5.9 正弦定理 余弦定理

5.9  正弦定理  余弦定理
5.9  正弦定理  余弦定理

5.9 正弦定理 余弦定理

【基础知识精讲】

1.正弦定理、三角形面积公式

正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于该三角形外接圆的直径,即:

A a sin =

B b sin =

C c

sin =2R. 面积公式:S △=21bcsinA=21absinC=2

1

acsinB.

2.正弦定理的变形及应用

变形:(1)a=2RsinA,b=2RsinB,c=2RsinC (2)sinA ∶sinB ∶sinC=a ∶b ∶c (3)sinA=

R a 2,sinB=R b 2,sinC=R

c 2. 应用(1)利用正弦定理和三角形内角和定理,可以解决以下两类解斜三角形问题:

a.已知两角和任一边,求其他两边和一角.

b.已知两边和其中一边的对角,求另一边的对角.

一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况. ①A 为锐角时

②A 为直角或钝角时.

(2)正弦定理,可以用来判断三角形的形状.其主要功能是实现三角形中边角关系转化.例如:在判断三角形形状时,经常把a 、b 、c 分别用2RsinA 、2RsinB 、2RsinC 来代替.

3.余弦定理

在△ABC 中,有a 2=b 2+c 2

-2bccosA; b 2=c 2+a 2

-2accosB ; c 2=a 2+b 2

-2abcosC ; 变形公式:

cosA=bc a c b 2222-+,cosB=ac b a c 2222-+,cosC=ab

c b a 22

22-+

在三角形中,我们把三条边(a 、b 、c)和三个内角(A 、B 、C)称为六个基本元素,只要已

知其中的三个元素(至少一个是边),便可以求出其余的三个未知元素(可能有两解、一解、无解),这个过程叫做解三角形,余弦定理的主要作用是解斜三角形.

4.解三角形问题时,须注意的三角关系式:A+B+C=π 0<A ,B ,C <π

sin

2B A +=sin 2C -π=cos 2

C

sin(A+B)=sinC

特别地,在锐角三角形中,sinA <cosB,sinB <cosC,sinC <cosA.

【重点难点解析】

掌握正、余弦定理,并学会用其余弦定理解三角形.

例1 在△ABC 中,已知A >B >C ,且A=2C,b=4,a+c=8,求a 、c 的长.

解:由正弦定理A a sin =C c sin 及A=2C 得C a 2sin =C c sin ,即C C a cos sin 2=C

c

sin , ∴cosC=

c

a 2. 由已知a+c=8=2

b 及余弦定理,得

cosC=ab

c b a 22

22-+=

)

()2(

22

2c a a c c a a +-++ =

)

(4))(35(c a a c a c a ++-=a c

a 435-.

c

a 2=a c

a 435-,整理得(2a-3c)(a-c)=0

∴a ≠c,∴2a=3c. ∵a+c=8,∴a=

524,c=5

16

. 例2 在△ABC 中,如果lga-lgc=lgsinB=-lg 2,且B 为锐角,试判断此三角形的形状.

解:∵lga-lgc=lgsinB=-lg 2,

∴sinB=

2

2 又∵0°<B <90°,∴B=45° 由lga-lgc=-lg 2,得

c a = 2

2.

由正弦定理得

c A sin sin = 2

2

. 即2sin(135°-C)= 2sinC

即2[sin135°cosC-cos135°sinC ]=2sinC.

∴cosC=0,得C=90°

又∵A=45°,∴B=45°

从而△ABC 是等腰直角三角形.

例3 如图已知:平行四边形两邻边长为a 和b(a <b),两对角线的一个交角为θ(0°<θ<90°),求该平行四边形的面积.

分析:由于已知了平行四边形相邻两边长和对角线的一个交角,再考虑到平行四边形的面积是△AOB 的四倍,因此只要求OA ·OB ·sin θ即可.

解:设平行四边形ABCD 的对角线AC 与BD 相交于O.AB=a,BC=b,∠AOB=θ,又设OA=x,OB=y.

在△AOB 中,应用余弦定理可得: a 2=x 2+y 2

-2xycos θ ① 在△BOC 中,应用余弦定理可得: b 2=x 2+y 2

-2xycos(180°-θ) ② 由②-①得: b 2-a 2

=4xycos θ

∵0°<θ<90°,∴xy=θcos 42

2a b - (b >a)

∴S □=4S △AOB =2xysin θ=2

2

2b a -tan θ

例4 在△ABC 中,已知4sinBsinC=1,b 2

+c 2

-a 2

=bc,且B >C ,求A 、B 、C.

分析:由于题设条件b 2+c 2-a 2

=bc 十分特殊,将它与余弦定理对照可得A=60°,这样B+C=120°,于是再利用条件4sinBsinC=1,可求得B 与C.

解:由余弦定理cosA=bc

a c a 2222-+=bc bc 2=21

.

又∵0°<A <180°

∴A=60°

∴B+C=120°,又由于4sinBsinC=1 ∴4sinBsin(120°-B)=1

∴4sinB(

2

3

cosB+21sinB)=1

∴3sin2B+2sin 2

B=1 ∴3sin2B=cos2B

∴tan2B=

3

3,∴2B=30°或2B=210°

由于B+C=120°,且B >C ,60°<B <120°

∴2B=210°,

∴B=105°,从而C=15° ∴A=60°,B=105°,C=15°

例5 已知△ABC 中,a ,b ,c 为角A ,B ,C 的对边,且a+c=2b ,A-C=

3

π

,求sinB 的值. 解法一:由正弦定理和已知条件a+c=2b ,得sinA+sinC=2sinB ,由和差化积公式得 2sin

2C A +·cos 2

C

A -=2sin

B 由A+B+C=π,得 sin

2C A +=cos 2

B 又A-C=

3

π

,得 2

3

cos 2B =sinB

2

3

cos 2B =2sin 2B ·cos 2B

又∵0<

2B <2π,cos 2

B

≠0 ∴sin

2B =4

3 从而cos

2B =2

sin 12B -=413 ∴sinB=

23·413 =8

39. 解法二:由正弦定理和已知条件a+c=2b ,得sinA+sinC=2sinB ∵A-C=

3

π

,A+B+C=π

两式相减可得B=3

-2C ∴sin(

+C)+sinC=2sinB 得sin 3πcosC+cos 3

π

sinC+sinC=2sinB

2

3

cosC+23sinC=2sinB

即3cos(3π

-C)=2sinB ∴3cos 2B =4sin 2B ·cos 2

B

∵0<B <π,∴cos 2

B

≠0

∴sin

2B =4

3 cos

2B =2

sin 12B -=413 ∴sinB=

23·cosB=8

39

【难题巧解点拔】

例1 △ABC 中,若a=5,b=4,cos(A-B)=

32

31

,求AB. 分析:很明显,只要求cosC 的值,应用余弦定理即可求出AB. 解法一:由已知条件a=5,b=4

b a b a -+=B A B A sin sin sin sin -+=

2

sin

2cos 2cos

2sin

B A B A B

A B A -+-+=9,①由已知cos(A-B)= 3231,根据半角公式有

sin

2B A +=2)cos(1B A --=81,cos 2B A -=2

)cos(1B A -+=863

代入①式得tg

2B A +=63

9

∵tg 2B A +=ctg 2C , ∴tg

2C = 9

63

,根据万能公式cosC=81

∴c 2=a 2+b 2

-2abcosC=36,AB=c=6

解法二:∵A >B ,如图,作∠BAD=∠B,∴AD=BD

∠CAD=∠A-∠B 令AD=BD=y,CD=x,

由余弦定理cos(A-B)=boy

x y b 22

22-+= 3231,x=a-y,

y

y 8910-= 3231

,y=4,x=1 △CAD 中再由余弦定理cosC=

8

1

,∴c=6 评析:上述解法反映边向角的转化,也可由角向边转化直接求出边.

例2 半圆O 的直径为2,A 为直径延长线上的一点,且OA=2,B 为半圆周上任意一点以AB 为边向形外作等边三角形ABC(如图),问B 点在什么位置时,边形OACB 的面积最大,并求出这个最大面积.

解:设∠AOB=x ,则 S △AOB =

2

1

·2·1·sinx=sinx, AB 2

=OA 2

+OB 2

-2·OA ·OB ·cosx=5-4cosx. S △ABC =

43AB 2=43 (5-4cosx)= 4

5-3cosx ∴S OACB =S △AOB +S △ABC

=sinx-3cosx+

4

3

5 =2sin(x-

3π)+4

35 ∵0<x <π,-

3π<x-3π<32π ∴x-3π=2

π时,

∴即x=

65π时,S OACB 有最大值2+4

3

5(平方单位)

例3 已知△ABC 中,AB=AC=a,∠BAC=φ,等边三角形PQR 的三边分别通过A ,B ,C 三点.试求△PQR 的面积的最大值.

分析:先依题意画出图形(如图).因为变动三角形PQR 为正三角形,它的面积S=

4

3PQ 2

,问题可转化为求边长PQ 的最大值.为此需要建立PQ 的函数式,这又必须选取适当的量作为自变量.观察图形可以发现,PQ 的位置是随着∠PAB 的大小变化而变化的.不妨就以∠PAB 为自变量.以下的程序就是应用三角形的边角关系,求出以∠PAB 的三角函数表示PQ 的解析式,最后求它的最大值.

解:设∠PAB=x,那么∠PBA=120°-x,∠QAC=180°-x-φ,∠QCA=x+φ-60°.

在△PAB 中,∵

)120sin(x PA

-?=?

60sin AB ,

∴PA=

3

2a sin(120°-x),

在△AQC 中,

)60sin(?-Φ+x AQ

=?

60sin AC

∴AQ=

3

2a sin(x+φ-60°)

∴PQ=PA+AQ=

3

2a [sin(120°-x)+sin(x+φ-60°)

=

3

4a sin(

2Φ+30°)cos(90°-2

Φ

-x). 因为其中a,

2Φ+30°都是常量,所以当90°-2Φ-x=0即x=90°-2Φ

时,取得 (PQ)max =

3

4a sin(

2

Φ

+30°) 同时也就取得了 (S △)max =

4

3 (PQ)2

max

=

3

34a 2sin 2(2Φ

+30°)

例4 在△ABC 中,已知A=2

C ,求证:3b <c-a <2b

.

证明:在△ABC 中,由A=

2C ,得C=2A ,∴B=π-3A,∴0<A <3

π

b a

c - =B A C sin sin sin -=)

sin(sin sin C A A C +-=

2

cos

2sin 2sin

2cos 2C A C A A C A C ++-+ =23sin 2sin A =2sin 2cos 2sin 42sin

2A A A A -=12cos 412-A =1cos 21+A .

∵0<A <3

π,∴21<cosA <1,即2<2cosA+1<3∴31<b a c -<21,故3b <c-a <2b

.

评析:解本题的关键是利用正弦定理及三角公式将b a c -转化为1

cos 21

+A ,结合角A

的取值范围推得结论.

【课本难题解答】

课本第132页,习题5.9第8题: |F |≈132N ,β≈38° 第9题

两条对角线的长分别是415cm 和43cm,面积是48cm 2

.

【命题趋势分析】

本节主要考查:1.根据已知条件,求三角形的末知元素,或判断三角形的形状. 2.运用正、余弦定理及关系式A+B+C=π解决三角形中的计算和证明问题. 3.利用所学的三角知识解决与三角形有关的三角函数问题和简单的实际问题. 根据考试的方向,可以预见,利用正、余弦定理解斜三角形问题将会与三角函数、数列、方程、向量等知识相结合,尤其是与生活、生产、科学实验实际相结合,考查综合运用数学知识的能力.

【典型热点考题】

例1 在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,设a+c=b ,A-C=3

π

,求sinB 的值.

解:根据正弦定理和已知可得:sinA+sinC=2sinB,A+B+C=π 则2sin

2C A +·cos 2

C

A -=2sinB.

又A-C=3π,sin 2C A -=cos 2

B

∴2cos 2B cos 6π=2sinB=4sin 2B cos 2B

又∵0<2B <2

π

∴sin

2B =4

3 cos

2B =2

sin 12B -= 413 ∴sinB=2·

413·43=8

39

例2 若△ABC 的三个内角A 、B 、C 成等差数列,且最大边为最小边的2倍,则三内角

之比为 .

解:设三角形三内角从小到大依次为B-d,B,B+d, 则B-d+B+B+d=180°∴B=60° 设最小边为x ,则最大边为2x,

从而

)60sin(d x -?=)60sin(2d x +??tand=

3

3

,d=30° 所以三内角分别为A=30°,B=60°,C=90°,得三内角之比为1∶2∶3. ∴应填1∶2∶3.

例3 在△ABC 中,A 、B 、C 三顶点所对边分别为a,b,c ,试证明b 2=c 2+a 2

-2accosB.

证明:因为=+

则有:2

=·=(+)·(+)

=2

+2

+2·

=AB 2

+BC 2

+2|AB |·|BC |cos(180°-B)

=c 2+a 2

-2accosB 所以b 2=c 2+a 2

-2ac ·cosB

例4 求sin 2

20°+cos 2

80°+3sin20cos80°的值.

解:设△ABC 中的A=10°,B=20°,C=150°对应边分别为a,b,c. △ABC 的外接圆半径为2R ,则由正弦定理得: a=2Rsin10°,b=2Rsin20°,c=2Rsin150° 由余弦定理,得:

(2Rsin150°)2=(2Rsin10°)2+(2Rsin20°)2

-2(2Rsin10°)(2Rsin20°)cos150°即:sin 2

150°=sin 2

10°+sin 2

20°+3sin10°sin20°

则:cos 280°+sin 2

20°+3sin20°cos80°=

4

1 说明:本题采用了构造法,题中余弦变正弦之后,注意到3=-2cos(180°-10°-20°

).

本周强化练习:

【同步达纲练习】

一、选择题

1.在△ABC 中,已知a=52,c=10,A=30°,则B 等于( ) A.105°

B.60°

C.15°

D.105°或15°

2.在△ABC 中,若b=22,a=2,且三角形有解,则A 的取值范围是( ) A.0°<A <30° B.0°<A ≤45° A.0°<A <90°

D.30°<A <60° 3.在△ABC 中,若

2cos A a =

2cos B b =

2

cos

C c

,则△ABC 的形状是( )

A.等腰三角形

B.等边三角形

C.直角三角形

D.等腰直角三角形

4.在△ABC 中,若a=2,b=22,c=6+2,则∠A 的度数是( )

A.30°

B.45°

C.60°

D.75°

5.设m 、m+1、m+2是钝角三角形的三边长,则实数m 的取值范围是( ) A.0<m <3 B.1<m <3 C.3<m <4 D.4<m <6

6.在△ABC 中,已知sinA ∶sinB ∶sinC=3∶5∶7,则此三角形的最大内角的度数等于( )

A.75°

B.120°

C.135°

D.150°

7.△ABC 中,若c=ab b a ++22,则角C 的度数是( ) A.60°

B.120°

C.60°或120°

D.45°

8.在△ABC 中,若A=60°,b=16,且此三角形的面积S=2203,则a 的值是( ) A. 2400

B.25

C.55

D.49

9.在△ABC 中,若acosA=bcosB,则△ABC 是( )

A.等腰三角形

B.直角三角形

C.等腰直角三角形

D.等腰三角形或直角三角

10.在钝角三角形ABC 中,三边长是连续自然数,则这样的三角形( ) A.不存在 B.有无数多个 C.仅有一个 D.仅有两个

二、填空题

1.在△ABC 中,A=120°,B=30°,a=8,则c= .

2.在△ABC 中,已知a=32,cosC=

3

1

,S △ABC =43,则b= . 3.已知锐角三角形边长分别为2、3、x ,则x 的取值范围是 . 4.在△ABC 中,A=60°,b ∶c=8∶5,其内切圆关径r=23,则a= ,

b= ,c= .

5.在△ABC 中,A=60°,b=1,面积为3,则

C

B A c

b a sin sin sin ++++= .

6.在△ABC 中,已知A 、B 、C 成等差数列,且边b=2,则外接圆半径R= .

三、解答题

1.设三角形三边长分别为15,19,23,现将三边长各缩短x 后,围成一个钝角三角形,求x 的取值范围.

2.在△ABC 中,已知它的三边a ,b ,c 成等比数列,试证明:tan 2A tan 2C ≥3

1.

3.已知在△ABC 中,c=22,a >b,C=

4

π

,tanA ·tanB=6,试求a,b 以及此三角形的面积.

【素质优化训练】

1.在△ABC 中,已知a-b=4,a+c=2b ,且最大角为120°,求△ABC 的三边长.

2.如图,在60°的∠XAY 内部有一点P ,P 到边AX 的距离是PC=2,P 到边AY 的距离是PB=11,求点P 到顶点A 的距离.

3.在△ABC 中,若C=3B ,求

b

c

的取值范围.

4.已知△ABC 是钝角三角形,∠B >90°,a=2x-5,b=x+1,c=4,求x 的取值范围.

5.在△ABC 中,已知cos 2B+cos 2C=1+cos 2

A,且sinA=2sinBcosC,cosC=sinB ,求证:b=c 且A=90°.

6.在△ABC 中,a,b,c 分别是角A 、B 、C 的对边,若a 2

+c 2

=2001c 2

,求

B

A C

cot cot cot +的值.

【生活实际运用】

某人在塔的正东方沿南60°西的道路前进40米后,望见塔在东北方向上,若沿途测得塔的最大仰角为30°,求塔高.

解:如图,由题设条件知: ∠CAB=∠1=90°-60°=30°

∠ABC=45°-∠1=45°-30°=15° ∴∠ACB=180°-∠BAC-∠ABC =180°-30°-15°=135° 又∵AB=40米.

在△ABC 中,由正弦定理知:

?15sin AC =?

135sin 40

∴AC=?

?135sin 15sin 40=402sin(45°-30°)

=402 (sin45°cos30°-cos45°sin30°) =402 (

22·23-2

2·21)

=20(3-1)

在图中,过C 作AB 的垂线,设垂足为E ,则沿AB 测得塔的最大仰角就是∠CED ,∴∠CED=30°.

在Rt △ACE 中,EC=AC ·sinBAC=AC ·sin30°=20·(3-1)·

2

1

=10(3-1) 在Rt △DCE 中,塔高CD=CE ·tan ∠CED=10(3-1)·tan30°=

3

)

33(10- (米).

【知识验证实验】

外国船只除特许者外,不得进入离我国海岸线d 海里以内的海域.设B 和C 是我国的两个设在海边的观测站,B 与C 之间的距离为m 海里,海岸线是过B 、C 的直线.一外国船在A 点处,现测得∠ABC=α、∠ACB=β.试求α、β满足什么关系时,就应向示经特许的外国船只A 发出警告?

解:如图所示,作AD ⊥BC ,垂足为D ,在△ABC 中,∠BAC=180°-(α+β)∴sin ∠BAC=sin(α+β).

由正弦定理得:

βsin AB =)sin(βα+BC ,αsin AC =)

sin(βα+BC

.

∵BC=m ,故有: AB=

)sin(sin βαβ+m ,AC=)

sin(sin βαα+m

由于S △ABC =

21BC ·AD=21 m ·AD 且S △ABC =2

1

AB ·AC ·sin(α+β). 所以

21)sin(sin βαα+m ·)sin(sin βαβ

+m ·sin(α+β)= 2

1mAD.

从而有:AD=

)

sin(sin sin βαβ

α+m

因此,当AD ≤d,即

)

sin(sin sin βαβ

α+m ≤d 时,就应向外国船只A 发出警发.

【知识探究学习】

如图,在四边形ABCD 中,BC=m,DC=2m,四个内角A 、B 、C 、D 之比为3∶7∶4∶10,试求△ABD 的面积.

解:由于四个内角A 、B 、C 、D 比为3∶7∶4∶10,所以可设它们的大小依次为:3x 、7x 、4x 、10x.由四边形的内角和为360°,所以有:

3x+7x+4x+10x=360°,可求得:x=15°. 在△BCD 中,由余弦定理得; BD 2 =BC 2+DC 2

-2BC ·DC ·cosC.

=m 2+(2m)2

-2·m ·(2m)cos60° =3m 2

∴BD=3m.

这时,在△BCD 中,BD 2

+BC 2

=DC 2

,所以△BCD 是直角三角形,DC 是斜边. ∴∠CDB=30°,∠ADB=120°. 在△ABD 中,由正弦定理得:AB=

A AD

B BD sin sin ∠?=??45sin 120sin 3m =2

2

3m,另外∠

ABD=105°-90°=15°,BD=3m.

所以S △ADB =

21AB ·BD ·sin15°=21·2

2

3m ·3m ·sin15° =

8

239-m 2

.

参考答案

【同步达纲练习】

一、1.D 2.B 3.B 4.A 5.B 6.B 7.B 8.C 9.D 10.C

二、1.

338 2.213 3.(5,13) 4.14,10,16 5. 338 6. 3

3

2 三、1.3<x <11

2.提示可证:a+c ≥2b ,再得sinA+sinC ≥2sinB ,和差化积可得结论

3.a=

5106,b=5

5

8,S △=524

【素质优化训练】

1.a=14,b=10,c=6

2.14

3.1<b c

<3 4. 3

10<x <4 5.可求出B=C=45° 6.1000

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

正弦定理和余弦定理

04—正弦定理和余弦定理 利用正弦定理解三角形 (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. [例1] (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2 b ,且 a > b ,则B =( ) A.π6 B.π3 C.2π3 D.5π 6 (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π 6,则b =________. [解析] (1)利用正弦定理的变形,得a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a sin B cos C +c sin B cos A =12b 中,得2R sin A ·sin B cos C +2R sin C sin B cos A =12×2R sin B ,所以sin A cos C +sin C cos A =12,即sin(A +C )=12,所以sin B =12.已知a >b ,所以B 不是最大角,所以B =π6 . (2)在△ABC 中,∵sin B =12,0b .又a +c =2b ,所以c =a -8,所以a 大于c ,则A =120°. 由余弦定理得a 2=b 2+c 2-2bc cos A =(a -4)2+(a -8)2-2(a -4)·(a -8)·????-12,所以a 2-18a +56=0. 所以a =14或a =4(舍去).故选B. (2)由余弦定理得cos C =a 2+b 2-c 22ab ,将其代入a cos C +32c =b 中得,a ×a 2+b 2-c 22ab +3 2 c =b ,化简 整理得b 2+c 2-a 2=3bc ,于是cos A =b 2+c 2-a 22bc =32,所以A =π6.[答案] (1)B (2)π 6 利用正、余弦定理解三角形 [例3] 设△ABC 1,A =2B . (1)求a 的值;(2)求sin ??? ?A +π 4的值. [解] (1)因为A =2B ,所以sin A =sin 2B =2sin B cos B .由正、余弦定理,得a =2b ·a 2+c 2-b 2 2ac .因为b =3,c =1,所以a 2=12,a =2 3. (2)由余弦定理,得cos A =b 2+c 2-a 22bc =9+1-126=-1 3 .因为0

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

(完整版)正弦定理与余弦定理练习题

正弦定理与余弦定理 1.已知△ABC 中,a=4,ο 30,34==A b ,则B 等于( ) A .30° B.30° 或150° C.60° D.60°或120° 2.已知锐角△ABC 的面积为33,BC=4,CA=3,则角C 的大小为( ) A .75° B.60° C.45° D.30° 3.已知ABC ?中,c b a ,,分别是角C B A ,,所对的边,若0cos cos )2(=++C b B c a ,则角B 的大小为( ) A . 6 π B . 3 π C . 32π D .6 5π 4.在?ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.若 sin sin C A =2,ac a b 322=-,则B ∠=( ) A. 030 B. 060 C. 0120 D. 0150 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a=5,c=10,A=30°,则B 等于( ) A .105° B.60° C.15° D.105° 或 15° 6.已知ABC ?中,75 6,8,cos 96 BC AC C ===,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .等腰三角形 D .钝角三角形 7.在ABC ?中,内角,,A B C 的对边分别为,,a b c ,且2B C =,2cos 2cos b C c B a -=,则角A 的大小为( ) A . 2π B .3π C .4π D .6 π 8.在△ABC 中,若sin 2 A +sin 2 B <sin 2 C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.在ABC ?中,sin :sin :sin 3:2:4A B C =,那么cos C =( ) A. 14 B.23 C.23- D.14 - 10.在ABC ?中,a b c ,,分别为角A B C ,,所对边,若2cos a b C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰或直角三角形 11.在△ABC 中,cos 2 =,则△ABC 为( )三角形. A .正 B .直角 C .等腰直角 D .等腰 12.在△ABC 中,A=60°,a=4,b=4 ,则B 等于( ) A .B=45°或135° B .B=135° C .B=45° D .以上答案都不对 13.在ABC ?,内角,,A B C 所对的边长分别为,,.a b c 1 sin cos sin cos ,2 a B C c B A b += 且a b >,则B ∠=( )

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

《正弦定理和余弦定理》典型例题

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A =,30C =,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C =, ∴sin 10sin 45102sin sin 30c A a C ?= == ∴ 180()105B A C =-+=, 又sin sin b c B C =, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ?= ===?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60 o o a =,∴56a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在3,60,1ABC b B c ?= ==中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导; 2.利用正、余弦定理判断三角形的形状和解三角形; 3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.

学习要领 1.理解正弦定理、余弦定理的意义和作用; 2.通 过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 基础知识梳理 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可 以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2 =b 2 +c 2 -2bc cos_A ,b 2 =a 2 +c 2 -2ac cos_B ,c 2 =a 2 +b 2 -2ab cos_C .余弦 定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab .

3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半 径),并可由此计算R 、r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角 A 为钝角或直角 图形 关系式 a =b sin A b sin A b 解的个数 一解 两解 一解 一解 [难点正本 疑点清源] 1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A

正弦定理余弦定理

第七节 正弦定理、余弦定理应用举例 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a km D .2a km 解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦 定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×? ?? ??-12=3a 2, ∴AB =3a . 答案B 2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 km B .3 2 km

C .3 3 km D .2 3 km 解析 如图,由条件知AB =24×15 60=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =AB sin45°sin30°=3 2. 答案B 3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里 D .70海里 解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120° = 502+302-2×50×30cos120°=70. 答案D 4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等.2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有

时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a -4,a ,a +4,则(a +4)2=(a -4)2+a 2-2a (a -4)cos 120°,解得a =10,故S =12×10×6×sin 120°=15 3. 答案 15 3 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里. 解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°) .解得BC =56(海里). 答案 5 6 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68sin 120°sin 45°=346(海里),船的航行速度为3464= 176 2(海里/时). 答案 176 2 4.在△ABC 中,若23ab sin C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a 2+b 2+c 2,a 2+b 2-c 2=2ab cos C 相加,得a 2+b 2= 2ab sin ? ????C +π6.又a 2+b 2≥2ab ,所以 sin ? ????C +π6≥1,从而sin ? ????C +π6=1,且a =b ,C =π3时等号成立,所以△ABC 是等边三角形. 答案 等边三角形

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理与余弦定理

第28讲 正弦定理与余弦定理 1.在△ABC 中,a 2=b 2+c 2+bc ,则角A 等于(C) A .60° B .45° C .120° D .30° 因为cos A =b 2+c 2-a 22bc =-12, 又因为0°

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

正弦定理和余弦定理(解三角形)

解三角形 1.内角和定理:在ABC ?中,A B C ++= π;sin()A B +=sin C ;cos()A B +=cos C -,cos 2A B +=sin 2C 2.面积公式: ①ABC S ?=21aha =21bhb =2 1chc (ha 、hb 、hc 分别表示a 、b 、c 上的高); ②ABC S ?=21absinC =21bcsinA =2 1acsinB ; ③ABC S ?=2R 2sinAsinBsinC.(R 为外接圆半径) ④ABC S ?=R abc 4; ⑤ABC S ?=))()((c s b s a s s ---,?? ? ??++=)(21c b a s ; ⑥ABC S ?=r ·s ,( r 为△ABC 内切圆的半径) 3.三角形中常见的不等式: ①B A B A sin sin ,>>则若(任意三角形) ②锐角三角形中,B A cos sin > 4.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?? ???===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 4.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:222 2cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具) 2222cos c a b ab C =+- 形式二:cos A =bc a c b 2222-+ ; cos B =ca b a c 2222-+ ; cosC=ab c b a 22 22-+ 考点1: 运用正、余弦定理求角或边 题型1.求三角形中的某些元素 例1.已知:A.B.C 是ABC ?的内角,c b a ,,分别是其对边长,向量()()1cos ,3--=A m π,??? ? ????? ??-=1,2cos A n π,n m ⊥. (Ⅰ)求角A 的大小;(Ⅱ)若,3 3cos ,2==B a 求b 的长.

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦定理余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b =

正弦定理和余弦定理

正弦定理和余弦定理 【知识梳理】 1.内角和定理:在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - 面积公式: 在三角形中大边对大角,反之亦然. 2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具) 形式二:?????===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具) 形式三: 形式四: 3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍.. 形式一:2222cos a b c bc A =+- 222 2cos b c a ca B =+- 2222cos c a b ab C =+-(解三角形的重要工具) 形式二: 【典型例题】 111sin sin sin 222ABC S ab C bc A ac B ?===::sin :sin :sin a b c A B C =sin ,sin ,sin 222a b c A B C R R R ===222cos 2b c a A bc +-=222cos 2a c b B ac +-=222 cos 2a b c C ab +-=

题型一:利用正弦定理解三角形 1.在ABC ?中,若5b =,4B π∠=,1sin 3A =,则a = . 2.在△ABC 中,已知a = 3,b =2,B=45°,求A 、C 和c . 题型二:利用余弦定理解三角形 1.设ABC ?的内角C B A 、、所对的边分别为c b a 、、.已知1=a ,2=b ,4 1cos = C . (Ⅰ)求ABC ?的周长;(Ⅱ)求()C A -cos 的值. 2. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-c a b +2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.

相关文档
最新文档