Embodied cognitive science

Embodied cognitive science
Embodied cognitive science

Embodied cognitive science

Rens Kortmann

Universiteit Maastricht,IKAT

Neural networks and adaptive behaviour group

P.O.Box616

NL-6200MD Maastricht

The Netherlands

kortmann@cs.unimaas.nl

Abstract

The paper provides an introduction to the?eld of embodied cognitive

science from a biological and behavioural perspective.We show how

the?eld of neuro-ethology can help transform cognitive science from

a representational to an embodied perspective.The transformation is

necessary to introduce a bottom-up approach to understanding cog-

nition in order to resolve some fundamental problems with classical

cognitive science.We give examples of current research by which we

characterise the key idea of embodied cognitive science:study cogni-

tion by starting with the low-level behaviour of simple animals.

1Introduction

Embodied cognitive science studies how complete agents cope with the chal-lenges of their environment(Clark,1996;Pfeifer and Scheier,1999).Com-plete agents are natural or arti?cial systems(animals or machines)that pos-sess a body(Varela,Thompson,and Rosch,1991)and are situated(Clancey, 1997)in their environment,i.e.,they perceive the environment only through their own sensors.Moreover,complete agents possess characteristics such as autonomy,self-su?ciency,and adaptivity(Pfeifer,1996).The ultimate aim of embodied cognitive science is to understand how high-level cognitive processes such as reasoning and language arose from low-level interactions with the environment such as object manipulation and corrective eye move-ments.The main motivation for this approach is the argument that during natural evolution,high-level cognitive capacities and the associated brain areas(neo-cortex in humans)developed from low-level sensori-motor cou-plings in the deep parts of the brain(e.g.,the limbic system in humans) (Kalat,2001).

1

Embodied cognitive science,therefore,contrasts traditional cognitive sci-ence(e.g.,Stillings et al.,1995)and classical arti?cial intelligence(e.g., Winston,1977).The latter?elds aim at understanding and synthesis-ing high-level cognition using a computational theory of mind(Pylyshyn, 1984;Sterelny,1990),i.e.,interpreting human mental processes as compu-tations on symbolic representations.

Embodied cognitive science builds upon the large scienti?c heritage of ?elds such as neuro-ethology(Guthrie,1980;Camhi,1984;Hoyle,1984),cy-bernetics(Wiener,1948),and ecological psychology(Gibson,1979).These areas of research share two features in their scienti?c method:the bottom-up approach and comparative study.

In this paper,we identify the relation of embodied cognitive science and neuro-ethology.The following sections?rst treat the essence of traditional cognitive science and classical arti?cial intelligence(section2)followed by the pith of neuro-ethology(section3).We indicate that traditional cognitive science ignores particular aspects of intelligent behaviour,which leads to fundamental problems with the?eld.Furthermore,neuro-ethology focusses exactly on the aspects that are disregarded by traditional cognitive science (Beer,1990).In section4,we show how the research questions of neuro-ethology help transform traditional cognitive science into embodied cognitive science,which does address the issues disregarded by traditional cognitive scientists.In addition,we elucidate how embodied cognitive science relieves some of the problems faced by neuro-ethologists.In section5we discuss the scope and limitations of embodied cognitive science.Finally,we draw conclusions in section6.

2Traditional cognitive science and

classical arti?cial intelligence

Cognitive science is traditionally a science of the intelligent mind(Still-ings et al.,1995).Some cognitive scientists restrict their focus to human intelligence,whereas others also include the abstract theory of intelligent processes and computer intelligence(Simon and Kaplan,1989).In the1960s, psychologists,philosophers,computer scientists,linguists,and neuroscien-tists joined forces in order to understand complex mental tasks such as thinking,remembering,and language(Gardner,1985).For example,the interpretation of speech can be studied from a neuroscienti?c perspective (sound reception and neural processing in the brain),a linguistic perspec-tive(parsing,word morphology,etc.),a computer science perspective(au-tomatic speech recognition,natural language processing),a philosophical perspective(e.g.,semantics),and a psychological perspective(intention of a speech act,etc.).

Pivotal in the approach of traditional cognitive science is the role of

2

symbolic representations.Pylyshyn(1984)states that the distinctive fea-ture of cognisers–the subjects of study for cognitive scientists–is that their behaviour is based on representations.The idea is based on the rep-resentational theory of mind(Fodor,1981;Sterelny,1990)that states that all mental processes can be described in terms of computations on symbolic representations.In other words,mental activity is equivalent to the execu-tion of an algorithm.For example,traditional cognitive science describes a person’s reaction to a visual stimulus as follows.First,the mind trans-forms the incoming image into some symbolic input representation.The form of this representation could be a logical proposition,a feature vector, or some other description.Second,the input representation is compared to representations stored in memory.Third,from the outcomes of the com-parison an output representation is created that contains the appropriate motor actions.Notice that in the traditional approach to cognitive science, the questions of how an input representation is built and of how an output representation is executed by the motor system,is often ignored.The main focus lies on the algorithmic processing in the middle.

In the1930s,the conception of mental activity as computations on sym-bolic representations was supported when Alan Turing presented the univer-sal Turing machine–a hypothetical machine that can compute any possible mathematical function(Haugeland,1985).From Turing’s idea,elaborated by von Neuman’s architecture for general-purpose computers(Stillings et al., 1995),the?eld of arti?cial intelligence(AI)was originated in1956(Gardner, 1985).Together with the traditional cognitive scientists,early researchers in arti?cial intelligence envisioned the human mind as a machine performing computations on symbolic representations to solve problems(Newell and Simon,1981).Moreover,given the fact that the Turing machine could com-pute any mathematical function,the researchers felt they were able to build a computer that emulated human-level intelligence.

The achievements of classical AI lie mainly in the domain of mathemat-ical problem solving and reasoning with explicit knowledge.For instance, in1997the computer chess programme Deep Blue beat the world cham-pion Kasparov.Moreover,knowledge-based decision support systems are now wide-spread in companies and other organisations.The applications of classical AI research outperform humans in particular when a computer’s processing speed and memory directly compete with that of a human brain. For instance,Deep Blue’s success is mainly due to the fact that it could compute the consequences of its moves quicker than Kasparov could.Also, logical decision making is better performed by computers that can handle vast numbers of rules as compared to humans experts that rely on intu-ition much more than on logical inference–e.g.,legal decision making by computers is more consistent than by humans(Van den Herik,1997).

In other domains,though,the performance of arti?cial systems does not compare to that of natural systems(animals)by far.These domains

3

typically are related to the real world and an arti?cial system’s interac-tion with that real world(Brooks,1990;Wilson,1991;Clark,1996;Clancey, 1997;Arkin,1998;Pfeifer and Scheier,1999).For instance,the mobile robot Shakey was built to navigate in a laboratory environment using a camera and a symbolic planning system(Nilsson,1984).The robot’s behaviour is brittle and sensitive to noise in the environment(Brooks,1986;Arkin,1998).The problems mentioned here are captured by two important theoretical issues regarding the symbolic representation of the real world:the frame prob-lem(McCarthy and Hayes,1969;Dennett,1984)and the symbol grounding problem(Harnad,1990).A thorough treatment of the problems reaches be-yond the scope of this paper.We therefore restrict ourselves to giving a brief description in order to indicate the problems faced by traditional cognitive science and classical AI when applying the representational theory of mind to the real-world domain.For a full discussion of the problems we refer to the literature cited above.

The frame problem addresses the di?culties with representing change. If an intelligent system represents its environment symbolically,then how does it update the representation over time?This might not seem a problem for an abstract domain such as chess:there is a?nite number of board positions and chess pieces.In contrast,changes in the real world are so fast and abundant that it is hardly plausible that intelligent systems(animals or machines)could e?ciently use symbolic representations of the world for all of their behavioural patterns(Brooks,1991;Kirsh,1991).The symbol grounding problem discusses how symbolic representations relate to the real world.Again,in highly abstract domains this problem is less signi?cant as such a system needs not know the meaning of the symbols it uses:a decision-support system need not know the meaning of the rules it operates on in order to deduce a valid conclusion from the input it is supplied with. However,a system operating autonomously in a real-world needs to know the relation between real-world objects(food,predators)and the system’s symbolic representations of those objects:the meaning of symbols must be grounded in the system’s own interaction with the real world(Pfeifer and Scheier,1999).Gibson(1979)discusses the grounding of classi?cation tasks in terms of a?ordances:food can be eaten,predators can be escaped from. Traditional cognitive science focusses on high-level cognitive capacities,not on low-level interactions with the real world.Therefore,for Shakey a goal position is a meaningless goal position,supplied by a human experimenter.

From the previous treatment of classical AI it becomes clear that ex-planations of intelligent behaviour in terms of the processing of symbolic representations might be appropriate in abstract domains,such as mathe-matics and logic–in more dynamic domains found in the natural world, the frame problem and symbol grounding problem point out to the need of increased understanding of an intelligent system’s interaction with the real world.In other words:“understanding the nature of cognition requires

4

considering more than the complex problem solving and learning of human experts and their tutees.”(Clancey,1997,p.6).In the next section we pro-vide an introduction to a scienti?c?eld in which the interaction of animals with the environment is cardinal.It will be shown that this?eld in fact helps transform cognitive science from a representational to an embodied perspective.

3Neuro-ethology

Neuro-ethology is the study of natural behaviour and the neural mecha-nisms mediating it(Guthrie,1980;Camhi,1984;Hoyle,1984).The?eld originated from two other biological disciplines:neuro-biology and ethol-ogy that,by themselves,di?er signi?cantly in research interest and meth-ods.Neuro-biology investigates the workings of neural structures in animals under controlled circumstances(Kandel,1976).The experimental set-up allows neuro-biologist to obtain strict stimulus-response characteristics of a brain area.As a drawback,the laboratory conditions might cause the test animals to behave in a non-natural way which in turn places a bias on the experimental results(Huber,Franz,and B¨u ltho?,1998).In contrast, ethologists study the behaviour of animals in their natural habitat(?eld experiments)(Slater,1985).The approach usually guarantees the display of natural behaviour by the animals,but makes brain recordings virtually impossible.As a result,ethological research usually yields no results beyond the level of descriptions of natural behaviour(Camhi,1984).

Neuro-ethology aims at combining the explanatory power of neuro-biology with the ecological validity of ethological research.In order to reach the aim, neuro-ethologists?rst observe the behaviour of an animal in its natural habi-tat and derive problems faced by the animal’s neural system to produce the behaviour.These problems are subsequently studied in neuro-biological experiments under as natural circumstances as possible.Performing the experiments usually involves returning to the?rst phase(observing natu-ral behaviour)when the neuro-biological results raise questions on the be-havioural studies.Therefore,an iterative process(in which behavioural and neuro-biological experiments alternate)leads to the resolution of research questions that include the following topics:signal detection and recognition (e.g.,calling songs or olfactory trails);co-ordination(e.g.,in?ight or when walking);localisation(sound sources,landmarks,etc.);and orientation(e.g., in navigation).

The approach is usually centred around a particular common behaviour faced by many animals,such as?nding a mate,or avoiding predation.Sub-sequently,a target animal is chosen to study the behaviour and its neural underpinnings(Camhi,1984).Although the particular details of neural mechanisms for similar behaviours can vary signi?cantly amongst di?erent

5

animal species,the nature of neural signalling is common in most animals and many species are constrained by the same physical limitations of their bodies and of their environment.For instance,di?erent insect species have compound eyes and share the same habitat in which they display similar behaviours,such as feeding or target pursuit.Studying the neural mecha-nism mediating behaviour in one animal species,therefore is likely to reveal insight into the mechanisms of other species.In other words,neuro-ethology relies on comparative study.

Next to the term‘comparative study’also the phrase‘bottom-up ap-proach’is central to the?eld of neuro-ethology.The phrase indicates that through studying relatively simple behaviours,such as orientation or local-isation,neuro-ethologists eventually aim at explaining high-level behaviour such as decision making and the orchestration of highly complex behavioural patterns.We notice this approach contrasts the‘top-down’approach adopted by traditional cognitive scientists and researchers of classical AI.Whereas neuro-ethologists aim at understanding complex behaviours in terms of low-level interactions of an animal with its environment,the representations-focused cognitive science and AI researchers study high-level behaviour di-rectly,while disregarding the underlying low-level behaviours that support the cognitive processes.As an example we mention the research on fear by LeDoux(1996)and co-workers.In the human brain he identi?ed a cor-tical and sub-cortical pathway mediating fear-responses.When presented with a fearsome stimulus,a subject’s cortical pathway elicits the awareness of fear and is therefore associated with high-level cognition.At the same time,the much faster sub-cortical pathway triggers a non-conscious?ght-or-?ight reaction which is associated with a low-level reactive response.The low-level behaviour can be overruled by the high-level,cognitive behaviour, but can never be replaced by it:the cognitive high road is too slow to trigger a timely response to a fearsome stimulus.In summary,a low-level, non-cognitive brain area is fundamental to a fear-response,even in humans. This observation supports a bottom-up approach to intelligent behaviour, as adopted in neuro-ethology.

Limitations of the neuro-ethological paradigm As was mentioned before,neuro-biological and thus neuro-ethological experiments need a con-trolled laboratory set-up in order to allow for meaningful measurements in the animal’s https://www.360docs.net/doc/2616770767.html,ing the existing techniques it is still impossible to measure neural activity in freely moving animals.Instead,to obtain valid stimulus-response characteristics,the animals that are investigated are usu-ally placed in open-loop conditions,i.e.,they are?xated and thus do not receive feedback from their actions.For instance,the activity of movement-sensitive neurons in?ies is measured while the animal is?xated in a hollow tube with wax(Mastebroek,Zaagman,and Lenting,1980).While neuro-

6

ethologists put a lot of e?ort in emulating as natural experimental conditions as possible,still there exists a fundamental problem:it is unclear whether the behaviour of animals and its neural activity is similar in open-loop and closed-loop conditions,i.e.,when freely moving or not.

Moreover,neuro-ethological research can not study multiple behaviours in an animal simultaneously:again,in order to obtain valid stimulus-response characteristics,complex behaviours are decomposed into simpler behavioural patterns such as orientation or?ight course stabilisation that are studied separately(Camhi,1984).The synthesis of neural activity for the com-plex behaviour from the components is not a straightforward procedure, i.e.,neural mechanisms cannot simply be added to account for the explana-tion of complex behaviour(Huber et al.,1998).Another potential risk in neuro-ethology is assuming the existence of di?erent neural mechanisms for di?erent behavioural patterns,whereas one neural mechanism can mediate several behaviours.For instance,the phonotactic behaviour(sound-seeking) of crickets consists of a sound recognition and localisation component.Webb (1995)found that both behaviours are likely to be mediated by the same neural structure(see also section4).

In summary,neuro-ethological research faces two methodological prob-lems:lack of ecological validity due to closed-loop experiments and the decomposition of natural behaviour.We propose that embodied cognitive science can relieve the problems by employing robots to model aspects of animal behaviour.Robots can be used in closed-loop conditions and the modelling aspect allows for the synthesis of behaviours.

4Embodied cognitive science

From the previous sections we conclude that neuro-ethology treats some of the shortcomings of traditional cognitive science.Section2showed the fo-cus of traditional cognitive science and classical AI which was to describe and synthesise high-level cognitive processes through computations on sym-bolic representations.Their major shortcoming is the disregard of low-level behaviour that does not require symbolic representations in its explana-tion.Section3gave an introduction to the?eld of neuro-ethology that ?xates on the neural mechanisms underlying low-level behaviour in animals. Drawbacks of the latter?eld include arti?cial experimental set-ups and the decomposition of behaviour.

We argue that embodied cognitive science can combine the best of both worlds.First,employing a neuro-ethological focus on low-level behaviour provides a better understanding of how cognisers(Pylyshyn,1984)interact with the real-world and how they use their low-level behaviour as a foun-dation for high-level cognitive processes.Second,the modelling techniques from AI can be used to solve parts of the problems faced by neuro-ethology.

7

In the following,we shall elaborate on the arguments mentioned and by giv-ing examples of current work in embodied cognitive science and the achieve-ments.

Pfeifer and Scheier(1997)investigated a classi?cation task in terms of sensori-motor co-ordination.Traditionally,classi?cation is viewed as the mapping of an instance to a symbolic class representation(Estes,1994). For instance,when seeing a particular animal,the viewer creates a symbolic representation of the animal and maps it to the class‘dogs’.Alternatively, Pfeifer and Scheier adopt a more‘Gibsonian’perspective on the task.They interpret classi?cation of objects in terms of the possible actions an agent can perform with them:graspable objects vs non-graspable objects,pushable objects vs non-pushable objects,etc.In an experiment a mobile robot was placed in an arena with cylindrical objects from two classes:objects with either a large or a small diameter.When the robot met an object,it started to circle around the object and measured the angular velocity.Moreover, the robot possessed a‘tail’by which it could grasp the objects with small diameter,but not the large https://www.360docs.net/doc/2616770767.html,ing Hebbian learning,a neural network was trained that decided for the robot to grasp an object.The decision was based on the angular velocity that was measured while circling the object.In this approach,sensori-motor patterns of activity(time-series of sensor and motor values),rather than symbols,constitute class representations.The approach?ts better to the way children and animals learn to classify objects than the classical approach does(Smith,1994).Moreover,the approach describes how an agent(animal or robot)grounds the meaning of an object class in its behaviour.

As a second example,we mention the work by Webb(1995;1998)on cricket phonotaxis.The work proposes a neural mechanism of female crick-ets’classi?cation and localisation of male crickets’calling songs.The mech-anism was implemented on a robot model and yielded robust behaviour comparable to that of real crickets.Again,the classi?cation task(dis-tinguishing between di?erent calling songs,belonging to males of di?erent cricket species)was based on a behavioural response(approaching the con-speci?c male),not on a symbolic classi?cation.The work gives another hint that symbolic representations are not always necessary to explain high-level cognitive tasks(categorisation).Moreover,Webb’s approach to study-ing cricket phonotaxis adds an important aspect to cognitive science and neuro-ethology:robotic modelling.The approach relieves two problems of neuro-ethology:?rst,robots can be used in closed-loop conditions,i.e.,it is possible to record the activity of the arti?cial neural mechanism that con-trols the robot,while the robot can move freely in a desirable environment; second,robots can be employed to model the orchestration of behaviours. Again,activity in the robot’s arti?cial neural system can be recorded while the robot performs various behaviours in parallel.For a more complete treatment on using robots to model animals we refer to the work of Webb

8

(1995;1998;1999).

Next we shall mention a few examples of robot models of animal be-haviour and the neural mechanisms underlying it.Some of the models were implemented in a physical robot,whereas others were built as computer sim-ulations.Already in1982Arbib modelled visuo-motor co-ordination in frogs and toads in a system called Rana computatrix.Some ten years later Cli?(1991)modelled visually-guided behaviour of the hover?y Syritta pipiens in a computer simulator called SYCO(Syritta computatrix).Other animals that were investigated include cockroaches(Beer and Chiel,1993),lampreys (Ijspeert,Hallam,and Willshaw,1999),salamanders(Ijspeert and Arbib, 2000),more?ies(Franceschini,Pichon,and Blanes,1992;Huber et al., 1998),ants(Lambrinos et al.,2000),and bats(Peremans et al.,2000). Applications Besides using robots in order to investigate animals,the ?eld of embodied cognitive science has produced a wide range of applications by taking inspiration from biology.For instance,the?eld of behaviour-based robotics(Arkin,1998)employs principles of animal behaviour to the design of autonomous systems(cars,wheelchairs,space rovers).The?eld of evolutionary robotics(Harvey et al.,1997;Nol?and Floreano,2000)applies the theory of evolution to the development of robot controllers.Finally we mention the use of optic?ow in visually-guided behaviour in robots(Weber, Venkatesh,and Srinivasan,1997;Srinivasan et al.,1997).

5Discussion

In this paper we have discussed important aspects of traditional cognitive science,classical arti?cial intelligence and neuro-ethology.We pointed out to a few problems relating to the?elds and showed that embodied cognitive science can relieve some of the problems through employing robot modelling. In fact,Clancey(1997)views the researchers of embodied cognitive science as a new generation of cyberneticists(Wiener,1948)to stress the impor-tance of the perception-action loop in embodied cognitive science research. Cybernetics studied the control of low-level behaviour in animals and ma-chines already in the1940s and1950s.However,the arti?cial systems built by early cyberneticists(e.g.,Walter,1950)used simple controllers based on analogue hardware.In contrast,with present-day computing power,the use of neural network models in robots is facilitated.

Converting from a representational to an embodied perspective on intel-ligence requires some adaptive power.Modesty is called for when adopting a bottom-up approach to cognition,but people will be astounded by the in-genuity of the neural mechanisms underlying low-level behaviour in humans and other animals.

9

Limitations Using arti?cial systems(robots or computer simulations)to study real animals has some limitations of which we mention three.First, the role of noise is di?erent in natural and arti?cial systems.For instance, photon absorption noise is Poisson distributed(Land,1981),which does not necessarily have to be the case in arti?cial visual sensors.Second,the motor system of robots is usually extremely simpli?ed which results in a di?erence between the sensory feedback experienced by robots and animals moving in the same environment.If,however,work focusses on the mo-tor behaviour instead,the sensory processing is usually limited(Beer and Chiel,1993;Ijspeert and Arbib,2000).Third,an animal might use sensory input or environmental clues that are not modelled in the arti?cial system used.For instance,the role of the ultra-violet component of sunlight plays an important role in insect navigation(Lambrinos et al.,2000).In a similar way,other sensory channels that we are currently unaware of might be of importance for the behaviour.Not implementing these channels in a robot model might lead to wrong explanations of the behaviour.This problem is even larger when computer simulations are used instead of physical robots. Computer simulations might represent a too simple environment and miss important sensory information.Instead,physical robots interact with the same environment as real animals and therefore are theoretically able to receive all sensory information available to real animals.The term‘compar-ative study’therefore also applies to embodied cognitive science.

All of the limitations mentioned above are general problems of the sci-enti?c method of modelling–they do not apply just to embodied cognitive science.Modelling involves abstracting away from the real system under investigation.All simpli?cations in the design of the model should be ac-counted for.For instance,using two wheels to model the motor system of an animal can be justi?ed when yaw behaviour(rotation in the horizontal plain)is studied.Moreover,modelling is usually performed in an incremen-tal fashion(adding more and more components to the model).In fact,the limitations could serve as the explanatory power of embodied cognitive sci-ence.For instance,when reproducing behaviour in a robot fails with the neural mechanism assumed to mediate the behaviour in real animals,this might indicate that more sensory channels are involved,or that the role of the actuators is more important than expected.

6Conclusions

Altogether,we showed that neuro-ethology helps transform the perspective on cognitive science from one of representations to one of embodiment and situatedness.The method of applying robots to model animal behaviour and the neural mechanisms underlying the behaviour relieves some central methodological problems in traditional cognitive science and neuro-ethology.

10

First we noticed that traditional cognitive science and classical arti?cial in-telligence underestimate the role of low-level real-world interaction in pro-ducing intelligent behaviour,whereas embodied cognitive science adopts a bottom-up approach starting with the low-level aspects of behaviour.Sec-ond we stressed that the problems in neuro-ethology regarding recording neural activity from living animals can be prevailed by using robot models. The use of robot models allows for comparative study of animals species. Summarising,embodied cognitive science combines the best of two worlds: traditional cognitive science and neuro-ethology.

Future work In future,we think embodied cognitive science could con-tribute to the scienti?c community by focusing on the relation between high-level cognitive tasks and the underlying low-level behaviour support-ing it.For instance,the use of eye movements(low-level behaviour)is pivotal in understanding how high-level tasks such as face recognition are accomplished(Ballard,1991).The grounding of symbolic representations is another important topic.Embodied cognitive science requires a change of mind(bottom-up instead of top-down approach)but o?ers important new insights to the study of intelligence.

Acknowledgements

I would like to thank Eric Postma for his advice and useful discussions. References

Arbib,M.(1982).Rana Computatrix:An Evolving Model of Visuo-motor Coordination in Frog and Toad.Machine Intelligence,Vol.10,pp.501–517. Arkin,R.(1998).Behavior-based robotics.MIT Press,Cambridge. Ballard,D.(1991).Animate vision.Arti?cial intelligence,Vol.48,pp.57–86. Beer,R.and Chiel,H.(1993).Simulations of cockroach locomotion and escape.Biological neural networks in invertebrate neuroethology and robotics(eds.R.Beer,R.Ritzmann,and T.McKenna),pp.267–285,Aca-demic Press,Boston.

Beer,R.(1990).Intelligence as adaptive behavior,an experiment in com-putational neuroethology.Academic Press,Boston.

Brooks,R.(1986).A robust layered control system for a mobile robot.IEEE journal of robotics and automation,Vol.2,pp.14–23.

11

Brooks,R.(1990).Elephants don’t play chess.Robotics and autonomous systems,Vol.6,pp.3–15.

Brooks,R.(1991).Intelligence without representation.Arti?cial intelligence, Vol.47,pp.139–159.

Camhi,J.(1984).Neuroethology.Sinauer associates,Sunderland. Clancey,W.(1997).Situated cognition:on human knowledge and computer representations.Cambridge University Press,New York.

Clark,A.(1996).Being there:putting brain,body,and world together again.MIT Press,Cambridge.

Cli?,D.(1991).The Computational Hover?y:A Study in Computational Neuroethology.From Animals to Animats:Proceedings of the First Inter-national Conference on the Simulation of Adaptive Behaviour(eds.J.-A. Meyer and S.Wilson),MIT Press,Cambridge.

Dennett,D.(1984).Cognitive Wheels:The frame problem of AI.Minds, Machines and Evolution(ed.C.Hookway),pp.129–152,Cambridge Uni-versity Press,Cambridge.

Estes,W.(1994).Classi?cation and cognition.Oxford University Press, New York.

Fodor,J.(1981).Representations:philosophical essays on the foundations of cognitive science.Harvester Press,Brighton.

Franceschini,N.,Pichon,J.-M.,and Blanes,C.(1992).From insect vision to robot vision.Philos.Trans.R.Soc.Lond.Biol.,Vol.337,No.1281,pp. 283–294.

Gardner,H.(1985).The mind’s new science.Basic Books,New York. Gibson,J.(1979).The ecological approach to perception.Houghton Mi?in, Boston.

Guthrie,D.(1980).Neuroethology:an introduction.Wiley,New York. Harnad,S.(1990).The symbol grounding problem.Physica D,Vol.42,pp. 335–346.

Harvey,I.,Husbands,P.,Cli?,D.,Thompson,A.,and Jakobi,N.(1997). Evolutionary robotics:the Sussex approach.Robotics and autonomous sys-tems,Vol.20,pp.205–224.

Haugeland,J.(1985).Arti?cial intelligence:the very idea.MIT Press, Cambridge.

12

Hoyle,G.(1984).The scope of neuroethology.The Behavioural and Brain Sciences,Vol.7,pp.367–412.

Huber,S.,Franz,M.,and B¨u ltho?,H.(1998).On robots and?ies:modeling the visual orientation behavior of?ies.Technical Report56,Max-Planck-Institut f¨u r biologische Kybernetik,T¨u bingen,Germany.

Ijspeert,A.and Arbib,M.(2000).Visual tracking in simulated salamander locomotion.From Animals to Animats,Proceedings of the6th Interna-tional Conference on the Simulation of Adaptive Behavior(eds.J.Meyer, A.Berthoz,D.Floreano,H.Roitblat,and S.Wilson),pp.88–97,MIT Press, Cambridge.

Ijspeert,A.,Hallam,J.,and Willshaw,D.(1999).Evolving swimming con-trollers for a simulated lamprey with inspiration from neurobiology.Adap-tive Behavior,Vol.7,No.2,pp.151–172.

Kalat,J.(2001).Biological psychology.Brooks/Cole publishing company, Paci?c Grove,7th edition.

Kandel,E.(1976).Cellular basis of behavior.W.H.Freeman and Co.,San Francisco.

Kirsh,D.(1991).Today the earwig,tomorrow man?Arti?cial intelligence, Vol.47,pp.161–184.

Lambrinos,D.,M¨o ller,R.,Labhart,T.,Pfeifer,R.,and Wehner,R.(2000).

A mobile robot employing insect strategies for navigation.Robotics and Autonomous Systems,Vol.30,pp.39–64.

Land,M.(1981).Optics and vision in invertebrates.Handbook of sensory physiology(ed.H.Autrum),Vol.VII/6B,pp.471–592,Springer,Berlin.

LeDoux,J.(1996).The emotional brain:the mysterious underpinnings of emotional life.Simon and Schuster,New York.

Mastebroek,H.,Zaagman,W.,and Lenting,B.(1980).Movement detection: performance of a wide-?eld element in the visual system of the blow?y. Vision research,Vol.20,pp.467–474.

McCarthy,J.and Hayes,P.(1969).Some philosophical problems from the standpoint of arti?cial intelligence.Machine intelligence,Vol.4,pp.463–502. Newell,A.and Simon,H.(1981).Computer science as empirical inquiry: symbols and search.Mind design–philosophy,psychology,arti?cial intelli-gence(ed.J.Haugeland),pp.35–66,MIT Press,Cambridge.

Nilsson,N.(1984).Shakey the robot.Technical Report323,AI Center,SRI International,Menlo Park.

13

Nol?,S.and Floreano,D.(2000).Evolutionary robotics–the biology,intel-ligence,and technology of self-organizing machines.MIT Press,Cambridge.

Peremans,H.,M¨u ller,R.,Carmena,J.,and Hallam,J.(2000).A biomimetic platform to study perception in bats.Proceedings of the SPIE international symposia on sensor fusion and decentralized control in robotic systems III. In press.

Pfeifer,R.and Scheier, C.(1997).Sensory-motor coordination:the metaphor and beyond.Robotics and autonomous systems,Vol.20,pp. 157–178.

Pfeifer,R.and Scheier,C.(1999).Understanding intelligence.MIT-press, Cambridge.

Pfeifer,R.(1996).Building“Fungus Eaters”:Design principles of Au-tonomous Agents”.From Animals to Animats4:Proceedings of the Fourth International Conference on Simulation of Adaptive Behaviour,MIT Press, Cambridge.

Pylyshyn,Z.(1984).Computation and cognition:toward a foundation for cognitive science.MIT Press,Cambridge.

Simon,H.and Kaplan,C.(1989).Foundations of cognitive science.Founda-tions of cognitive science(ed.M.Posner),pp.1–47,MIT Press,Cambridge. Slater,P.(1985).An introduction to ethology.Cambridge University Press, Cambridge.

Smith,E.T.L.(1994).A dynamic systems approach to the development of cognition and action.MIT Press,Cambridge.

Srinivasan,M.,Chahl,J.,Nagle,M.,and Zhang,S.(1997).Embodying natural vision into machines.From living eyes to seeing machines(eds.M. Srinivasan and S.Venkatesh),pp.249–265,Oxford University Press,Oxford. Sterelny,K.(1990).The representational theory of mind:an introduction. Blackwell,Oxford.

Stillings,N.,Weisler,S.,Chase,C.,Feinstein,M.,Gar?eld,J.,and Rissland, E.(1995).Cognitive science–an introduction.MIT Press,Cambridge,2nd edition.

Van den Herik,J.(1997).From chess moves to legal decisions:a position statement.Proceedings of JURIX’97:the tenth conference on legal knowl-edge based systems(ed.A.Oskamp),pp.107–109,Gerard Noodt Instituut, Nijmegen.

14

Varela,F.,Thompson,E.,and Rosch,E.(1991).The embodied mind.MIT Press,Cambridge.

Walter,W.(1950).An imitation of life.Scienti?c American,Vol.182,No.5, pp.42–45.

Webb,B.(1995).Using robots to model animals:a cricket test.Robotics and autonomous systems,Vol.16,pp.117–134.

Webb,B.(1998).Robots,crickets and ants:models of neural control of chemotaxis and phonotaxis.Neural Networks,Vol.11,pp.1479–1496.

Webb,B.(1999).A framework for models of biological behaviour.Interna-tional journal of neural systems,Vol.9,No.5,pp.375–381.

Weber,K.,Venkatesh,S.,and Srinivasan,M.(1997).Insect inspired be-haviours for the autonomous control of mobile robots.From living eyes to seeing machines(eds.M.Srinivasan and S.Venkatesh),pp.227–249,Oxford University Press,Oxford.

Wiener,N.(1948).Cybernetics,or control and communications the animal and the machine.Wiley,New York.

Wilson,S.(1991).The animat path to AI.From Animals to Animats:Pro-ceedings of the First International Conference on Simulation of Adaptive Behavior(eds.J.-A.Meyer and S.Wilson),pp.15–21,MIT Press,Cam-bridge.

Winston,P.(1977).Arti?cial intelligence.Addison-Wesley,Reading.

15

培优补差个案分析

培优补差个案分析 (许魏明) 个案基本情况:雷雅欣,女,和祖父母、父母住在一起。父亲工作比较忙,主要是由母亲负起教育的责任。母亲的性格比较急,教育孩子常动辄就批评。祖父母也参与到对孩子的教育中,但方法与母亲截然不同,采取比较爱护,包庇的措施。形成她对祖父母是比较依赖的。 日常行为表现学习方面:雷雅欣的学习积极性不高,在课堂上,从不举手发言,不会主动参与到课堂上的小组讨论中,还常常不自觉地在搞小动作。做作业的时候,精神不集中,常会呆呆地坐着胡思乱想或搞小动作,写字的速度慢,每天的作业很晚才能完成,常会欠交作业。人际交往方面:雷雅欣性格比较胆小、怕事,不会主动与人交往,只是和坐在一起的几位同学来往,交往的圈子窄。常常借一些文具给同学,但从来不要求别人还。同学拿了自己的东西也不会告诉老师自理方面:生活上的事情,基本能完成,但动作很慢,所耗时长,在收拾书包,排队等等,常常会落在全班的最后。由于每天完成作业已经很晚了,常常是由母亲帮忙收拾书包。跟母亲走在一起,也是常被落在后面,母亲走走停停地等。三、诊断分析:雷雅欣的家庭的文化素质比较低,但由于家庭的教育方式也简单,造成她一方面在妈妈的呵斥下没有建立起应有的自信心,觉得做什么事情自己都是错的,清楚知道提问的答案也不敢说出,有时甚至不去思考(反正都是错的)。雷雅欣在不断感受失败,正是在这一恶性循环的过程中, 她的学习困难随着教育时间的延续越积越多, 缺乏自信心,缺乏学习积极性也就成为必然的;另一方面,在爷爷奶奶的包庇下,依赖心理比较严重。 辅导过程:1、老师的帮助使她建立起自信的大厦。第一次接触雷雅欣,让我特别留意她,她与其他的同学很不一样,总是不说话,只是在旁边微微地笑,我主动找她聊天,她也是羞羞答答地捂着嘴巴,小声地说话,完全没有一个二年级女同学的那种调皮,开朗的感觉。我首先主动找她聊天,说说她感兴趣的话题。我还鼓励她在课堂上大胆发言。上课之前,我先告诉她,我有一个问题想问问她,要她做好准备,然后在小组讨论的时候,我对她进行个别辅导,再让她发言。我还创造一个让她得到在学习上成功的喜悦的机会。 2、加强与家长的联系,共同探讨教育孩子的措施。不同的孩子,就要采取不同的教育方法。要使孩子向预定的目标发展,老师与家长就要互相配合,创设一个统一、向上的环境给孩子。雷雅欣的家长都十分重视她的学习、成长,就是方法用得不恰当。孩子在母亲的严厉管教和祖父母的宠爱下无所适从。我建议母亲在教孩子时,要求要低一点,不要拿孩子与其他人比较,先让孩子超越自己,着重鼓励孩子,尤其对于她进步的火花,哪怕是星星之火,都要及时给予赞扬。给多一点时间,让孩子通过自己的努力一点一点的进步。还恳请祖父母不要再太溺爱孩子,注意不要买那些高级的文具给孩子,不要对孩子的要求太满足,做到奖罚分明。 3、通过友谊的力量,促进她走向新的台阶。我把她编排在一个比较活跃,上进的小组内,让小组成员带动雷雅欣的进步。引导小组同学主动与她交往,在课堂上要提醒她不要开小差,鼓励她参与到小组讨论中。 效果与体会孩子天生喜欢给别人赞扬,雷雅欣现在开始减少对老师的恐惧感,在师生的聊天中,能放松地、完整地表达自己的想法。在课堂上,刚开始,虽然在小组讨论中练习好了,可是一站起来发言,还是紧闭嘴巴,一字不哼。经过反复的训练,终于开“金口”,现在虽然仍不会主动举手发言,但是已经不抗拒老师的提问,基本上一些简单的问题能完整地自己解决。家长也反映孩子学习的主动性增强了。这次单元考试,虽然周婷婷考试有85分(以前的成绩多60、70分左右)。知道成绩后十分高兴,自信心也在成功之中逐渐建立起

浅谈小学数学教学与生活的联系

浅谈小学数学教学与生活的联系 教育对经济发展和社会发展具有积极的促进作用,而这种作用的发挥是通过受教育者的能动性来实现的。义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。小学教育工作者在教学工作中应注意建立学生生活与数学学习的关系。以下是笔者的一些看法。 标签:小学数学;教学;生活;联系 一、理念——面向学生的生活世界 学生是一个有血有肉、有思想、有个性的活生生的人,不是灌装知识的“容器”。1993年联合国教科文组织在北京召开的“面向21世纪的教育”的国际研讨会,就将“高境界的理想、信念与责任感,强烈的自主精神,坚强的意志和良好的环境适应能力、心理承受能力”列为21世纪人才规格的显著特征。 学生不是一张白纸,他们在日常生活中积累了一定的生活经验,这些经验往往与数学概念、法则、公式、数量关系等数学知识有着密切的内在联系。教师可以根据不同年级学生的身心发展特点和学习规律,提供基本内容的现实情景,让数学内容包含在学生熟悉的事物和具体情境之中,加深学生对学习的理解。 教师在教学过程中,要面向小学生的生活世界和社会实践,让数学课程走向生活;尊重学生已有的知识与经验,并在此基础上展开教学活动;教师要引导学生经历知识形成的过程,积极倡导自主、合作、掷究的学习方式,让他们做学习的主人,让课堂充满创新活力,激发学生的学习热情;实施综合性评价,体现人文关怀,以促进师生的共同发展。 二、意义——丰富学生的生活世界 传统的数学课程体系大多是严格按照学科体系展开的内容一般是一系列经过精心组织的、条理清晰的知识结构,这样的内容便于教师教给学生系统的数学知识和逻辑的思考方法。但这些内容是否真实而有意义,是否贴近学生的生活世界,是否有利于学生认识和理解数学,却往往考虑甚少。由于学生平时极少接触高深的数学知识,缺乏数学感悟,如果对这部分结构较为复杂的知识不事先进行铺垫就直接教学,很可能会导致部分学生因无法利用已有生活经验,而对他们感悟、理解并完善认知结构带来一定的障碍。 面向学生,面向生活,面向社会。学生的数学学习内容应当是现实的,有意义的,富有挑战性的。学生生活在现实社会中,并最终走向社会,如果数学内容的题材能贴近学生的生活实际,走入他们的生活世界,呈现的形式能丰富多样,生动活泼,就会让他们感到亲切,并产生乐学、好学的动力。当学生对学习内容产生了极大兴趣的时候,学习过程对他们来说就不是一种负担,而是一种心理满

浙江省一二三级重点中学名单

浙江省一二三级重点中学名单 一、省一级重点中学 杭州市: 杭州高级中学杭州第二中学浙江大学附属中学杭州学军中学 杭州第四中学杭州第十四中学杭师院附属三墩高级中学杭州长河高级中学 杭州外国语学校萧山中学萧山区第二高级中学萧山区第三高级中学 萧山区第五高级中学余杭高级中学余杭第二高级中学富阳中学 富阳市第二高级中学富阳市新登中学桐庐中学临安中学 临安昌化中学临安市於潜中学淳安中学严州中学 宁波市: 镇海中学宁波效实中学宁波中学鄞州中学 慈溪中学余姚中学宁海中学象山中学 奉化市第一中学北仑中学鄞州区姜山中学鄞州区鄞江中学 慈溪市浒山中学宁波第二中学宁波万里国际学校中学(民办) 宁波华茂外国语学校(民办) 鄞州区正始中学宁波市李惠利中学镇海区龙赛中学宁海县知恩中学 慈溪市杨贤江中学 温州市: 温州中学温州第二高级中学瓯海中学瑞安中学 乐清中学平阳县第一中学苍南县第一中学永嘉中学 嘉兴市: 嘉兴市第一中学嘉兴市高级中学平湖中学海宁市高级中学 桐乡市高级中学海盐元济高级中学嘉善高级中学嘉兴市秀州中学 桐乡市第一中学平湖市当湖高级中学桐乡市茅盾中学海盐高级中学 嘉善第二高级中学 湖州市: 湖州中学湖州市第二中学湖州市菱湖中学德清县第一中学 德清县高级中学安吉高级中学长兴中学德清县第三中学 长兴县华盛虹溪中学(民办) 绍兴市: 绍兴市第一中学上虞春晖中学诸暨中学绍兴县柯桥中学 嵊州市第一中学绍兴市稽山中学上虞中学新昌中学 绍兴县鲁迅中学诸暨市牌头中学绍兴县越崎中学 金华市: 金华市第一中学浙江师范大学附属中学(金华二中)金华市汤溪高级中学兰溪市第一中学 东阳中学义乌中学永康市第一中学武义第一中学 浦江中学磐安中学金华艾青中学义乌市第二中学 衢州市: 衢州第二中学衢州第一中学江山中学龙游中学 丽水市: 丽水中学缙云中学遂昌中学青田中学 云和中学龙泉市第一中学庆元中学松阳县第一中学 景宁中学 台州市:

新教科版三年级上册科学知识点全集

1、(看)、(听)、(摸)、(问)、(量)等方法都是科学观察的基本方法。 2、在经历观察活动的过程中,让学生(学会小组合作学习)、(交流)、(表达)、(讨论)、(记录)等学习方法。 3、大树的特征可以用树的(高矮)、树冠的(形状)、树干的(粗细)、树皮的(样子)和树叶的(样子)等来描述。 4、小草与大树一样,具有(生命体)的共同特征。 5、大树和小草的主要不同之处是:植株的(高矮)不同、茎的(粗细)不同、茎的(质地)不同。 6、大树和小草的共同点是:都生长在(土壤)中,都有(绿色)的叶,都会(开花结果),都需要(水分)、(阳光)和(空气)。 7、水葫芦叶柄部位膨大的海绵体充满(空气)是浮在水面上的原因。 8、水生植物都有(根)、(茎)、(叶)等器官。它们的生长需要(水分),(阳光)和(空气)。 9、水生植物有(水葫芦),(金鱼藻),(水花生),(浮萍)等。 10、水葫芦和狗尾草的相同点:生长需要(水分)、(阳光)和(空气);有(根)、(茎)、(叶);都会(繁殖后代);寿命(短);都是(草本植物)。 11、树叶是(多种多样)的,同一种树的叶具有(共同)的基本特性。 12、植物的叶一般由(叶片)和(叶柄)组成。叶片上有(叶脉)。 13、树叶是有(生命)的,叶从(叶芽)开始生长,到最后衰老(死亡),完成了一生。 14、植物的变化主要表现在(发芽)、(生长)、(开花)、(结果)等方面。 15、能用(测量)的方法比较树叶的大小,能用(数据)记录植物的变化。 16、植物按生存的环境不同,可以分为(陆生)植物和(水生)植物。 17、植物的生存需要(水分),(阳光),(空气)和(营养)。 18、植物的一生是有(生命周期)的,每种植物都有一定的(寿命)。 19、植物的共同特征是:生长在一定的(环境)里;需要(水分),(阳光),(空气)和(营养);都会(生长发育);都会(繁殖后代);都有从生到死的(生命)过程。 20、向日葵一生的典型生长阶段是:(发芽)、(生长)、(开花)、(结果)。

如何把小学数学教学与生活相联系

如何把小学数学教学与生活相联系 数学源于生活,数学植根于生活,生活中处处有数学,数学蕴藏在生活中的每个角落。以生活实践为依托,将生活经验数学化。数学也是哲学的一门衍生物。是解决生活问题的钥匙,数学是人们生活、劳动和学可必不可少的工具。因此,数学都能在生活中找到其产生的踪迹。面向21世纪的数学教学,我们的理念是“人人学有用的数学,有用的数学应当为人人所学,不同的人学不同的的数学”,“数学教育应努力激发学生的学习情感,将数学与学生的生活、学习联系起来,学习有活力的、活生生的数学”。如何根据教材的特点,把枯燥的数学变得有趣、生动、易于理解、让学生活学、活用、从而培养学生的创造精神与实践能力呢?通过反复思考,我就从课堂教学入手,联系生活实际讲数学,把生活经验数学化,把数学问题生活化。 一利用生活经验来解决问题 低年级学生尽管具备了一定的生活经验,但他们对周围的各种事物、现象有着很强的好奇心。我就紧紧抓住这份好奇心,结合教材的教学容,创设情境,设疑引思,用学生熟悉的生活经验作为实例,引导学生利用自身已有的经验探索新知识,掌握新本领。 1.借用学生熟悉的自然现象学习数学 在教学“可能性”一课时,先让学生观看一段动画,在

风和日丽的春天,鸟儿在飞来飞去,突然天阴了下来,鸟儿也飞走了,这一变化使学生产生强烈的好奇心,这时老师立刻抛出问题:“天阴了,接下来可能会发生什么事情呢?”学生就会很自觉地联系他们已有的经验,回答这个问题。学生说:“可能会下雨”,“可能会打雷、电闪”,“可能会刮风”,“可能会一直阴着天,不再有变化”,“可能一会儿天又晴了”,“还可能会下雪”……老师接着边说边演示:“同学刚才所说的事情都有可能发生,其中有些现象发生的可能性很大如下雨,有些事情发生的可能性会很小如下雪……在我们身边还有哪些事情可能会发生?哪些事情根 本不可能发生?哪些事情发生的可能性很大呢?”通过这一创设情境的导入,使学生对“可能性”这一含义有了初步的感觉。学习“可能性”,关键是要了解事物发生是不确定性,事物发生的可能性有大有小,让学生联系自然界中的天气变化现象,为“可能性”的概念教学奠定了基础。 2.结合生活经验,在创设活动中学数学 在教“元角分的认识”一课中,我首先创设了这样一个情境:母亲节快到了,小明想给妈妈买一件礼物,就把自己攒的1角硬币都拿出来,一数有30个,拿着这么多硬币不方便,于是小明就找隔壁的老爷爷来帮忙想办法,老爷爷说这好办,收了小明的30个1角硬币,又给了小明31元钱,小明有点不高兴,觉得有点吃亏。你们说小明拿30个1角

2017年苍南中学自主招生选拔考试语文(参考答案)

2017年苍南中学自主招生选拔考试 语文参考答案及评分标准 2017.2.8 全卷满分120分。考试时间90分钟。 一、语文知识积累与运用(30分) 1.(4分)【答案】聆辨籍弥 2.(8分)【答案】①思而不学则殆②枯藤老树昏鸦③望帝春心托杜鹃。④采菊东篱下⑤黑云压城城欲摧,甲光向日金鳞开。⑥海日生残夜,江春入旧年。 3. (4分)【答案】①寂静②少③像北斗星一样④穿戴 4.(3分)【答案】D 5.(3分)【答案】C 6. (3分)【答案】C 7.(5分)【答案】(1)D(2分)(2)C(3分) 二、现代文阅读(24分) (一)(6分)8.B(3分)9.B(3分) (二)(18分)【答案】10.(4 分)答 E.给 2 分,答 A 给 2 分,答 C 给 1 分;BD 不给分。(C“对孩子的纵容”分析有误,这里表现的是她的护犊情深。B“说明他是一个很奸诈的生意人”分析有误,从他的这些行为看,只能说他是一个很会做生意的人。D“我一瞪眼......说明他们两个都是没有主见的人,凡事都要看别人的眼色行事分析有误”,二弟和三弟不敢说话,说明他们比较胆小,不愿意惹“我”生气;“一人吃了一口”说明二弟和三弟懂事) 11.①爱吃但是不贪吃。小弟弟知道“我”有母亲给的钱,看见吃食摊子就想吃,但最后只吃了小小一点,其他都让给几个哥哥吃了。②会耍赖。当我不同意买后,他挣脱我的手,死犟着坐在凉粉摊子前不走。③说话算数,会体贴人。他践行“我只吃一口”的诺言,还把分给他的那一份留下来给“我”吃。(每点2 分,答对 2 点给 4 分,意思对即可) 12.“那年的欢喜”有两层意思,表面指的是四个兄弟在那年拿出买盐的五分钱吃了一盘炒凉粉的欢喜;实际上是借这场欢喜表现他们几个当年互推互让、互敬互爱的浓浓兄弟情。(4分) 13.①一声喝住小弟弟的“嚷嚷”,这是因为我能体谅家里的难处,深知两毛钱的作用,表现了我的懂事。②拉小弟弟买盐去,不像刚才那么严厉,表现了面对小弟弟的耍赖和自己馋得直流口水的现实,我的心开始动摇。③靠吼和威吓来制止小弟弟,表现了处在小弟弟的耍赖、凉粉的诱惑和少称二两半盐的矛盾中我的内心快顶不住了。④“吃吧”表现了在凉粉的诱惑和弟弟们的期盼下,我最终放弃坚守,同意买下凉粉。(每点 2 分,答对 3 点给 6 分,意思对即可)。 三、古诗文阅读(26分) 1

教科版三年级上册科学期末总复习知识点汇总

教科版三年级上册科学期末总复习知识点汇总 第一单元《水》知识点汇总 第一课、水到哪里去了 1.蒸发:液体在任何温度下都能发生的气化现象,只在液体表面发生。 2.水蒸气:是水的气体形式,自然界中的水无时无刻的缓慢地蒸发成水蒸气。 3.水和水蒸气的相同点:没有固定的形状、无色、无味、透明。 4.水和水蒸气的不同点:水看得见摸得着,水蒸气看不见摸不着。水是液体、 空气是气体。 第二课、水沸腾了 1.沸腾: 液体被加热到一定温度时,内部出现大量气泡。气泡迅速胀大,上升 到液面后放出大量蒸气,整个液体发生剧烈汽化。 2.水沸腾时会有大量气泡产生并伴有声音,这是水变成水蒸汽散发到空气中的 表现。 3.水沸腾后继续加热,液体温度不再上升,此时的温度称为液体的“沸点”。第三课、水结冰了 1.冰融化能使周围的温度降低,在冰里面加盐,可以加快冰融化的速度,制造 更低的温度。 2.当环境温度低于0℃,水的温度下降到0℃时,开始结冰,水在结冰过程中, 要向周围放出热量。 3.水结冰后,从液体状态变成了固体状态,体积变大。 4.水和冰的相同点:无色、无味、透明。 5.水和冰的不同点:水是液体,冰是固体。 第四课、冰融化了 1.当环境温度高于0℃,冰开始融化。 2.冰融化成水后,体积变小。 3.冰是固态的水,有一定的形状和体积。冬季下的雪也是固态的水。水是液态, 没有固定的形状,但有一定的体积。水蒸气是气态的水,没有固定的形状和体积,存在于空气中。 4.水的三态变化 第五课、水能溶解多少物质 1.溶解:指物质均匀、稳定地分放在溶剂中,不会自行沉降,不能用过滤的方法 分离出来。

2.水能够溶解的物质的数量是有限的。 3.不同物质的溶解能力是不同的。 第六课、加快溶解 1.食盐在热水中溶解的更快。 2.搅拌能加快食盐溶解的速度。 3.影响溶解快慢的因素:温度,搅拌,颗粒大小。 第七课、混合与分离 1.用“溶解—过滤—蒸发”的方式可以分离食盐和沙。 2.过滤:通过特殊装置将流体提纯净化的过程。 3.蒸发结晶:加热蒸发溶液,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质 就会呈晶体析出,叫蒸发结晶。 4.用磁铁可以分离木屑和铁屑 5.了解物质的特性,可以帮助我们解决生活中遇到的很多问题。 第八课、它们发生了什么变化 1.我们可以改变橡皮泥和纸的形状或大小,但是构成它们的物质没有改变。 2.冰、水、水蒸气虽然状态不同,但都是同一种物质。 3.物理变化:指物质的状态虽然发生了变化,但物质本身的组成成分却没有改 变。 2019版教科版小学科学三年级上 第二单元《空气》知识点汇总 第一课《感受空气》 1.空气能占据空间,形状不固定,有质量,但是很轻。 2.空气具有无色、透明、无味、会流动等特征。 3.空气在地球上无处不在。 4.空气中包含氮气、氧气、二氧化碳等。 5.空气中的氧气能帮助火柴燃烧,动植物需要呼吸空气。 6.空气气泡图:特性,组成,作用。

小学数学与生活的密切联系

浅谈小学数学与生活实际的密切联系 东刘小学谢文萍 摘要: 数学来源于生活,寓于生活,用于生活。在数学教学中,从学生的生活实际出发,让生活经验当“脚手架”,在数学和生活之间架起桥梁,学生一定会亲近数学,运用数学的意识也会越来越强。在小学数学教学中,如果能够根据小学生的认知特点,将数学知识与学生的生活实际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。 关键词: 《数学课程标准指出》:“义务教育阶段的数学课堂,其基本出发点是促进学生全面持续、和谐地发展”。为此数学教学既要考虑数学自身的特点,更应遵循学生学习数学的规律,注重从学生已有的知识和生活经验出发,让学生亲身经历数学建构的过程。从而使学生获得对数学理解的同时,在认知、情感、能力等多方面得到发展。学生都是有着丰富的人格、丰富个性的活生生的人。 数学源于生活,寓于生活,用于生活。在数学教学中,从学生的生活实际出发,让生活经验当“脚手架”,在数学和生活之间架起桥梁,学生一定会亲近数学,运用数学的意识也会越来越强。在小学数学教学中,如果能够根据小学生的认知特点,将数学知识与学生的生活实

际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。对于学生更好地认识数学,学好数学,培养能力,发展智力,促进综合素质的发展,具有重要的意义。因此,作为教师要善于结合课堂教学内容,捕捉生活中的数学现象,挖掘数学知识的生活内涵。 一、从生活到数学 《数学课程标准》强调数学教学必须注意从学生熟悉的生活情境和感兴趣的事物出发,使孩子们有更多机会从周围熟悉的事物中学习数学、理解数学。让学生感受到数学就在他们的周围。因此,我们要善于从学生已有的生活经验出发,创设感悟、有趣的教学情景,强化学生的感性认识,丰富学生的学习过程,引导学生在情境中观察、操作、交流,使学生感受数学与日常生活的密切联系,感受数学在生活中的作用;加深对数学的理解,并运用数学知识解决现实问题。如我在教学《长方体的认识》时,课前安排学生收集日常生活中各种各样有长方体的实物,课堂中让学生展示自己收集到的实物,然后让学生仔细观察这些实物有什么共同点,并组织讨论、交流,抽象出长方体的特征,以学生熟悉的生活实际为切入点创设开放式的活动情境,通过找一找、比一比、摸一摸、说一说的实践活动,调动学生的多种感官参与教学过程,使学生对长方体的认识有形象感知过渡到建立表象的层面,学完这节课后,又组织学生探索生活中长方体的运用及好处。

具有中学高级教师专业技术任职资格人员名单公示

2009年具有中学高级教师专业技术任职资格人员名单公示序号姓名县别工作单位从事专业 1 宣方军市直绍兴市第一中学高中语文 2 朱水军市直绍兴市第一中学高中语文 3 尤焕婷市直绍兴市高级中学高中语文 4 楼春燕市直绍兴市职业教育中心高中语文 5 杨佩琼市直绍兴市第一中学高中数学 6 张贤樑市直绍兴一中分校高中数学 7 沈建红市直绍兴市稽山中学高中数学 8 金辉市直绍兴市稽山中学高中数学 9 冯永华市直绍兴市高级中学高中数学 10 周夏君市直绍兴市职业教育中心高中数学 11 孙国海市直绍兴一中分校高中英语 12 张文平市直绍兴市稽山中学高中英语 13 陶海芳市直绍兴市高级中学高中英语 14 陈静市直绍兴市高级中学高中英语 15 陈玉平市直绍兴市高级中学高中英语 16 张晓华市直绍兴一中分校高中历史 17 孙洪亮市直绍兴一中分校高中历史 18 李时平市直绍兴市高级中学高中历史 19 冯高娟市直绍兴市高级中学高中历史 20 徐烨市直绍兴市高级中学高中物理 21 鲍农农市直绍兴一中分校高中化学 22 朱红燕市直绍兴市稽山中学高中化学 23 李国红市直绍兴市稽山中学高中计算机 24 郑长兴市直市教育教学研究院高中通用技术 25 冯建丽市直绍兴市高级中学高中通用技术 26 单慧芳市直绍兴市职业教育中心高中餐旅 27 肖满香市直绍兴市职业教育中心高中财会 28 孙慧珍市直市职业技术培训中心高中财会 29 凌珠兰市直绍兴市商业学校高中体育 30 金朝霞市直绍兴一中分校高中音乐 31 史滢滢市直绍兴市稽山中学高中音乐 32 茹慧娟市直绍兴市第一中学初中部初中语文 33 吴菲菲市直绍兴市第一中学初中部初中语文 34 钟珺红市直文理学院附中初中语文 35 戴国萍市直文理学院附中初中语文 36 周江市直昌安实验学校初中语文 37 沈五二市直绍兴市建功中学初中数学 38 俞菊妃市直文理学院附中初中数学 39 冯菊美市直绍兴市树人中学初中数学 40 汤文霞市直昌安实验学校初中数学 41 何晓燕市直绍兴一中初中部初中英语 42 金萍市直绍兴一中初中部初中英语 1 / 15

苍南县中考招生实施方案及加分政.doc

2019苍南县中考招生实施方案及加分政策- 中考 苍南县2019年初中学业水平考试与高中招生实施方案出炉 各学区、直属学校,各乡镇中学(九年一贯制): 现将《苍南县2019年初中学业水平考试与高中招生实施方案》印发给你们,请认真贯彻实施。 苍南县教育局

2019年3月25日 苍南县2019年初中学业水平考试与高中招生实施方案 根据《温州市教育局关于印发2019年初中学业水平考试与高中招生实施意见的通知》(温教基〔2019〕4号)和《温州市教育局关于进一步推进高中阶段学校考试招生制度改革的实施意见》(温教基〔2018〕76号),在认真总结近年来初中学业水平考试和高中招生改革实践经验的基础上,特制订本方案。 一、指导思想

初中学业水平考试与高中招生制度改革,要有利于全面贯彻党的教育方针,促进学生全面而有个性发展;有利于促进义务教育深化课程改革,减轻学生过重课业负担,提高教育教学质量;有利于建立公开、公平、公正的“阳光招生”运行和监督机制;有利于公办学校和民办学校、普通教育和职业教育的健康协调发展;有利于建立和完善初中教育质量监测与评价体系,促进我县义务教育的优质均衡发展。 二、初中学业水平考试 初中学业水平考试(以下简称“学业水平考试”)是义务教育阶段的终结性考试,主要是衡量学生达到国家规定学习要求的程度,考试成绩是学生毕业和升学的基本依据。

(一)学业水平考试对象 1.苍南县户籍初中毕业生:2019年苍南县户籍在本县就读的应届初中毕业生(以电子学籍注册为准),在苍南县外就读要求回苍升学的苍南县户籍应届毕业生,苍南县户籍的往届初中毕业生。 2.温州市内非苍南户籍但已取得苍南学籍的应届初中毕业生(以电子学籍注册为准)。

教科版科学三上知识点

《水》单元知识点 一、水到哪里去了 1.水是一种液体,没有固定的形状,但有一定的体积。湿抹布擦黑板过一会儿干了、湿的手干了是由于水蒸发了。常见的蒸发现象有:水洼干了、衣服晾干了、煮食物时水烧干了等等。 2.杯子装水后,加上盖子和不加上盖子相比,加盖子的蒸发慢,不加盖子的蒸发快;放在通风处比放在不通风处蒸发得慢;放在阳光下比放在阴凉处蒸发得快。 3.水蒸气是气体,它是水的一种形态,它也是水。水蒸气是无色无味的、透明的、看不见、摸不着。.水蒸气存在我们身边周围的空气中,不管温度高还是温度低,水都在不停地蒸发。4我们洗澡之后,看到卫生间玻璃上的小水珠不是水蒸气,水蒸气是看不见的。 5.一杯热开水放在桌上,看到上面冒着的“白烟”不是水蒸气,而是水蒸气遇冷凝结的小水滴。我们可以用加热、加快空气流动的方法让水蒸发得更快。 6 我们可以像海水晒盐一样增加水与空气接触面积的方法来加快水的蒸发。 7.空气中的水蒸气越多,湿度越大:水蒸气越少,湿度越小。不同的天气状况,空气中的水 二、水沸腾了 1.不停地给水加热,水会沸腾。.水沸腾时,水中和水面上会冒出很多气泡。 2.水沸腾时,水面上会看到很多“白烟" ,这不是水蒸气。.水变成水蒸气后,体积会大大增加。当水的温度升高到100摄氏度时,水会沸腾是,足以烫伤我们的,一定要注意安全。 3.水沸腾和蒸发的现象是不一样的:水沸腾的时候也在蒸发,水蒸发的时候不一定沸腾。 4.温度计100摄氏度就是以水沸腾时的温度为基础规定的。 5.高山的山顶和山脚下,水沸腾时的温度是不一样的。 5.用温度计测量水沸腾前、沸腾时的温度时,视线要与温度计的液面持平。 8.加热后的石棉网和三脚架是很烫的,不能用手触摸;要等它们降温之后再收拾和整理。 9.水沸腾时水面上的水蒸气温度很高,不能把手放在上面,容易把手烫伤。 10.让水沸腾后,人们可以用来蒸、煮食物、给自来水杀菌消毒、泡茶、泡方便面等、获取更多水蒸气。 三、水结冰了 1.常温下的水在结冰过程中,温度会-一直下降,当降低到0摄氏度时开始结冰。 2.水结冰时体积会变大,要占据更大的空间。.水在结冰的过程中,为了比较结冰前液面高度和结冰后冰柱的高度,我们需要做好标记。 3.水结冰后,冰块会浮在水面上。冰是无色、透明的固体。冰的温度低,如果长时间一直接触皮肤,容易被冻伤。 4.在做水结冰的实验时,装水试管外面的容器盛满碎冰并加入食盐是为了得到更低的温度。 5.冰是固体,不会流动,有固定的形状;冰是固态的水。 让水结冰,我们可以制造冰冻食品,如:冰淇淋、冰沙、冰棍。水结成冰之后,我们可以用冰块制作冰雕和其他艺术品。

潜能生培优补差个案分析

牛角圩小学一年级上册培优补差个案分析个案基本情况:陈紫涵,女,和祖父母、母亲住在一起。父亲工作比较忙,主要是由母亲负起教育的责任。母亲的性格比较急,教育孩子常动辄就批评。祖父母也参与到对孩子的教育中,但方法与母亲截然不同,采取比较爱护,包庇的措施。形成她对祖父母是比较依赖的。 日常行为表现学习方面:周海乐的学习积极性不高,在课堂上,从不举手发言,不会主动参与到课堂上的小组讨论中,还常常不自觉地在搞小动作。做作业的时候,精神不集中,常会呆呆地坐着胡思乱想或搞小动作,写字的速度慢,每天的作业很晚才能完成,常会欠交作业。人际交往方面:性格比较胆小、怕事,不会主动与人交往,只是和坐在一起的几位同学来往,交往的圈子窄。生活上的事情,基本能完成,但动作很慢,所耗时长,在收拾书包,排队等等,常常会落在全班的最后。 诊断分析:周海乐的家庭的文化素质比较低,但由于家庭的教育方式也简单,造成她一方面在妈妈的呵斥下没有建立起应有的自信心,觉得做什么事情自己都是错的,清楚知道提问的答案也不敢说出,有时甚至不去思考(反正都是错的)。在不断感受失败,正是在这一恶性循环的过程中, 她的学习困难随着教育时间的延续越积越多, 缺乏自信心,缺乏学习积极性也就成为必然的;另一方面,在爷爷奶奶的包庇下,依赖心理比较严重。 辅导过程: 1、老师的帮助使她建立起自信的大厦。我首先主动找她聊天,说说她感兴趣的话题。我还鼓励她在课堂上大胆发言。2、加强与家长的联系,共同探讨教育孩子的措施。不同的孩子,就要采取不同的教育方法。3、通过友谊的力量,促进她走向新的台阶。我把她编排在一个比较活跃,上进的小组内,让小组成员带动雷雅欣的进步。 孩子天生喜欢给别人赞扬,周海乐现在开始减少对老师的恐惧感,在师生的聊天中,能放松地、完整地表达自己的想法。这次单元考试及格了,知道成绩后十分高兴,自信心也在成功之中逐渐建立起。 2015年12月 牛角圩小学一年级下册培优补差个案分析

浅析小学数学与生活的联系

浅析小学数学与生活的联系 《新课程标准》要求小学数学要源于生活,贴近生活,注重学生的自主探究水平培养。现在教学的例题不再是以往不可捉摸的、抽象、游离于生活之外的应用题或文字题,已变成了各种形象生动、鲜活直观的生活情境:买东西、去旅游、做游戏、找规律等等事例;像这样,多方面的提升教材层次,就使得原本抽象的数学就变得生动有趣。我们教师使用起这样好玩的教材教学,使所有的学生都能感到特别有兴趣。 一、贴近生活,让数学变得富有魅力生活离不开数学,数学离不开生活。数学知识源于生活而最终服务于生活。在教学中要力求从学生熟悉的生活世界出发,选择学生身边的的事物,提出相关的数学问题,以激发学生的兴趣与动机。使学生初步感受数学与日常生活的密切联系,并能学以致用。例如:在教学完人民币的理解这个课后,让学生用自己带来的各种用品创办小小商店,让学生相互合作共同完成购物活动。在活动的过程中,提出问题解决问题。这时的教学已不再是单纯的"掌握知识",而是升华到了一个新的境界--情感、态度、价值观的实现。教学意义已大大超越了教材本身了。对于小学生来说,数学是他们对生活中数学现象的解读。书本数学是对生活数学的提炼,也是给学生学习生活数学提供一种视角,搭建一座平台。丰富多彩的现实世界理应是学生学习数学的背景。我们应从学生熟悉的人、熟悉的事入手,体现给学生的学习材料应具有现实性、趣味性、挑战性。所以,学生会产生强烈的探究欲望,并迫不及待地投入到知识的

建构活动。数学也所以变得富有魅力。 二、自主探索,让学生体验研究的乐趣 教师在教学过程中不是日复一日持续的教给学生新知识,而是为了教给学生学习的方法,使学生懂得用已学的方法去学习新知识、解决新问题。在新教材中,增强心算、允许估算,计算上,像5+8=要求尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。有的学生发现了5+8其实用8+5来想更好,把5拿来分成2和3;有的学生认为刚学了9+5=用它来推算出结果更简单;更有学生掰起手指头一手比8,一手比5,重叠的是3,那就是13。在我们看来有的似乎不能够理解,但在学生的应用中它们却很自如,原因源于这些都是他们的真实体验,多样化的知识由此产生。让学生成为课堂上真正的主人。 弗来登塔尔认为:学习数学唯一准确的方法是让学生实行再创造,教师的任务是引导、协助学生实行这种再创造的工作,而不是把现成的东西灌输给学生。教材知识的表现方式是单一的、静态的,而学生获取的方式却是多样的、动态的。作为一名教师在教学中应充当一名组织者,提供学习材料,提出学习要求;充当一名引导者,提示研究方向,引导学生朝着有意义的方向去做;充当一名合作者,教师成为学生中的一员,与学生平等交流,相互分享彼此的思考、见解和知识。师生互动,生生互动,使每一位学生在有限的时间内都能得到锻炼与表现。

浙江省诸暨市学勉中学高中数学《第二章 基本初等函数测试试题 新人教版必修1

班级 _________ 姓名_____________ 学号____________ 一、选择题:本大题共10小题,每小题3分,共30分 1.对任意实数x ,下列等式恒成立的是( ). A .21133 2 ()x x = B .2113 3 2 ()x x = C .31153 5 ()x x = D .131 35 5 ()x x --= 2.下列函数与x y =有相同图象的一个函数是( ) A .2 x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log = 3.函数 12 log (32) y x =-的定义域是( ) A .[1,)+∞ B .2(,)3+∞ C .2[,1]3 D .2 (,1] 3 4.三个数60.70.70.76log 6 ,,的大小关系为( ) A. 60.7 0.70.7log 66<< B. 60.70.70.76log 6<< C . 0.76 0.7log 660.7<< D. 60.7 0.7log 60.76<< 5.已知函数 2 95 (3)log 2x f x +=,那么(1)f 的值为( ). A . 2 log 7 B .2 C .1 D .1 2 6.设a 、b 均为大于零且不等于1的常数,则下列说法错误的是( ). A. y=ax 的图象与y=a -x 的图象关于y 轴对称 B. 函数f(x)=a1-x (a>1)在R 上递减 C. 若a 2 >a 21 -,则a>1 D. 若2x >1,则1x > 7.函数 212 ()log (25) f x x x =-+的值域是( ). A .[2,)-+∞ B .(,2]-∞- C .(0,1) D .(,2]-∞ 8.已知 log (2) a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A. (0,1) B. (1,2) C. (0,2) D. ∞[2,+) 9.设函数1 ()()lg 1 f x f x x =+,则(10)f 的值为( )

最新教科版三年级上册科学知识点总结

最新教科版三年级上册科学知识点总结 第一单元植物复习知识点 1、看、听、摸、问、测量、闻等方法都是科学观察的基本方法. 2、大树的特征可以用树的高矮、树冠的形状、树干的粗细、树皮的样子和树叶的样子等来描述.树是活的植物,生长在一定的环境里,是有生命的.树的整体形态由树冠、树干、树根三部分组成. 3、大树和小草的主要不同之处是:植株的高矮不同、茎的粗细不同、茎的质地不同、寿命长短不同. 4、大树和小草的共同点是:都生长在土壤中,都有绿色的叶,都会开花结果,都需要水分、阳光和空气. 5、水葫芦叶柄部位膨大的海绵体充满空气是浮在水面上的原因. 6、水生植物和陆生植物都有根、茎、叶、花、果实和种子等器官.它们的生长需要水分、阳光和空气. 7、水生植物有水葫芦,金鱼藻、水花生,浮萍等. 8、水葫芦和狗尾草的相同点:生长需要水分、阳光和空气;有根、茎、叶;都会繁殖后代;寿命短;都是草本植物. 9、植物的叶一般由叶片、叶脉和叶柄组成.叶片上有叶脉.叶脉是传递水分和营养的通道.10、叶是有生命的,叶从叶芽开始生长,到最后衰老死亡,完成一生.11、以向日葵为例,植物的一生要经历种子、发芽、幼苗、生长、开花、结果、死亡等过程.12、能用测量的方法比较树叶的大小,能用数据记录植物的变化.13、植物按生存的环境不同,可以分为陆生植物和水生植物,根据茎的不同,可以分为草本植物和木本植物. 14、植物的生存需要水分、阳光、空气和营养.15、植物的一生是有生命周期的,每种植物都有一定的寿命.16、植物的共同特征是:生长在一定的环境里;需要水分、阳光、空气和营养;都会生长发育;都会繁殖后代;都有从生到死的生命过程.17、向日葵一生的典型生长阶段是:种子、发芽、生长、开花、结果、枯死. 第二单元动物复习知识点 1、动物具有多样性,动物生存依赖于环境,不同的环境生长着不同的动物. 2、我们观察蜗牛,要注意观察蜗牛的外形、生活、运动、反应、吃食、排泄、繁殖等.蜗牛分头部、腹部、尾部,头部有眼睛、触角和嘴.蜗牛的触角有两对,长的触角的顶部有眼睛,短的一对触角上没有眼睛. 3、蜗牛利用腹足能在各种物体上爬,腹足做细波浪状运动并在爬行中留下黏液痕迹. 4、用放大镜观察我扭头部,发现有眼睛、触角和嘴. 5、周围环境中,跟蜗牛长得相似的动物有田螺、蚌和蚬.蜗牛背上有一个褐色的壳.蜗牛壳上的螺线顺时针方向展开称为右旋. 6、要让睡着的蜗牛醒来的方法有:摩擦、敲打、放入水中.蜗牛新陈代谢除了吃食物外,还需要排泄粪便.蚯蚓喜欢生活在阴暗、潮湿的环境. 7、蚯蚓身体由许多环节构成,身体上有口、环带、肛门.其中口和肛门的作用是进食和排泄. 8、蜗牛喜欢吃菜叶,用肺呼吸,睡觉的时候也会呼吸. 9、蚯蚓的生活环境是在地下,潮湿的地方,我们一般在菜园、墙角等地方可以找到蚯蚓.蚯蚓是环节动物,蚯蚓的运动是爬行,身体伸缩前进.用笔尖轻触蚯蚓,蚯蚓的身体会产生缩紧等应激反应.10、蚯蚓适应潮湿的环境,但不能在水里生存.11、蜗牛和蚯蚓的相同点是:都适应阴暗潮湿的环境,身体柔软,都会爬行,会吃食物,会排泄,会繁殖后代等.12、蚂蚁的身体分为头、胸、腹三部分,头上长有一对触角,胸部长有六只脚.13、蚂蚁在行进的过程中,会分泌一种信息素,这种信息素引导后面的蚂蚁走相同路线.14、蚂蚁是群居动物,用触角来交流信息的.蚂蚁适应在陆地上生活.爱吃死昆虫、甜食,如糖、面包屑.15、蚂蚁的特点:生活在陆地上,身体有头、胸、腹三节,长着六只脚,运动爬行,群居生活,食物多样,会繁殖后代等.16、

培优补差个案跟踪分析

培优补差个案跟踪分析 一.个案简介: 陈行健,女,14岁,和姨夫姨妈生活在一起。父亲工作比较忙,母亲又远在海南从事渔具经营,主要是由其姨夫姨妈承担教育责任。该生性格活泼,聪明伶俐,学习自觉性高,有吃苦耐劳精神,英语、数学、物理等学科成绩拔尖,但语文一直是该生各学科中的拖腿科目,历次教学质量检测成绩均不理想(满分150分,考试总在90分左右)。 二. 诊断分析: 陈行健同学的家庭文化素质比较高。父亲陈宝华,80年代中期中专毕业,公务员身份;母亲王邦梅,初中文化;承担其教育责任的姨夫80年代中期大学专科毕业,一直从事中学语文教育教学工作。但由于该生语文基础差,对语文学习缺乏浓厚的兴趣,不注重阅读和写作练习,也缺少听说锻炼,因而成绩一直不够理想。 三.培补目标 扎实有效地内化该生的听说读写能力,全方位地提升该生的语文素养,力争在本期其中和期末质量检测中使该生的语文成绩达到优秀等次。

四.培补措施 1.激发兴趣,树立信心。兴趣是最好的老师。为了让她对语文学科发生浓厚的兴趣,我特别关注她在课堂上的一举一动,时常鼓励她积极地同文本对话,同同伴对话,大胆地同老师对话。上课时,我往往针对她的理解层面设计一些由浅入深的问题,引导她踊跃回答,让她觉得语文学习入门不难,取得成绩也是完全能够办得到的。 2.同桌牵手,展开帮扶。我与其班主任老师取得联系,安排语文学习能力较强的同学与其同桌共坐,让同桌对其在语文学习的过程中遇到的疑难问题进行解答,帮助她漫步语文学习的殿堂,遨游语文学习的瀚海。 3.诱导阅读,引领积累。我充分利用课余时间,定期找她谈话,借以引导她通过广泛的阅读,博采众长,深入积累,以求聚沙成塔。期中考试前,我有意识地引导她阅读了七年级、八年级阶段《课标》要求阅读的中外名著,敦促她严格按照“五个一”的内容(一天背一首或一篇古诗文、一天读一篇美文、一天写一篇日记、一周看一部影视剧、一周做一份试卷)开展语文学习活动。 4.开展活动,彰显才能。为了让她更好地在丰富多彩的语文活动中学语文、用语文进而提升语文能力,我有意识地引导她积极参加班级和学校组织开展的各种语文实践活动,诸如让她参加作文竞赛和语

小学数学与生活的密切联系

小学数学与生活的密切联系 新的一轮课程改革,进一步促使数学生活化,数学与生活进一步接轨是指从学生的已有经验 出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用过程。数学源于生活, 生活中又充满着数学。因此,数学教学内容应力求从学生熟悉的生活情境出发设计数学问题,让学生真正体验数学与生活的关系,从而实现“人人学有价值的数学;人人都能获得必需的数学”。为此,教师要经常引导学生提供他们所熟悉的经验,充分利用学生现有的知识经验和他们所熟悉的事物组织教学,把学生的生活经验课堂化,将抽象的数学转化为有趣、生动、易 于理解的事物,贴近生活,这就要求小学数学教学要与生活进一步接轨。 一、数学情境与生活 教师将学生熟悉的生活情境和感兴趣的问题作为数学活动的切入点,能让学生感到数学来自 于生活,生活中处处有数学,增强学习的好奇和兴趣,从而进入一个良好的学习状态。在日 常教学中,用学生熟悉的生活经验作教学实例,利用学生已有的生活经验学习数学知识。 如:在教学《分桃子》一课时,我创设情境:先要求每个学生拿出9个桃子放在盘子里,每 盘放的个数一样多,有几种放法,可以放几盘?当学生操作完之后,从中选择五种:(1) 每盘放3个,9÷3=3(盘);(2)每盘放9个,9÷9=1(盘);(3)每盘放2个,9÷2=4(盘),多1个;(4)每盘放4个,9÷4=2(盘)多1个;(5)每盘放5个,9÷5=1(盘) 多4个。接下来引导学生观察上面五个除法式子,并提问:可分成几种情况;学生于是很快 的观察到:一类正好分完,另一类分完后还有剩余的。于是老师再画龙点睛地指出,正好分 完的除法和除法算式,这是我们以前学过的;分了以后还剩余的算式,我们就把它叫做“有余数的除法”,这样创设生活情景,可以使课堂教学更接近现实生活,使学生身临其境,轻松的接受新知识。 二、数学理解与生活 生活是数学的源泉,生活中更是充满着数学问题。善于捕捉生活现象,沟通数学知识与生活 实际的联系,把生活中的问题逐步抽象成为数学问题,是激发学生学习兴趣,并使之产生学 习需要的有效方法。新的课程标准更多地强调学生用数学的眼光从生活中捕捉数学问题,探 索数学规律,主动地运用数学知识分析生活现象,自主地解决生活中的实际问题。在教学中 我们要善于从学生的生活中抽象数学问题,从学生的已有生活经验出发,设计学生感兴趣的 生活素材以丰富多彩的形式展现给学生,使学生感受到数学与生活的联系——数学无处不在,生活处处有数学。 如:在教学两位数乘法后,安排这样一个数学问题,学校组织师生去公园游玩。老师28人,小朋友150人。公园门口写着:门票成人每人30元,学生每人15元,团体30人以上每人 20人。请同学们设计一种你认为最好的购票方案。对这个问题,不同的学生有不同的设计方案: 1、全买团体票:(28+150)×20=3560元 2、不买团体票:28×30+150×15=3090元 3、一部分买团体票,一部分不买:(28+2)×20+(150-2)×15=2820元 通过不同的方案的比较,培养学生应用数学知识理财的意识。 三、日常生活“数学化” 孩子们的知识应该是在对话中形成,在交流中重组,在共享中倍增。在今天的“课堂超市”环 节中,这一切体现得淋漓尽致。如:我先出示了文具价目表:篮球95元/个,排球50元/个,

相关文档
最新文档