常见有理函数的图象

常见有理函数的图象

常见有理函数的图象

1、 双曲线型函数1(对勾函数)

例1、 研究函数21x y x

+=的图象和性质. 2、 双曲线型函数2

例2、 研究函数21x y x

-=的图象和性质.

3、 分子是常数的分式函数1

例3、 研究函数2422y x x =

++ 和2121

y x x =-+的图象和性质.

4、 分子是常数的分式函数2

例4、 研究函数214y x =

- 和2134

y x x =--的图象和性质.

5、 分子是一次式的分式函数1

例5、 研究函数24422

x y x x +=++的图象和性质.

6、 分子是一次式的分式函数2

例6、 研究函数26121

x y x x -=++的图象和性质.

7、 分子是一次式的分式函数3

例7、 研究函数21215x y x x +=

+-的图象和性质.

6.5一次函数图象的应用(第二课时)教学设计

第六章一次函数 5.一次函数图象的应用(二) 成都七中陈中华 一、学生起点分析 在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用. 二、教学任务分析 《一次函数图象的应用》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》的第五节。本节内容安排了2个课时完成.第一课时让学生利用一次函数的图象解决一些简单的实际问题,本节课为第2课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础. 三、教学目标分析 1.教学目标 ●知识与技能目标: 1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题; ●过程与方法目标: 1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维; 2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.●情感与态度目标: 在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣. 2.教学重点 一次函数图象的应用 3.教学难点 从函数图象中正确读取信息 四、教法学法 1.教学方法:“问题情境—建立模型—应用与拓展” 2.课前准备: 教具:教材,课件,电脑 学具:教材,练习本,铅笔,直尺

五、教学过程: 本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置. 第一环节:情境引入 内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价 售出一些后,又降价出售,售出的土豆千克数与他手中持有 的钱数(含备用零钱)的关系,如图所示,结合图象回答下列 问题. (1)农民自带的零钱是多少? (2)试求降价前y与x之间的关系 (3)由表达式你能求出降价前每千克的土豆价格是多少? (4)降价后他按每千克0.4元将剩余土豆售完,这时他手中 的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? 意图:通过与上一课时相似的问题,回顾旧知,导入新知学习。 效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。 第二环节:问题解决 内容1:例1 小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午 7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞 瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发, 骑电动自行车沿景区公路去“飞瀑”,车速为26km/h. (1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km? 分析:当小聪追上小慧时,说明他们两个人的什么量是相同 的?是否已经过了“草甸”该用什么量来表示?你会选择用哪 种方式来解决?图象法?还是解析法? 解:设经过t时,小聪与小慧离“古刹”的路程分别为S1、S2, 由题意得:S1=36t, S2=26t+10 将这两个函数解析式画在同一个直角坐标系上,观察图象,得 ⑴两条直线S1=36t, S2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S1=S2=36 km,即离“古刹”36km,已超过35km,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即S1=45km,此时S2=42.5km. 所以小慧离“飞瀑”还有45-42.5=2.5(km) 思考:用解析法如何求得这两个问题的结果?小聪、小慧运行时间与路程之间的关系式分别是什么(小聪的解析式为S1=36t,小慧的解析式为S2=26t+10)? 意图:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力. 说明:在这个环节的学习过程中,如果学生入手感到困难,可用以下问题串引导学生进行分析。⑴两个人是否同时起步?⑵在两个人到达之前所用时间是否相同?所行驶的路程是否

正切函数的图象与性质

§1.4.3 正切函数的图象与性质 (第二课时) 授课: 徐晓晖 学习目标:使学生能借助正切函数的图象探求其性质.并解决问题并在教学过成中培养学生的 数形结合思想。 学习重点:运用三角函数的图象与性质解题 学习难点:观察图像得正切函数的性质并应用 学习过程: 一、复习、探究 问题1:正切函数图像的作图方法:(1)利用正切线;(2)“三点两线”法,即 )1,4(),1,4(),0,0(ππ-- 和直线2π-=x 及2π =x ,然后向左右两边扩展. 问题2:观察x y tan =的图象,类比x y x y cos ,sin ==的性质,你能得到x y tan =的一些怎样性质? 二、正切函数的性质 1. 定义域: ? ?????∈+ ≠Z k k x x ,2ππ 2. 值域:R . 当Z k k k x ∈??? ??+ ∈,2,πππ时0yt ,当Z k k k x ∈??? ??-∈,,2πππ时0 y 3. 周期性: π=T 4. 奇偶性:奇函数 对称中心:Z k k ∈?? ? ??,0,2π 渐近线:Z k k x ∈+=,2ππ 5. 单调性:在开区间Z k k k ∈?? ? ??++-,2,2ππππ内,函数单调递增 三、教学精讲 例1.讨论函数?? ? ?? +=4tan πx y 的性质 解析:法一:观察正切函数图像,该图像可通过正切函数图像向左平移 4π单位得到 定义域:? ????? ∈+≠∈z k k x R x x ,4|ππ且值域:R 奇偶性:非奇非偶函数

单调性:在?? ? ?? +-4,43ππππk k 上是增函数 法二:由学生思考或引导学生类比例5完成 变式训练: 1、 根据正切函数图象,写出满足下列条件的x 的范围 ①tan 0x > ②tan 0x = ③tan 0x < ④tan x > 答案:①Z k k k ∈??? ??+,2,πππ, ②,{}z k k x x ∈=,π ③Z k k k ∈?? ? ??-,,2πππ, ④Z k k k ∈?? ? ??++,2,3πππ π 2 、求)4 2tan(π-=x y 的定义域及周期 答案:2},,832|{πππ=∈+≠ T z k k x x 例2 比较tan 27π与tan 107 π的大小 解析:通过诱导公式把角度化为同一单调区间,利用正切函数单调性比较大小 解:tan 107π=tan 37π ∵0<27π<37π<2π 又∵y =tan x 在(0,2 π)上单调递增 ∴tan 27π<tan 37π,则tan 27π<tan 107 π 变式训练: 比较)56tan(π与tan (-135π)的大小, 答案:)56tan(π< tan (-135 π) 四、巩固练习 1、与函数tan(2)4y x π=+ 的图象不相交的一条直线是( ). A .2π -=x B .2π =x C .8π -=x D . 8π =x 2、函数x y π3tan =的最小正周期是( ) A 、31 B 、32 C 、π6 D 、π 3 3、函数1tan += x y 的定义域是 . 4、确定函数)23tan(x y -=π 的奇偶性和单调区间. 五、小结:(1)数形结合思想 (2)正切函数的性质

高中数学双曲线函数的图像与性质及应用

一个十分重要的函数的图象与性质应用 新课标高一数学在“基本不等式 ab b a ≥+2”一节课中已经隐含了函数x x y 1 +=的图象、性质与重要的应用,是高考要求范围内的一个重要的基础知识.那么在高三第一轮复习 课中,对于重点中学或基础比较好一点学校的同学而言,我们务必要系统介绍学习 x b ax y + =(ab ≠0)的图象、性质与应用. 2.1 定理:函数x b ax y +=(ab ≠0)表示的图象是以y=ax 和x=0(y 轴) 的直线为渐近线的双曲线. 首先,我们根据渐近线的意义可以理解:ax 的值与x b 的值比较,当x 很大很大的时候, x b 的值几乎可以忽略不计,起决定作用的是ax 的值;当x 的值很小很小,几乎为0的时候,ax 的值几乎可以忽略不计,起决定作用的是x b 的值.从而,函数x b ax y +=(ab ≠0)表示 的图象是以y=ax 和x=0(y 轴)的直线为渐近线的曲线.另外我们可以发现这个函数是奇 函数,它的图象应该关于原点成中心对称. 由于函数形式比较抽象,系数都是字母,因此要证明曲线是双曲线是很麻烦的,我们通过一个例题来说明这一结论. 例1.若函数x x y 3 233+= 是双曲线,求实半轴a ,虚半轴b ,半焦距c ,渐近线及其焦点,并验证双曲 线的定义. 分析:画图,曲线如右所示;由此可知它的渐近线应该是x y 3 3 = 和x=0两条直线;由此,两条渐近线的夹角的平分线y=3x 就是实轴了,得出顶点为A (3,3),A 1(-3,-3); ∴ a=OA =32, 由渐近线与实轴的夹角是30o,则有a b =tan30o, 得b=2 , c=22b a +=4, ∴ F 1(2,32)F 2(-2,-32).为了验证函数的图象是双曲线,在曲线上任意取一点P (x, x x 3 233+)满足3421=-PF PF 即可;

《正切函数的图像与性质》 教案及说明

课题:正切函数的图像与性质 教材:上海教育出版社高中一年级第二学期(试用本)第六章第二节 授课教师: 教学目标 (1)理解正切函数的定义及正切函数的图像特征,研究并掌握正切函数的基本性质. (2)在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯. (3)在解决问题的过程中,体验克服困难取得成功的喜悦. 教学重点 掌握正切函数的基本性质. 教学难点 正切函数的单调性及证明. 教学方法 教师启发讲授,学生积极探究. 教学手段 计算机辅助. 教学过程 一、 设置疑问,引入新课 1、正切函数的定义 有同学,类比正弦函数、余弦函数的定义,定义了一个正切函数: 对于任意一个实数x ,都有唯一确定的值tan x 与它对应,按照这个对应法则所建立的函数,表示为tan y x =,叫做正切函数. 大家认为这个定义是否完善? 强调:,2 x k k Z π π≠+ ∈.

(设计意图:,2 x k k Z π π≠+∈,是学生容易出错的地方,通过学生之间的自我纠错,理 解不能取,2 k k Z π π+ ∈的理由) 今天我们就要研究正切函数tan y x =(,2 x k k Z π π≠+∈)的图像与性质. 2、作函数图像的常用的方法是什么? (1)描点法是作函数图像最基本的方法; (2)利用基本初等函数图像的变换作图. 大家认为应该选择哪种方法呢? 学生的回答会选择(1). 教师引导:描点应该结合函数的性质,描关键点、特殊点. 所以,首先研究函数的基本性质. 二、 主动探究,解决问题 (一)利用定义,研究函数的性质 学生自主研究探索正切函数的性质 1、 定义域:|,,2x x R x k k Z π π? ?∈≠+∈??? ? . 学生可以迅速解决. 2、 值域:R 请学生回答,并讲清楚理由,从而引出对正切线的复习. 复习正切线: 正切线是角x 与tanx 关系的直观体现,正切函数的性质融于其中. 3、 奇偶性:奇函数. 学生会利用tan()tan x x -=-迅速做出判断. 问:该函数是偶函数吗?

2015高考数学(理)一轮题组训练:2-7函数的图象及其应用

第7讲 函数的图象及其应用 基础巩固题组 (建议用时:40分钟) 一、填空题 1.把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,再向上平移1个单位长度,所得图象对应的函数解析式是________. 解析 把函数f (x )=(x -2)2+2的图象向左平移1个单位长度,得y =[(x +1)-2]2+2=(x -1)2+2,再向上平移1个单位长度,得y =(x -1)2+2+1=(x -1)2+3. 答案 y =(x -1)2+3 2.函数f (x )=x +1 x 的图象的对称中心为________. 解析 f (x )=x +1x =1+1 x ,故f (x )的对称中心为(0,1). 答案 (0,1) 3.已知f (x )=? ???? 13x ,若f (x )的图象关于直线x =1对称的图象对应的函数为g (x ), 则g (x )的表达式为________. 解析 在函数g (x )的图象上任取一点(x ,y ),这一点关于x =1的对称点为(x 0,y 0),则??? x 0=2-x , y 0=y . ∴y =? ???? 132-x =3x -2. 答案 g (x )=3x -2 4.函数y =(x -1)3+1的图象的对称中心是________. 解析 y =x 3的图象的对称中心是(0,0),将y =x 3的图象向上平移1个单位,再向右平移1个单位,即得y =(x -1)3+1的图象,所以对称中心为(1,1). 答案 (1,1)

5. 设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如图,则不等式f (x )<0的解集是________. 解析 利用函数f (x )的图象关于原点对称.∴f (x )<0的解集为(-2,0)∪(2,5). 答案 (-2,0)∪(2,5) 6.若函数f (x )在区间[-2,3]上是增函数,则函数f (x +5)的单调递增区间是________. 解析 ∵f (x +5)的图象是f (x )的图象向左平移5个单位得到的. ∴f (x +5)的递增区间就是[-2,3]向左平移5个单位得到的区间[-7,-2] 答案 [-7,-2] 7.若方程|ax |=x +a (a >0)有两个解,则a 的取值范围是________. 解析 画出y =|ax |与y =x +a 的图象,如图.只需a >1. 答案 (1,+∞) 8.(2013·泰州模拟)已知函数f (x )=??? log 2x (x >0),2x (x ≤0),且关于x 的方程f (x )-a =0有 两个实根,则实数a 的范围是________. 解析 当x ≤0时,0<2x ≤1,所以由图象可知要使方程f (x )-a =0有两个实

一次函数图象的应用

一次函数图象的应用 一.知识与技能目标: 1.能通过函数图象获取信息,解决简单的实际问题; 2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。 过程与方法目标: 1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维; 2.通过具体问题的解决,培养学生的数学应用能力; 3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式. 情感与态度目标: 1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等. 教学重点 一次函数图象的应用. 教学难点 正确地根据图象获取信息,并解决现实生活中的有关问题. 教学过程 第一环节复习 .怎样应用一次函数的图象和性质来解决现实生活中的实际问

题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质? 在一次函数y kx b =+中 当0k >时,y 随x 的增大而增大, 当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限. 当0时,直线交y 轴于正半轴,必过一、二、四象限; 当0b <时,直线交y 轴于负半轴,必过二、三、四象限. 在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫. 第二环节 自主学习 由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题: (1)干旱持续10天后,蓄水量为多 少?连续干旱23天后呢? (2)蓄水量小于400万米3时,将发 生严重干旱警报.干旱多少天后将发出 严重干旱警报? (3)按照这个规律,预计持续干旱多少天水库将干涸? (根据图象回答问题,有困难的可以互相交流.) 第三环节 反馈练习: 当得知周边地区的 干旱情况 后,育才学校的小明意识到节约用 水的重要性.当天在班上倡议节约

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

1.4.3正切函数的性质与图象

1.4.3正切函数的性质与图象 教学目的: 知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质; 能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法; 教学重点:用单位圆中的正切线作正切函数图象; 教学难点:正切函数的性质。 教学过程: 一、复习引入: 问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线: . 下面我们来作正切函数的图象. 二、讲解新课: 1.正切函数tan y x =的定义域是什么? ? ?????∈+≠ z k k x x ,2|ππ 2.正切函数是不是周期函数? ()tan tan ,,2x x x R x k k z πππ?? +=∈≠+∈ ??? 且, ∴π是tan ,,2y x x R x k k z π π? ? =∈≠+ ∈ ?? ? 且的一个周期。 π是不是正切函数的最小正周期?下面作出正切函数图象来判断。 3.作tan y x =,x ∈??? ? ?-2,2ππ的图象 说明: (1)正切函数的最小正周期不能比π小,正切函数的最小正周期是π; (2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ ππ 2 的图象,称“正切曲线” 。

(3)正切曲线是由被相互平行的直线()2 x k k Z π=+∈所隔开的无穷多支曲线组成的。 4.正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠ z k k x x ,2|ππ ; (2)值域:R 观察:当x 从小于()z k k ∈+2 π π,2 π+π?→?k x 时,tan x ?? →+∞ 当x 从大于()z k k ∈+ππ 2 ,ππ k x +?→? 2 时,-∞?→? x tan 。 (3)周期性:π=T ; (4)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (5)单调性:在开区间z k k k ∈?? ? ??++-ππππ2,2内,函数单调递增。 5.讲解范例: 例1比较??? ??- 413tan π与?? ? ??-517tan π的大小解:tan 413tan -=??? ??- π 4π,52tan 5 17tan ππ-=??? ??- ,?? ? ??=<<2,0tan ,5240πππ在x y 内单 调递增, ??->??? ??-->-∴<∴ππππππ 517tan 413tan ,52tan 4tan ,52tan 4tan 即 例2:求下列函数的周期: (1)3tan 5y x π? ? =+ ?? ? 答:T π=。 (2)tan 36y x π?? =- ?? ? 答:3 T π = 。 说明:函数()() tan 0,0y A x A ω?ω=+≠≠的周期T πω = . 例3:求函数??? ? ? - =33tan πx y 的定义域、值域,指出它的周期性、奇偶性、单调性, 解:1、由233πππ+≠-k x 得1853ππ+≠k x ,所求定义域为? ?? ???∈+≠ ∈z k k x R x x ,1853,|ππ且 y

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

专题九函数图象及其综合应用

专题九 函数图象及综合应用 函数图象是研究函数性质、方程、不等式的重要工具,是数形结合的基础,是高考考查的热点,复习时,应重点掌握几种基本初等函数的图象,并在审题、识图上多下功夫,学会分析“数”与“形”的结合点,把几种常见题型的解法技巧理解透彻。 知识网络: 一、新课引入 在初中我们是采用什么方法来画出函数的图象?描点法作图。 描点法作图的步骤有哪些? 描点法作图的基本步骤是:列表、描点、连线。 基本函数的图象要熟记:一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、幂函数。 二、新课讲解 1、函数图象的基本作法有两种: ① 描点法②图象变换法 2、画函数图象时有时也可利用函数的性质如单调性、奇偶性、对称性、周期性等,以及图象上的特殊点、线(如对称轴、渐近线等)。 3、图象的变换是指一个函数的图象经过适当的变换,得到另一个与之有关的函数图 象。 . 在高考中要求学生掌握的三种变换是:平移变换、对称变换、伸缩变换、翻折变换。 4、常用函数图象变换的规律。 (1)平移变换 ①水平平移:y =f(x±a)(a>0)的图象,可由y =f(x)的图象向左(+)或向右(-)平移a 个单位而得到。 ②竖直平移:y =f(x)±b(b>0)的图象,可由y =f(x)的图象向上(+)或向下(-)平移b 个单位而得到。 (2)对称变换 ①y =f(-x)与y =f(x)的图象关于y 轴对称。 ②y =-f(x)与y =f(x)的图象关于x 轴对称。 ③y =-f(-x)与y =f(x)的图象关于原点对称。 (3)伸缩变换 ①y =af(x)(a >0)的图象,可将y =f(x)图象上每点的纵坐标伸(a >1时)或缩(a <1时)到原来的a 倍,横坐标不变。 ②y =f(ax)(a >0)的图象,可将y =f(x)的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的1a 倍,纵坐标不变。 (4)翻折变换 ①作为y =f(x)的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到上方,其余部分不变,得到y =|f(x)|的图象。

三角函数图象及应用

函数y =A sin(ωx +φ)的图象及应用 1.y =A sin(ωx +φ)的有关概念 y =A sin(ωx + φ)(A >0,ω>0),x ∈ [0,+∞) 振幅 周期 频率 相位 初相 A T = 2πω f =1 T =ω 2π ωx +φ φ 2.如下表所示. x 0-φ ω π2 -φω π-φ ω 3π2 -φω 2π-φ ω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ) 0 A -A 3.函数y x y A x 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)作函数y =sin(x -π6)在一个周期的图象时,确定的五点是(0,0),(π 2,1),(π,0),(3π2,- 1),(2π,0)这五个点.( × ) (2)将函数y =3sin 2x 的图象左移π 4个单位长度后所得图象的解析式是y =3sin(2x + π 4 ).( × ) (3)函数y =sin(x -π4)的图象是由y =sin(x +π4)的图象向右移π 2 个单位长度得到的.( √ )

(4)函数y =sin(-2x )的递减区间是(-3π4-k π,-π 4-k π),k ∈Z .( × ) (5)函数f (x )=sin 2x 的最小正周期和最小值分别为π,0.( √ ) (6)函数y =A cos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为 T 2 .( √ ) 1.(2014·)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( ) A .向左平行移动1 2个单位长度 B .向右平行移动1 2个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 答案 A 解析 y =sin 2x 的图象向左平移12个单位长度得到函数y =sin 2(x +1 2)的图象,即函数y = sin(2x +1)的图象. 2.(2013·)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π 2)的部分图象如图所 示,则ω,φ的值分别是( ) A .2,-π 3 B .2,-π 6 C .4,-π 6 D .4,π 3 答案 A 解析 ∵34T =5π12-????-π 3,∴T =π,∴ω=2, ∴2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π 3,k ∈Z , 又φ∈??? ?-π2,π2,∴φ=-π 3,故选A.

正切函数的图像和性质-公开课教案

正切函数的图像和性质-公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx的图象,了解三角函数的周期性.,理解正切函数在 区间()的单调性. 教学目的 知识目标:了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标:掌握正弦函数的周期性,奇 偶性,单调性,能利用正切 曲线解决简单的问题。 情感目标:在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表 示,正切函数tan 的定义域是什么? y x 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢?

画正切函数选取哪一段好呢? 画多长一段呢? 思考2:正切函数是不是周期函数?若 是,最小正周期是什么? 思考3. 诱导公式 体 现了正切函数的哪种性质? (一)作tan y x =,x ∈?? ? ? ?-2 ,2ππ的图象 说明: (1)根据正切函数的周期性,把上述图 象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ππ 2 的图象,称“正切曲线”。 tan()tan x x -=-

(2)由图象可以看出,正切曲线是由被相 互平行的直线()2x k k Z ππ=+∈所隔开的无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠z k k x x ,2 |ππ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数

二次函数图像性质及应用

.. 二次函数图象性质及应用 一选择题 1.已知抛物线y=﹣x2+2x﹣3,下列判断正确的是() A.开口方向向上,y 有最小值是﹣2 B.抛物线与x轴有两个交点 C.顶点坐标是(﹣1,﹣2) D.当x<1 时,y 随x增大而增大 2.若二次函数y=x2+bx+5 配方后为y=(x-2)2+k,则b、k 的值分别为() A.0、5 B.0、1 C.﹣4、5 D.﹣4、1 3.将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是 A. B. 3 y2- - )2 y2- =x + (5 =x D.3 (52+ )2 (5 - =x )2 y C. 3 4.把抛物线y=﹣2x2+4x+1 图象向左平移2个单位,再向上平移3个单位,所得的抛物线函数关系式是() A.y=﹣2(x-1)2+6 B.y=﹣2(x-1)2﹣6 C.y=﹣2(x+1)2+6 D.y=-2(x+1)2-6 5.函数y=ax+b 和y=ax2+bx+c 在同一直角坐标系内的图象大致是() A. B. C. D. 6.二次函数y=ax2+bx+c 的图象如图,则a bc,b2﹣4ac,2a+b,a+b+c 这四个式子中,值为正数的有() A.4 个 B.3 个 C.2 个 D.1 个 第6题图第8题图 7.二次函数y=ax2+bx+c 对于x的任何值都恒为负值的条件是() A.a>0,△>0 B.a>0,△<0 C.a<0,△>0 D.a<0,△<0 8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是() A.y=x2-x-2 B.y=﹣x2﹣x+2 C.y=﹣x2﹣x+1 D.y=﹣x2+x+2

正切函数的图象与性质(习题)

1 正切函数的图象与性质(习题) ? 例题示范 例1:已知sin33cos55tan35a b c =?=?=?, ,,则( ) A .a b c >> B .b c a >> C .c b a >> D .c a b >> 思路分析: 观察33°,55°,35°之间的关系,利用三角函数在区间[090]??, 上的单调性,选择合适的公式化简,转化为可比较的函数值. 由诱导公式可得, cos55cos(9035)sin35b =?=?-?=?, ∵sin y x =在区间[090]??,上单调递增,且sin 33a =?, ∴b a >, ∵sin 35tan 35cos35c ?=?= ? ,且0cos351?=, ∴c b a >>,故选C . 例2:函数23()sin cos 4f x x x =++,2π[0]3 x ∈,的值域是( ) A .[12], B .[]44-, C .[1]4 -, D .[2]4-, 思路分析: 2223()sin cos 4 31cos cos 4 7cos cos 4 f x x x x x x x =++=-++=-++由题意, 设cos t x =,2π[0]3x ∈,,由余弦函数的单调性得,12 1t -≤≤, 则原函数可化为27()4f x t t =-++,12 1t -≤≤, 由二次函数性质得,()[12]f x ∈,,故选A . ? 巩固练习

A .2 π B .π C .2π D .4π C .(1)(0)(1)f f f >>- D .(0)(1)(1)f f f >-> 4. 下列函数属于奇函数的是( ) A .()tan(π)f x x =+ B .π()sin()2f x x =- C .()cos(3π)f x x =- D .π()sin()2f x x =+ 5. 已知函数()tan f x x x =+,2()=cos g x x x +,则( ) A .()f x 与()g x 都是奇函数 B .()f x 与()g x 都是偶函数 C .()f x 是奇函数,()g x 是偶函数 D .()f x 是偶函数,()g x 是奇函数 6. 函数sin()2 y x π=+在( ) A .[]22 ππ-,上是增函数 B .[0]π,上是减函数 C .[0]-π,上是减函数 D .[]-ππ,上是减函数 7. 函数()cos f x x =的一个单调递减区间是( ) A .[]44 ππ-, B .[]44π3π,

函数图象及其应用

函数图象及其应用 武安市第十中学李冉 一.教学内容分析: 本堂课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二.学生学习情况分析: 学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。 三.设计思想:

5函数图象及其应用

6、函数图象及其应用 一.教学内容分析: 本堂课安排在人教版必修1第二章结束之后,第三章教学之前,对所学常见函数模型及其图像进行归纳总结,使学生对函数图像有个系统的认识,在此基础上,一方面加强学生的看图识图能力,探究函数模型的广泛应用,另一方面,着重探讨函数图像与方程的联系,渗透函数与方程的思想及数形结合思想,为第三章作了很好的铺垫,承上启下,衔接自然,水到渠成。 学生对函数与方程的关系有一个逐步认识的过程,应遵循由浅入深、循序渐进的原则.从学生认为较简单的问题入手,由具体到一般,建立方程的根与函数图像的联系。另外,函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”,用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。 二.学生学习情况分析: 学生在学完了第一章《集合与函数概念》、第二章《基本初等函数》后,对函数的性质和基本初等函数及其图像有了一定的了解和把握,但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。因此进行本堂课的教学,应首先有意识地让学生归纳总结旧知识,提高综合能力,对新知识的传授,即如何利用函数图像解决方程的根的问题,则应给足学生思考的空间和时间,充分化解学生的认知冲突,化难为易,化繁为简,突破难点。 高中数学与初中数学相比,数学语言在抽象程度上突变,思维方法向理性层次跃迁,知识内容的整体数量剧增,以上这三点在函数这一章中得到了充分的体现,本章的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。因此,在教学中应多考虑初高中的衔接,更好地帮助学生借由形象的手段理解抽象的概念,在函数这一章,函数的图像就显得尤其重要而且直观。 三.设计思想: 1.尽管我们的教材为学生提供了精心选择的课程资源,但教材仅是教师在教学设计时所思考的依据,在具体实施中,我们需要根据自己学生数学学习的特点,联系学生的学习实际,对教材内容进行灵活处理,比如调整教学进度、整合教学内容等,本节课是必修1第二章与第三章的过渡课,既巩固了第二章所学知识,又为第三章学习埋下伏笔,对教材做了一次成功的加工整合,正所谓磨刀不误砍材功。 2.树立以学生为主体的意识,实现有效教学。现代教学论认为,学生的数学学习过程是一个学生已有的知识和经验为基础的主动建构的过程,只有学生主动参与到学习活动中,才是有效的教学。在本节课的设计中,首先设计一些能够启发学生思维的活动,学生通过观察、试验、思考、表述,体现学生的自主性和活动性;其次,设计一些问题情境,而解决问题所需要的信息均来自学生的真实水平,要么定位在学生已有的知识基础,要么定位在一些学生很容易掌握的知识上,保证课堂上大部分学生都能够轻松地解决问题。随着学生的知识和信息不断

正切函数的图像和性质 公开课教案

1.4.2 正切函数的性质与图象 考纲要求:能画出y=tanx 的图象,了解三角函数的周期性.,理解正切函数在区间 ()的单调性. 教学目的 知识目标: 了解利用正切线画出正切函数图象的方法; 了解正切曲线的特征,能利用正切曲线解决简单的问题; 掌握正切函数的性质。 能力目标: 掌握正弦函数的周期性,奇偶性,单调性,能利用正切曲线解决简单的 问题。 情感目标: 在借鉴正弦函数的学习方法研究正切函数图象、性质的过程中体 会类比的思想。 教学重点:正切函数的图象形状及其主要性质 教学难点:1、利用正切线得到正切函数的图象 2、对正切函数单调性的理解 教学方法:探究,启发式教学 教学过程 复习导入: 1. 正切函数的定义及几何表示,正切函数tan y x =的定义域是什么? 2. 正弦曲线是怎样画的? 讲授新课: 思考1:能否类比正弦函数图象的作法,画出正切函数的图象呢? 画正切函数选取哪一段好呢?画多长一段呢? 思考2:正切函数是不是周期函数?若是,最小正周期是什么? 思考3. 诱导公式 体现了正切函数的哪种性质? (一)作tan y x =,x ∈??? ? ?- 2,2ππ的图象 tan()tan x x -=-

说明: (1)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数 R x x y ∈=tan ,且()z k k x ∈+≠ ππ 2 的图象,称“正切曲线” 。 (2)由图象可以看出,正切曲线是由被相互平行的直线()2 x k k Z π π=+∈所隔开的 无穷多支曲线组成的。 (二)正切函数的性质 引导学生观察,共同获得: (1)定义域:? ?? ? ??∈+≠ z k k x x ,2|ππ ; (2)周期性:π=T ; (3)奇偶性:由()x x tan tan -=-知,正切函数是奇函数; (4)单调性: 思考:正切函数在整个定义域内是增函数吗? 引导学生观察正切曲线,小组讨论的形式。 师举例说明:

正弦、余弦、正切函数的图像与性质

正弦、余弦、正切函数的图像与性质 一、选择题: 1.函数y =sin x 2+cos x 是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 2.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11° 3.已知函数f (x )=sin ????x -π 2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间????0,π 2上是增函数 C .函数f (x )的图像关于直线x =0对称 D .函数f (x )的奇函数 4.设a =12log sin81o ,b =12log sin 25o ,c =12 log cos25°,则它们的大小关系为( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 5.函数y = lncos x ????-π2<x <π 2的图像是( ) A . B C . D. 6.当-π2<x <π 2时,函数y =tan|x |的图像( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .不是对称图形 7.函数y =tan(sin x )的值域为( ) D .以上均不对

8.若直线y =3与函数y =tan ωx (ω>0)的图像相交,则相邻两交点的距离是( ) A .π 二、填空题 9.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是__________. 10.函数y =1+2sin x 的最大值是__________,此时自变量x 的取值集合是__________. 11.函数y =sin 2x -cos x 的值域是__________. 12.函数y =3sin ????2x +π6的单调递减区间是__________. 13.已知f (n )=sin n π4(n ∈Z ),则f (1)+f (2)+…+f (100)=__________. 14.若关于x 的方程cos 2x -sin x +a =0有解,则a 的取值范围是__________. 15.如果函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且仅有三个不同的交点,那么k 的取值范围是__________. 16.关于三角函数的图像,有下列命题: ①y =sin|x |与y =sin x 的图像关于y 轴对称; ②y =cos(-x )与y =cos|x |的图像相同; ③y =|sin x |与y =sin(-x )的图像关于x 轴对称; ④y =cos x 与y =cos(-x )的图像关于y 轴对称. 其中正确命题的序号是__________. 三、解答题: 17.判断下列函数的奇偶性: (1)f (x )=sin ????2x +3π2; (2)f (x )=sin x 1-sin x 1-sin x 18.作出下列函数的图像: (1)y =tan|x |; (2)y =|tan x |. 19、求函数f (x )=13log tan ??? ?2x +π3的单调递减区间.

相关文档
最新文档