渐面向全IP网络的趋势发展。业界希望最终能够形成具备互操作的、融合的网络结构,这将使得企业节省大量的投资,控制成本和风险,对最终用户实现各种网络的漫游和业务接入。未来要实现不同无线技术共用同一个核心网络,就必须积极推动网络融合工作,网络的全IP化有助于无线技术和核心技术的紧密集成。除此之外,全球移动用户和业务流量将不断增加,无线通信中不同的应用和服务对数据速度和带宽会产生不同的 需求,只有使网络向着全IP的方向演进,才能同时满足各种高流量等级和不断变化的需求。未来网络的全IP化将是一个渐进的过程,它会逐步从核心网到接入网再到移动台。 泛在化随着IT产业的深入发展,信息逐渐渗透到人们

相关文档
最新文档