王亮云-基於超分子聚合物的自修复之材料-长兴化学

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

自修复聚合物的研究进展

自愈合聚合物材料 2011011743 分1 黄浩 一、背景 众所周知,高分子材料的老化和机械损伤是影响其寿命的两个重要因素,经过几十年的工艺积累,技术人员在防老化和提高机械性能上已经为其进行了大量的改进。但这些研究工作都是对其损伤进行预防,而一旦损伤产生,则就会产生薄弱点,后续破坏会更加集中于这部分微裂纹中,并可能引发宏观断裂。如下图所示: 因此对微裂纹的早期发现和修复是一个非常实际的问题。肉眼能发现的分层或由冲击所导致的宏观裂纹不难发现, 并能通过手工进行修复。常用的观察内部损伤的技术手段有超声波和射线照相术等,但由于这些技术的局限性, 加上聚合物的裂纹往往在本体深处出现, 如基体的微开裂等微观范围的损伤就很难被发现。 与合成的材料相比, 许多活着的生物系统能够对外应力以及损伤产生反应, 生物体的损伤部位会自愈合。通常这些植物体或者动物体在体系受伤时会分泌出不同的液体在受伤部位结痂或者重建。根据这种思路,现在兴起了自愈合高分子材料的研究热潮,目前研究的主要修复方法有微胶囊法、空芯纤维法、毛细血管网络法、热可逆交联反应修复法和利用弱相互作用修复等等。 二、发展概况 自愈合高分子材料的定义为:能对外界环境变化因素产生感知, 自动做出适应、灵敏和恰当的响应, 并具有自我诊断、自我调节、自我修复等功能的高分子材料。 自愈合材料的概念是由美国军方在20 世纪80 年代中期首先提出来的。 1997年美国国家自然科学基金会提出将自修复和自愈合技术列为研究重点之一。 2002年美国把军用装备的自修复、自愈合材料研究列为提升装备性能的关键技术之一,并提出了开发基于生物有机体损伤愈合原理的生物机敏材料, 旨在革新和发展新一代航空航天材料。 三、愈合方法及其研究成果 目前研究的主要修复方法有微胶囊法、液芯纤维法、毛细血管网络法、热可逆交联反

聚合物基复合材料复习

1.聚合物基复合材料的组成 (1) 基体 热固性基体: i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体: i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及: i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程 ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程 3)复合材料界面结构与性能特点 i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分 ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征

自修复材料涂层发展及应用概述

自修复材料涂层发展及应用概述 二十世纪六十年代,“自我修复材料”的设想被提出,但由于当时科技水平的限制,其并未受到过多的关注,知道进入二十一世纪,其在技术上得以突破和进展。自我修复材料是一种在物体受损时能够进行自我修复的新型材料。本文从自修复材料的分类及修复原理着手,介绍目前自修复材料涂层的发展及应用。 自修复材料领域中,主要分为本征型自修复高分子材料以及复合型自修复高分子材料。前一种是指材料本身具有修复性能,经定型后,性质稳定,但制备工艺较为复杂,成本较高;后一种是指在具有导电性质的聚合物中掺杂可修复的微胶囊或者在具有修复性能的聚合物中形成导电纳米颗粒,进而达到修复效果,生产周期短,效益高。下面对这两种修复材料进行详细的说明。 本征型自修复高分子材料是一类在外部力量或者外加能量作用时,高分子基体受到一定程度破坏后可以在没有外加能量与作用力的情况下做到自我愈合的材料。目前,国内外相关团队都进行了关于自修复材料的大量研究,开发的自修复聚合物材料主要分为两种,以其中修复的键为区分依据,分为带有可逆共价键的自修复材料和带有可逆非共价键的自修复材料。 分别以基于酰腙键型的自修复材料和基于氢键型的自修复材料为例。基于酰腙键型的价键自修复材料的机理,是醛基与酰肼反应生成的酰腙键断裂后可自发生长。修复时,pH值发生变化时,酰腙键会发生断裂和重组,其在宏观上就表现为了材料的自修复行为。氢键型自修复材料是通过在高分子中引入可逆氢键来实现自修复的一类高分子材料,此类材料分子量较高,修复效率快。该类自修复材料在加热条件下完成自我修复,修复方式简单快捷,发展及应用前景较好。除上述所说的两种修复材料外,还有基于双硫键型的自修复高分子材料,基于氮氧键型的自修复高分子材料,基于Dieal-Alder (DA) 型的修复高分子材料,基于超疏水型自修复高分子材料,基于离子作用的自修复高分子材料,基于配位键金属有机自修复高分子材料,前三种属于可逆共价键类型的材料,后两种为可逆非共价键类型的材料。 与本征型的自修复高分子材料不同,复合型的自修复高分子材料是通过在高分子基体中加入固化剂使破裂处的位置迅速固化从而实现自修复效果的。固化剂的添加方式有很多种。其中较为普遍且易于操作的有两种:一种是在高分子基体中直接埋置微胶囊;第二种则是在在高分子基体中加入仿生人体血管一类的仿生结构,当高分子基体在受冲击破裂时,仿生血管破裂,流出固化剂使得在破裂处自行修复。前一种最主要的特点便是其只可以修复一次,为弥补前一种修复方式的不足,便出现了仿生人体血管型自修复材料,其修复原理与第一种相同,改变的时固化剂的填充方式,经测试评价,该材料的自我愈合效果显著,可以进行多次的自我疗伤,其修复率都高达50%以上,重复次数大于7次。 自修复材料的应用十分广泛,作为涂层是其中一种最为高效的利用方式。其大到应用于航空航天,小到应用于手机等电子产品,其产生的效益都十分巨大。以最近几年的应用为例,2015年一月LG G Flex 2手机发布,其中的一个亮点便是其搭配了可自我修复的手机后壳,虽然按照官方说提供的材料来看,其修复方式与上文所提到的修复方式具有一定的差异,但其效果依旧使得该款手机在CES2015大会上吸引了众多媒体。自修复,意味着手机更好的抗磨损性能,无论是后壳,还是屏幕的疏油层,都是自修复涂层的应用方式,且能带来

聚合物基复合材料的界面研究进展

大学研究生课程论文 题目聚合物基复合材料的界面研究进展成绩 专业材料工程 课程名称、代码1512011080405 年级 姓名学号 时间年月 任课教师

聚合物基复合材料的界面研究进展 【摘要】界面的好坏是直接影响复合材料性能的关键因素之一。当复合材料受到外力作用时,除增强材料和基体受力外,界面亦起着极其重要的作用。本文主要综述无机刚性粒子增强复合材料、无机纳米粒子增强复合材料、纤维增强复合材料、原位复合材料的界面特性及其改性方法,并简要介绍了各种复合材料的增强机理,界面相容性。 【关键词】聚合物;复合材料;综述;增强 1 前言 界面是复合材料极为重要的微观结构,它作为增强体与基体连接的“桥梁”,对复合材料的物理机械性能有至关重要的影响。复合材料一般是由增强相、基体相和它们的中间相(界面相)组成,它们各自都有其独特的结构、性能与作用,增强相主要起承载作用,基体相主要起连接增强相和传载作用,界面是增强相和基体相连接的桥梁,同时是应力的传递者[1]。目前对增强相和基体相的研究已取得了许多成果,但对作为复合材料三大微观结构之一的界面问题的研究却不够深入,其原因是测试界面的精细方法运用起来较困难,描述的理论尚不完整,尤其从力学的角度研究界面的性质、作用及其对复合材料力学性能的影响和破坏机理等方面的工作正在开展。界面的性质直接影响着复合材料的各项力学性能[2],尤其是层间剪切、断裂、抗冲击等性能,因此随着复合材料科学和应用的发展,复合材料界面及其力学行为将越来越受到重视。 复合材料的强度、刚性及韧性是代表其物理机械性能的重要指标,对复合材料进行界面改性使两相界面具有合适的粘附力,形成一个相互作用匹配且能顺利传递应力的中间模量层,以提高聚合物基复合材料的力学性能一直是高分子材料科学的重要研究领域[3]。 2 无机刚性粒子增强聚合物基复合材料及其界面 无机刚性粒子增强聚合物是近年来研究的热点,它克服了以往用弹性体、热塑性树脂增韧聚合物时在韧性提高的同时刚性下降的缺点。常用的无机刚性粒子[4]有CaCO3、SiC、BaSO4、滑石、硅石灰、蒙脱土以及煤灰等。欧玉春[5]等提出刚性粒子增强增韧聚合物的界面结构模型,即在均匀分散的刚性粒子周围嵌入具有良好界面结合和一定厚度的柔性界面相,以便在材料经受破坏时能引发银纹,终止裂缝的扩展。在一定形态结构下它还可引发基体剪切屈服,从而消耗大量冲击能,又能较好地传递所承受的外应力,达到既增强又增韧的目的。 在PP/CaCO3复合体系中用酯酸类偶联剂在刚性粒子表面引入柔性或弹性界面层,降低

聚合物基复合材料考试答案

1聚合物基复合材料的定义、特征、结构模式。 聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增 强材料组成的复合材料 特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模 量(弹性模量与密度之比)高,说明材料轻而且刚性大。2 良好的抗 疲劳性能疲劳是材料在循环应力作用下的性质。复合材料能有效地 阻止疲劳裂纹的扩展。3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。且 自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度 和模量基本不变5、各项异性和可设计性。6、成型加工性好复合材 料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基 复合材料耐化学腐蚀、导电、导热率低等特点。 缺点:1耐湿热性差2.材料性能分散性差3.价格过高 复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短 纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维 织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结 构(蜂窝夹层等)⑥混杂结构 2、复合材料的界面效应有哪些?怎么影响材料的性能。 界面在复合材料中所起到的效应: 1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。 2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。 3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现 的现象 4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生 散射和吸收。 5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常 是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由 此产生一些现象 3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不 同点。 相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面 和基体更加匹配。包括化学键理论,润湿理论,表面形态理论,可

(整理)协同超分子聚合.

协同超分子聚合的一般原理 超分子聚合物的协同生长的分子动力可以分为三类:静电作用(包括短程极化和长程静电作用),结够作用(包括旋转形成和),和疏水作用。在这篇文章中,我们将讨论这三种不同的作用影响并给出具体例子。 一电子作用 在可逆线性超分子聚合物通过氢键聚合时,电子作用会促进协同上升。早在1956年,Davies和Thomas就报道在苯中用蒸发压研究超分子聚合时,用单个等同常数表示合成常数不足以解释实验结果。接下来Laplanche对N单取代的自组装的热动力研究和相关研究表明,在所有情况中,两个平衡常数对于描述实验数据是必要的。在研究中都发现相对于延长,开始的不倾向于进行二聚合,表明是协同超分子聚合过程。在非极性溶剂中对N的甲基乙酰胺 进一步热力学研究。Davies、Thomas和Laplanche用介电谱 , FT-IR和 PGSE NMR衍射进行测量得到了总体结果。在报道的二聚平衡常数和伸长平衡常数研究的基础上,对于通过amide氨化物氢键聚合体系且6值在10-1到10-3之间可以计算出来。相对的,在非极性溶液中用FT-IR对N,N二烷基脲的超分子聚合进行研究,6的值数量级为10-1,比通过amide氨化物氢键合成的体系高了很多。 相对于伸长平衡常数,作为对低二聚平衡常数的justification证实,Laoplanche和他的同事们认为这两个等同常数的差异认为 是一个熵效应,因为当两个单体合成一个二聚体时失去的熵比只有一个单体和一个更 高的聚合物要大,这与Sarole′a-Mathot对associated络合溶液的数据处理一致。Sarole′a-Mathot的处理中,二聚平衡常数比伸长平衡常数小一个p因子,这里p是单体的possible energetically equivalent orientations。按照这种观点,氢键体系的协同作用根源是由熵的原因引起的。但是最近ab initio和DFT计算表明,在氢键体系的超分子合成中经常遇到的高水平的协同作用,由于电子作用,也有arising焓的贡献。特别的,Dannenberg和他的同事们对包含有链状的urea脲和formamide甲酰胺分子的线性氢键体系进行了广泛的HF DFT和MP2计算。 在这些计算的基础上,二聚体相互作用能的200%协同效应施加在长氢键甲酰胺链中,而对于urea脲链,这个数值小很多(46%), 与上述实验结果相符。另外,对不同长度的甲酰胺链的计算表明,当链中单体数量增加变长时,氢键变短,但链的总的偶极矩以非线性方式增长到an asymptotic value。就像Dannerberg讨论的那样,在甲酰胺链之间的不同寻常的强的氢键作用是由电子作用引 起的:(1)成对静电作用(主要指长程偶 极子偶极子作用)(2)非成对短程极化作 用(3)氢键的助震动。在后两种情况,由 于链的电子密度的重新分配,氢键作用增强,Dannenberg用一个成对模型模拟长程偶极 子偶极子相互作用,Dannenberg估计非成对电子相互作用对于整个的氢键的协同作用 贡献达到75%.最近在a螺旋的模型中对氢键 协同效应的计算表明,非成对电子作用占了整个协同作用的一半。然而对 1,2-ethanediols and 1,3-propanediones 的氢键链的DFT和MP2计算表明,随链中更多的monomer,氧的天然键轨道(NBO)电荷变得更负,这是链的电子重新分配的一个明显的信号。考虑所有的理论结果,可以得出结论通过氢键进行可逆聚合的超分子聚合物,电子效应对协同作用有很大的贡献且通过 一个灵活的spacer氢键末端不被分开。 2,结构作用 在超分子聚合物生长过程中,通过两个本质不同的现象,结构作用引起的协同作用可以增加,那就是合成一个有序的螺旋或管状结构或者别构作用,在链的生长过程中构象的变化改变了部件的亲和力。这两种不同协同的原因将会被更加详细的讨论。 合成有序螺旋状和管状的超分子聚合 物的协同作用从重复单元的堆积引起,其原因是在达到一个临界低聚物低聚体长度时,每个单体同时和多个重复单元接触(图33)在这个点上,区分单链和多超分子是非常重要的。对于准一维单旋转链strand超分子聚合物(图33a),第一步包括等键聚合,其 平衡常数为Kn。当加入另外一份单体时完成第一轮的螺旋,然后,以单体增加的平衡常数为Ke继续延长聚合物。由于非相连单元的额外相互作用,Ke比Kn高,整个螺旋合成过程是协同的。超分子结合的额外能量优势是由于,相对于分子内相互作用,自由能的 形成不包括来自cratic entropy损失那部分得贡献。

自修复超分子聚合物

高分子超分子化学史佳MG1724066 自修复超分子聚合物 摘要:超分子聚合物的完整性是通过形成非共价相互作用来实现的。这些相互作用包括氢键,金属配位,离子相互作用,π-π堆积和主客体相互作用。非共价键具有可逆性、方向性和高灵敏度的特征,使得超分子聚合物可以自发地或在外部刺激下对损伤部位进行多个循环的自修复,而在自修复领域得到了广泛关注。本文主要综述了氢键、π-π堆叠和金属配位型三类自修复超分子聚合物的研究进展。 引言 自修复是生物的重要特征之一,自修复机理来源于生物体具有的自动感知、自动响应和自愈合损伤的特性[1]。将此机理用于聚合物材料中可有效修复材料内部损伤,减少由裂纹引起的安全隐患并有效延长材料的使用寿命。超分子聚合物是以非共价键如氢键、π-π相互作用型、金属配位、拓扑(主-客体)和离子键连接单体单元的聚合物。分子聚合物和分子聚合物通过非共价键连接称为杂化聚合物,通常也被视为超分子聚合物[2]。因此超分子材料的完整性是通过形成非共价相互作用来实现的。这些非共价键的可逆性、方向性和高灵敏度的特征使得超分子在自修复领域有着很大的吸引力。 图1 超分子聚合物的自修复过程[4] 超分子自修复材料依赖于使用非共价键、瞬态键来产生网络,与共价键相反,

这些网络可以从流体状态到固态状态快速而可逆地重构,因此在外界刺激下能够修复受损的位点,并可以完成多个自修复周期[3]。如图1所示,超分子聚合物受到外力损伤后,弱超分子键或簇先断裂,产生的新界面包含许多未结合的超分子键,其在断裂表面处可以保持一段时间,断裂面重合时,这些超分子键会重新排列形成新的可逆网络,从而封闭缝隙并修复受损部位[4]。本文主要综述氢键、π-π堆叠和金属配位型三类自修复超分子聚合物的研究进展。 1 氢键自修复超分子聚合物 利用多种氢键相互作用将单体单元聚合成聚合物结构是生成超分子的主要方法之一。利用其中氢键相互作用的重排来修复微米尺度的裂缝,可以桥接裂缝空隙,实现聚合物的多次自修复[5]。由于脲基-嘧啶酮(UPy)端基可以引入大量遥爪低聚物,并且容易二聚化,导致线性链延伸,易于生产热可逆的超分子聚合物材料,因此广泛应用于氢键自修复超分子聚合物中[6]。研究[7]表明,UPy封端的聚(己内酯)(PCL)作为修饰涂层在铝表面被刮擦后,将其加热到140 ℃,由于其高温依赖性粘度的显著降低,样品在数秒内完全愈合。UPy基水凝胶的自愈作用也被证实(图2)。将含有15 wt%的聚乙二醇/UPy系水凝胶的凝胶切断,通过使两片接触而迅速自愈[8]。 a b c d 图2 UPy基水凝胶的自修复过程(a)心形水凝胶,(b)压缩显示弹性,(c)切割成两部分,(d) 自修复后的心形水凝胶[8] 2008年报道了第一种设计用于自修复的氢键超分子热塑性弹性体[9]。这种物质很容易用两步法从脂肪二酸和三酸的混合物中合成得到,首先将混合物与二亚乙基三胺缩合,然后与尿素反应(图3)。得到的多分散支化低聚物可以通过N-H和C=O之间多组强相互作用氢键单元形成玻璃化转变温度(Tg)为28 ℃的超分子玻璃状网络。为了在环境条件下自我修复,需要用十二烷烃增塑。结果表明,得到的软橡胶(Tg=8 ℃)的断裂伸长率超过500%,并且受损后修复3小

自我修复的高分子材料

在全球范围内,研究人员正围绕锂离子电池进行着激烈的竞争,他们工作的目标是寻找到在锂离子电池负极存储更多电能的途径,以便更进一步地提高锂离子电池的性能,同时降低电池的重量。迄今为止,人们认为最具有发展前景的电极材料之一是硅。电池在充电时,硅材料电极拥有极强的从电池液中摄取锂离子的能力;放电时,它能迅速地释放存储的锂离子让电池输出电能。 但是,如此高性能的后面则是高昂的代价。每当电池充电时,硅电极的体积会膨胀至正常大小的3倍,放电后再恢复至原形。于是,具有脆性的硅材料很快就会出现裂痕并脱落,严重地影响电池的性能。对于高性能电池来说,电极的缺陷是它们普遍具有的问题。不过,锂离子电池电极的问题有望在不久的将来得到解决,因为美国斯坦福大学和能源部科学家近日表示,他们首次研发出了能够进行自我修复的电池电极,该研究成果为汽车、手机和其他设备制造下代锂离子电池开辟了新的潜在可行的途径。 斯坦福大学和能源部SLAC国家加速器实验室联合研究小组介绍说,自我修复电极采用已广泛应用在半导体和太阳能电池行业的硅微粒材料制成,其核心是在电极表面覆盖具有延展性的高分子涂层,该材料相互间紧密相连。电池在工作时,如果涂层出现微小裂痕,高分子材料能够自我修复这些裂痕。相关的研究报告将发表在最新的《自然·化学》杂志上。 斯坦福大学博士后、文章作者之一王超(音译)表示,动物和植物的自我修复能力对它们的生存和长寿十分重要,研究小组所希望的是将自我修复的特性在锂离子电池中体现出来,以便电池具有更长的寿命。在斯坦福大学鲍振安(音译)教授领导的实验室中,王超开发出了自我修复的高分子材料。鲍教授的研究小组从事弹性电子皮肤材料的研究,该材料用于机器人、假肢等。清华大学研究人员吴辉(音译)是文章的主要作者之一,他曾在斯坦福大学做博士后研究。 在电池项目上,研究人员将微小的碳纳米粒子加入高分子材料中让其导电。为获得自我修复涂层材料,他们有意地采取措施,弱化了高分子内某些化学键,如此处理后的材料容易出现断裂,但是断裂端又能以化学方式相吸引,很快再次连接起来,如同DNA等生物分子实现组装、重排和断裂的过程。 研究显示,自我修复电极在经过上百次充/放循环后,电能存储能力没有显著的下降。鲍教授说,在电池电极具有自我修复高分子涂层后,由于高分子材料能在数小时内修复自身的微小裂痕,因此电池的寿命延长了10倍。SLAC国家加速器实验室教授、与鲍教授共同领导研究的副教授崔毅(音译)认为,现在电池储能的能力已实现了实用范围值,不过他们仍将继续向更高的目标努力,因为上百次充/放电的数据离手机500次以及电动汽车3000 次充/放电的目标还有相当大的差距。

超高强度、极高韧性的超分子聚合物材料

超高强度、极高韧性的超分子聚合物材料 塑料制品是我们日常生活必不可少的东西,然而,大量的废弃塑料已经造成了巨大的环境问题。因此开发一种可回收、可重复使用的聚合物材料是迫在眉睫的。由于聚合物材料的机械强度很大程度上决定了其应用性和可靠性,于是,开发同时具有高强度和高韧性的材料成为了焦点。虽然说动态交联技术已经被应用于其中,但是得到的材料往往无法兼具高强度和高韧性。传统上,更好的韧性源于高强度和良好延展性的结合,但这两种特性均为材料单一的特性。仿生学策略很好的解决了这一问题,但是目前很少报道大规模生产具有高强度、高韧性、刚性好的可加工、可回收的聚合物材料。 基于以上问题,来自吉林大学超分子结构与材料国家重点实验室的刘小孔教授课题组,开发了一种同时具有超高强度和极高韧性的聚合物材料,并且还具有可延展性、自愈性和生物降解性。其韧性高ca. 395.2 MJ m-3,抗张强度和杨氏模量为ca.104.2Mpa、ca.3.53GPa,韧性甚至超过了世界上韧性最强的蜘蛛丝(354 MJ m-3)和大多数工程塑料。 1. 合成策略 图1 TA-PV A复合物的合成

TA-PV A复合材料是通过具有高密度氢键的树枝状分子天然单宁酸(TA)和可生物降解线性聚合物聚乙烯醇(PV A)进行拓扑限制而制成的。在酸性条件下简单地将TA和PV A掺入水溶液中会形成TA-PV A复合物,形成沉淀,通过压缩成型法将其加工成所需形状的干燥的TA-PV A复合产品。关键是通过高密度的可逆键使柔性聚合物链交联,同时重要的是,通过树突状分子将聚合物链在拓扑上限制为互穿的三维(3D)簇。 2. TA-PV A复合材料的机械性能 图2 TA-PV A复合材料的机械性能 通过力学拉伸测试,研究者对不同组成的TA-PV A复合材料和PV A膜进行了机械性能测试。可以看到,由于TA与PA之间最高密度的氢键,TA-PV A45复合材料展现出最好的机械性能表现(图2d)。并且,其抗张强度、断裂伸长率、杨氏模量分别为PVA膜的1.63、2.3、1.43倍。TA-PV A45复合材料表现出的极高的韧性(395.2 ± 34.5 MJ m?3),是目前高强度工程塑料(PEEK,HDPE)的数倍甚至数十倍,而且其在断裂伸长率方面也具有一定的优势(图2e),表明其具有极为广阔的应用前景。 3. CG计算建模

自修复超分子材料

自修复超分子材料 摘要:针对材料使用期限要求的增加,以及材料微观损伤难以检测,人们提出了自修复超分子材料的概念,本文先对自修复超分子材料进行了基本的介绍,再综述了近年来基于氢键;离子键;金属键;π-π堆砌作用的自修复材料的研究进展,并展望其发展方向。 关键词:自修复超分子氢键 一.前言 “资源问题”是人类目前面对的日益严重的问题之一,对于这个问题的解决一般有两个方法,即开源节流,所谓开源就是发展和发现新材料以代替目前所用的材料,减少对目前材料的依赖程度,而节流则是增加材料的使用期限,使材料更换速度减缓,因此自修复材料的概念孕育而生[1-3]。所谓自修复材料是指这样一种材料,当材料的损伤发生时,这些损伤能反过来刺激材料的材料进行自我修复[4]。 为了实现自修复,研究者们提出了以下几种方案来实现材料的自修复,一个简单的方法来实现热塑性材料的损伤就是将材料的损伤部位加热或者溶于适当的溶剂之中,使材料表面重排、分子链重新缠结[5]。而这种方法的最大缺陷就是修复过程非常慢,并且对于复合材料非常的不用[6]。另一个方法就是制作核壳结构的材料,壳为聚合后的材料,而核则为材料的单体,当材料的损伤发生时,核中的单体能流出来再发生聚合作用,从而修复损伤部位[7]。尽管这种方法可以快速实现材料的修复,但是随着材料修复次数的增加,核中的单体材料逐渐减少,材料的自修复能力就随之减弱。为了解决这些问题,研究者们利用了超分子键之间形成的网络来实现材料的自修复[8],[9]。超分子自修复材料的的概念是利用非共价键形成交联网络,当材料受到损伤时,非共价键之间通过重新的排列达到动力学平衡,从而修复受损的材料部位[10]-[15]。 实现材料的自修复的超分子键主要有4种,如图1所示,即①氢键;②离子键;③金属键;④π-π堆砌作用。而现阶段发现的基于上述四种键的材料分子分别列于表1中。对于自修复超分子材料的修复机理可用超分子的动力学特征来解释。对于特定的超分子键,一般都包含两种互补的基团A和基团B,A和B可

自修复材料在涂料中的应用

目录 1. 研究背景 (1) 2. 自修复材料的分类 (1) 3. 自修复微胶囊 (1) 3.1. 微胶囊的概念 (1) 3.2. 自修复微胶囊修复机理 (2) 3.3. 自修复微胶囊在各领域的应用 (3) 4. 自修复微胶囊在金属防腐涂料中的应用 (4) 4.1自修复涂料的基本要求 (4) 4.2 金属防腐涂料的选择 (5) 4.3微胶囊对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.3.1 微胶囊芯壁比对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.3.2 微胶囊用量对自修复金属防腐涂层的耐腐蚀性能的影响 (5) 4.4 前人研究成果 (5) 5. 结束 (7) 参考文献 (9)

自修复微胶囊在金属防腐涂料中的应用 1. 研究背景 材料在使用过程中不可避免地会产生局部损伤和微裂纹,并由此引发宏观裂缝而发生断裂,影响材料正常使用和缩短使用寿命[1]。裂纹的早期修复,特别是自修复是一个现实而重要的问题。自修复材料是智能材料的一个重要分支,在无外界作用条件下,材料本身能对内部缺陷进行自我恢复[2]。 金属的腐蚀是金属受环境介质的化学或电化学作用而被破坏的现象。金属腐蚀遍及国民经济各个领域,给国民经济带来了巨大的损失长期以来,人们一直采用多种技术对金属加以保护,其中最有效、最经济的方法之一是在金属表面涂敷防腐涂层,以隔绝腐蚀介质与金属底材。但涂料在其使用过程中会因环境或力学性能等因素的变化产生微裂纹,并且由于暴露于大气中,微裂纹会逐渐蔓延、扩张,从而加速了金属与涂料界面上涂料的剥离和分层[3],减少涂料的使用寿命和防腐能力,同时也影响了金属的使用。涂料可看作是由粘合剂与颜料所组成的一类特殊的复合材料,因此复合材料裂纹自修复技术同样可以应用于涂料领域,延长涂料的耐久性。 2. 自修复材料的分类 自修复材料按机理可分为两大类:一类主要是通过加热等方式向体系提供能量,使其发生结晶[4,5]、在表面成膜[6-8]或产生交联[9,10]等作用实现修复;另一类主要是通过在材料内部分散或复合一些功能性物质来实现的,这些功能性物质主要是装有化学物质的纤维[11-17]或胶囊。本文主要研究微胶囊型自修复材料,即通过在金属防腐涂料中添加微胶囊,使涂层具有自修复功能。 3. 自修复微胶囊 3.1. 微胶囊的概念 微胶囊是通过成膜材料包覆分散性的固体、液体或气体而形成的具有核-壳结构的微小容器[18],通常将成膜材料形成的包覆膜称为壁材或囊壁(一般由天然的或合成的高分子材料形成),

学术干货丨最全的超分子聚合物使用指南

学术干货丨最全的超分子聚合物使用指南 1 引言 超分子聚合物是高分子科学和超分子科学的交叉学科[1],其连接方式和高分子聚合物不同,超分子聚合物通过非共价键连接。非共价键存在不同种类,且具有可逆性,因此在聚合过程中实现可控聚合控制反应平衡非常重要。同时,超分子聚合物存在不同的拓扑结构,拓扑结构对于超分子聚合物的功能性有影响。超分子聚合物的非共价键连接方式使超分子聚合物拥有普通聚合物无法拥有的性能,但也是超分子聚合物的重点研究内容。 2 聚合原理 驱动力 超分子聚合物的键接方式不同于普通聚合物,通过非共价键相连接。非共价键的相互作用,使得超分子聚合物能够对外界一定的刺激作出响应,撤回刺激,能恢复起始状态。 浙江大学黄飞鹤等[2]对于非共价键总结了主要有以下几种形式。 多重氢键作用 氢键是形成超分子聚合物较为理想的非共价键,因为氢键连接的超分子聚合物能表现出优异的可逆性。另外,氢键的强度以及超分子聚合物的可逆性能够很好地设计和控制。 图1以2-脲基-4嘧啶分子为例,阐述多重氢键的成键原理。

图1 多重氢键成键示意图[2] π-π作用 在超分子聚合物化学领域内,如果研究对象具有芳香结构,其主要非共价键作用就是π-π共轭,因π-π共轭体系分子间p 轨道的重叠所致,因此,随着p电子的增加,共轭效应也随之增加。当然,该非共价键力不如极性溶剂中氢键的作用力强。 图2展示了末端基团具有芳香结构的单体,由于结构复杂,研究者以4简称,红色部分带有芳香结构,两者由于共轭作用相结合。在多重氢键作用下结合成螺旋状结构的超分子聚合物。 图2 π-π共轭作用形成非共价键示意图[2] 金属配位键 金属配位键协同作用和其他非共价键相比,具有高度方向性和高强度,这对于制备金属有机框架有很高的应用价值。金属配位键的氧化还原作用对于材料化学的作用意义重大。图3为金属配位键超分子聚合物结构示意图和金属配位键断键过程,两个配体垂直交错结合,非常有规律。 图3 金属配位键超分子聚合物结构示意图[2] 主客体相互作用 主客体相互作用是最常用的超分子聚合的作用力之一,常用的大环主体化合物有:冠醚、环糊精、杯芳烃、柱芳烃以及葫芦脲等。 提高驱动力

(1)纤维增强聚合物基复合材料界面残余热应力研究

纤维增强聚合物基复合材料界面残余热应力研究 赵若飞 周晓东 戴干策 (华东理工大学聚合物加工室上海200237) 摘要:本文综述了聚合物基纤维复合材料界面残余热应力的形成、测定方法和各种理论分析方法。阐述了残余应力对界面粘结强度以及复合材料断裂韧性和强度的影响,最后对界面残余应力的控制方法作了评述。 关键词:聚合物基纤维复合材料 残余热应力 界面 1 前 言 聚合物基纤维复合材料的基体和增强纤维的热 膨胀系数存在很大的差异,而复合材料有相当部分 是在升温条件下成型的,当温度降低时,由于基体和 纤维的体积收缩率不同,会产生热残余应力,热固性 树脂在固化过程中发生体积收缩也会形成残余应 力。复合材料的残余应力同时存在于基体、纤维和 界面上,基体中的应力会使基体的性质发生变 化[1、2],使基体的耐冲击性、疲劳强度、压缩强度等下 降,甚至会引起基体的破坏。纤维中主要存在轴向 压缩残余应力,可能引起纤维发生曲折[3]。界面相 的残余应力有径向压缩或拉伸应力、环向拉伸应力 和界面剪切应力[4、5],这些应力都会对界面的粘结强 度和纤维的脱粘产生重要的影响[6~8]。 界面相残余应力的存在显然严重影响复合材料 的宏观性能,因此,人们一直希望能定量测定它,但 是界面层的厚度很小,属于微结构(纳米结构),而且界面存在材料的内部,所以难以直接测量残余应力[9]。纤维和基体中的残余应力则可采用各种实验方法来测定,例如光弹性法[2、10]、Ramman光谱法[11]、纤维总应变法[12]、碳纤维电阻率法[13]、单丝拔除法[14]等,可以通过测定邻近界面的基体或纤维中的残余应力来得到界面残余应力。另一方面,三十年来发展了有限元分析等各种理论分析方法研究复合材料残余应力[15~21],使人们对界面残余应力有了深入的认识。 近年来热塑性树脂基复合材料得到发展和广泛应用,人们对聚合物基复合材料的界面残余应力的研究越来越重视,这是因为与热固性树脂基复合材料相比,这种热塑性树脂在加工冷却过程中多伴有结晶的形成,与纤维的体积收缩比具有更大的差异[1、22] ,可能形成较大的界面残余应力。 2 残余应力的形成 聚合物基纤维复合材料有不少是在高于环境温度(150~300℃)的条件下加工,当体系温度降低时,会由于树脂和纤维的体积收缩不匹配而造成残余应力,表1列举了几种纤维和树脂的热膨胀系数和温度变化时的体积收缩率。由表1可见玻璃纤维是各向同性的,而碳纤维和凯芙拉纤维的横向和纵向热膨胀系数差别很大,当升温时沿纤维纵向收缩,横向膨胀。环氧树脂在固化过程中,伴随着化学反应体积发生收缩,产生残余应力,体积收缩率随树脂类型的不同在1%-6%范围内,固化完成后,环氧树脂随温度的降低继续发生一定的体积收缩,热膨胀系数在较窄的温度范围内(50~150℃)可看作常数(40~80ppm/℃)[24]。热塑性树脂在温度达到固化温度时(T c或者T g),体积收缩开始产生热应力,在达到固化温度以前,热塑性树脂仍然是熔体,虽然也有很大的体积收缩但却不产生残余应力,非晶型热塑性树脂的体积收缩率与环氧树脂相差不大,而结晶型的体积收缩率则相当高。 FRP/CM 2000.No.4

相关文档
最新文档