POE 在塑料增韧改性中的应用进展

POE 在塑料增韧改性中的应用进展
POE 在塑料增韧改性中的应用进展

POE 在塑料增韧改性中的应用进展

POE 是美国DuPont Dow 化学公司于1994年采用限定几何构型茂金属催化剂技术推出的乙烯/ 辛烯共聚物。POE 单体辛烯的质量分数在20 %~30 %之间,商品名为Engage ,其中聚乙烯链结晶区起物理交联点的作用,一定量辛烯的引入降低了聚乙烯链的结晶度,形成了呈现橡胶弹性的无定型区,其分子结构可人为地进行控制。POE 独特的分子结构决定了其综合性能优异,其弹性卓越、流动性良好、机械性能高、耐腐蚀性、透气性、电性能优异以及突出的耐低温性和耐热、耐臭氧、耐紫外线和耐水性,使其在通用和工程塑料的增韧和抗低温的改性中倍受关注。

1 POE 对通用塑料的改性

POE 对通用塑料的改性主要是研究其作为增韧剂改性刚性通用塑料,提高刚性通用塑料的韧性。

1. 1 PE/ POE 体系

近年来,木塑复合材料因其成本低、质量轻、机械性能好等优点受到普遍关注。但热塑性塑料在填充木粉后复合材料变脆,限制了木塑复合材料的应用和推广。李兰杰等[3 ] 采用废木粉填充高密度聚乙烯( HDPE) 制备木塑复合材料,并用茂金属聚乙烯(mPE SP1520) 和POE 分别对复合材料进行改性。在两者用量小于12 份时,两者的增韧效果相差不大; 但在用量大于12 份以后,用POE 增韧的复合材料的冲击强度和断裂伸长率增加十分迅速,而用mPE SP1520 时增加幅度比较平缓;用POE 改性能得到较好的增韧效果,扩大了材料的应用范围。

M J O C Guimaraes[ 4 ] 等研究了HDPE 与POE 共混物的力学性能和热性能,热分析结果表明HDPE 和POE 有一定的相互作用;材料的拉伸强度和断裂伸长率得到了提高,当POE 质量分数不小于5 %时,材料在室温下超韧。

POE 改性PE 制备的发泡材料具有良好的弹性和强度,可用于制作粘合胶带。将30 份含离子结构的PE 和6. 5 份偶氮二甲酰胺加入到100 份质量分数为30 %的POE 和70 %的1845 烯2辛烯(质量分数小于20 %) 聚合物]组成的混合物中,挤出成片材,辐射交联,在250 ℃下发泡,所得1 mm 厚的泡沫片材具有良好的韧性;横、纵方向的弯曲强度分别为30. 2 MPa 和24. 3 MPa。

1. 2 聚丙烯(PP) / POE 体系

众所周知,作为大宗的通用塑料品种, PP 存在低温韧性差和缺口敏感性大的缺点,因此,为了改善PP 性能上的不足,弹性体增韧改性一直被视为最有效的途径。虽然三元乙丙胶( EPDM) 对PP 有良好的增韧效果,但目前EPDM 价格高,商品原料多为块状,碎胶有一定困难,流动性也不太理想;同时由于EPDM 本身有颜色,产品很难获得色彩鲜艳的外观。POE 的问世,使其在用于PP 的增韧改性方面具有传统弹性体无法比拟的优势。POE 增韧PP 不仅可以克服EPDM 增韧PP 的不足,而且还赋予PP 更高的冲击性能、高透明性、高的热稳定、高性能/ 价格比等特点。

张金柱[ 6 ] 研究指出,POE 对PP 有更好的增韧作用,在相同的条件下混炼和注塑的样品,无论PP 的熔融流动速率(MFR) 如何变化,其低温( - 30 ℃)冲击能均是POE > EPDM > EPR (二元乙丙橡胶) ,特别是当使用高MFR ( ≥20) 的PP 时, EP2DM 改性的PP 均已变脆,而POE 改性的PP 仍保持相当的韧性。这样避免了以前增韧剂使用高流动性材料时降低体系韧性的缺陷,从而在生产上可使用高流动性PP 体系,可以缩短成型周期,降低生产成本。

商品化的POE 本身呈颗粒状,可以直接加入到颗粒状PP 等其它材料中实行改性。因此POE比EPDM 加工操作上更为简便,这样可大大降低生产成本[6 ] 。

Da Silvi[ 7 ] 研究了PP/ POE 共混体系并与PP/ EPDM 共混体系进行了比较。结果表明,两种共混体系具有相似的结晶行为,其力学性能相似,但PP/ POE 共混物具有更低的转矩,加工性能较好。

冯予星[8 ] 、郭红革[ 9 ] 等研究了PP/ POE 共混体系的相态结构、增韧机理以及共混体系的力学性能。研究结果表明,在相同条件下, POE 加入量比EPDM 少, POE 用量为20 份时就可使PP获得高的低温冲击强度,减少了因加入弹性体而引起的刚性和强度损失。在PP/ POE 共混体系中, POE 在PP 连续相中形成均匀的“海2岛”结构; POE 对PP 改性符合银纹剪切机理,可有效提高PP 的常温、低温冲击强度。通过PP 与弹性体交联的方法可以得到热塑性硫化胶( TPV) , TPV 在实际生产中有很高的应用价值。

Fritz 等[10 ] 将POE 接枝乙烯基硅烷并分散于PP 中,共混物经水解水交联得到TPV ;所得TPV 易于加工成制品,并具有优秀的表面性能。制品具有高断裂强度和断裂伸长率,宽范围的邵氏硬度,非常低的雾度,使用了POE 而无、气味,可以广泛应用于汽车领域。

1. 3 聚苯乙烯(PS) / POE 体系

PS 由于质硬性脆、耐热性差,因此其应用仍受到限制。为改进其缺点,人们采用共聚或共混等方法开发了一系列聚苯乙烯系改性树脂,如苯乙烯与橡胶进行接枝共聚合制得了耐高冲聚苯乙烯( HIPS) 树脂,虽然引入橡胶后提高了聚苯乙烯树

脂的抗冲击性能,但却丧失了透明性。而POE具有良好的透明性和柔软性,苯乙烯基树脂/ POE复合材料则可用于食品容器和包装材料等对产品外观要求严格的领域。用POE 改性苯乙烯基树脂提高其冲击强度和表观性能,经共混、造粒、注射成型,样品具有良好的抗冲击性能,可用于制备电气制品[ 11 ,12 ]

1. 4 通用塑料/ POE/ 无机填料体系

如何减少增韧剂POE 的用量来降低成本又不影响到增韧效果,这是通用塑料/ POE 体系研究开发的热点与方向。在共混物中添加无机或有机填料可使制品的原料成本降低达到增量的目的,或使制品的性能有明显的改善,近年来可见在通用塑料/ POE 共混体系中加入无机填料报道。

王雄刚等[ 13 ] 针对回收高密度聚乙烯(RHDPE) 制得的管材环刚度不足的缺点,采用滑石粉和自制的改性POE (MPOE) 对RHDPE 进行了改性。随着MPOE 用量的增加,三元体系的冲击强度大幅度上升,当质量分数为10 %时体系的冲击强度从9. 3 MPa 上升到15. 2 MPa ,但拉伸强度和弯曲模量下降较多。而滑石粉的加入使体系刚性大幅增加,在滑石粉质量分数为40 %时,制得的RHDPE 管材的环刚度增加了54 %,达到了工业生产的要求。

同时他们还研究PVC/MPOE/ 无机填料体系的力学性能,结果表明,当填充母料中滑石粉或碳酸钙的质量分数为70 %时,三元复合体系的综合性能最好[14 ] 。

顾圆春等[15 ] 采用合金化技术和填充复合工艺,制得高性能的[ 纳米( SiO2 ) ]/ POE/ 纳米高岭土三元复合材料。纳米高岭土和弹性体对PP 增韧具有协同作用,呈现的并不是二者独立增韧作用的简单加和; 纳米高岭土的最佳质量分数为5 % ,用扫描电子显微镜( SEM) 观察PP/ POE(质量分数为20 %) / 纳米高岭土(质量分数为5 %) 的冲击断面,可以看到高岭土粒子被基体所包覆以层状结构分散于共混物基体中,界面结合牢固,这种界面的牢固结合以及独特的分散形态导致该体系具有较高的拉伸强度和突出的冲击韧性。

江涛等[16 ] 研究PP/ POE/ 纳米SiO2 复合材料后得出结论:熔融共混法使POE 与SiO2 均匀分散在PP 基体中,虽然纳米SiO2 粒子在PP 中的分散呈微粒团聚体分布,但与其本身的二次粒子粒径相当且小于临界粒径,因此在受到冲击时起到了吸收能量阻碍裂纹扩展的作用,从而提高了材料的韧性。通用塑料/ POE 的改性研究复合体系具有优异的综合性能,现已开发出多种产品,特别是汽车保险杠具有广阔的市场前景。

申欣[ 17 ] 等人以PP为基础树脂, POE 为增韧剂,用硬脂酸铝表面处理的滑石粉为增强填料,采用双螺杆挤出机制得性能符合要求的汽车保险杠专用料。改性过的PP 缺口冲击强度高达723 J / m ,且具有增强的柔软性、优良的耐热、耐低温及耐老化性能。

刘喜军[18 ] 以PP 为基料, 通过与共聚丙烯( PPB) 、POE、硅灰石以及其它助剂共混改性,制得保险杠、门板汽车专用料。检测分析表明,当m ( PP)∶m(PPB) ∶m ( POE) ∶m (硅灰石) 为(45~48)∶(26~29) ∶(19~22) ∶(4~6) 时,共混料完全可以满足汽车保险杠性能要求; 当m ( PP) ∶m ( PPB) ∶m(POE) ∶m(硅灰石) 为(45~50) ∶(27~29) ∶(3~6) ∶(17~20) 时,共混料完全可以满足汽车门板性能要求。研究中还发现,硅灰石也有一定的增韧功能,部分起到了玻璃短纤维的作用。

2 POE 对工程塑料的改性

POE 的非极性限制了其进一步的应用,采用溶液聚合或熔融挤出赋予聚烯烃一定的极性和反应活性,是改善聚烯烃与工程塑料之间界面亲和性的常用方法。POE 功能化的方法主要是通过FC r \

接枝的手段实现的,接枝POE 直接与工程塑料共混表现出良好的增韧效果,是一种很好的增韧剂;在复合材料中则既具有增韧效果,也具有增容的作用。

2. 1 聚酯/ POE 体系

聚对苯二甲酸乙二醇酯( PET) 作为工程塑料使用时,其缺点是加工中熔体粘度低,在通常的塑加工温度下结晶速度慢、冲击性能差等,限制了它作为工程塑料的广泛应用。用接枝POE 改性PET 的复合材料表现出良好的耐热、抗冲击性能,这种材料由60 %~90 %的回收热塑性PET和10 %~40 %的用甲基丙烯酸缩水硅油醚改性的POE 经熔融共混制得[ 19 ] 。

孙东成等[20 ] 利用SEM、力学性能测试等方法研究了POE 接枝甲基丙烯酸缩水甘油酯(POE2g2GMA) 增韧PET 的形态结构与性能的关系。PET/ POE2g2GMA 共混物的韧性随POE-g-GMA 用量的增加而显著提高,当POE-g-GMA质量分数达到20 %时, PET/ POE2g2GMA 共混物的冲击强度达到873 J / m ;结果表明,POE 接枝物与PET 末端羧基或羟基“原位”反应形成的共聚物改善了PET 与POE 的相容性,显著地提高了共混物的力学性能。

未接枝的POE 对聚对苯二甲酸丁二酯(PB T) 增韧作用不大,而官能化的POE 对PB T增韧显著,共混体系的脆韧转变在较低POE 接枝马来酸酐POE-g-MA H 质量分数(10 %) 下发生,意味着在保证增韧效果的前提下可以减少增韧剂的用量,从而既降低了材料成本又减少了因加入低模量POE-g-MA H 组分而引起材料强度和弹性模量的损失。POE-g-MA

H 与PB T 在挤出过程中原位生成了POE2g2PB T 共聚物,增大了两相界面相互作用,共混体系具有更加均衡的强度和韧性, 综合性能较好。SEM 显示, POE2g2MA H/ PB T 共混体系中分散相具有更细微的分散,有效地诱导PB T 基体产生银纹和剪切屈服,消耗大量的冲击能[21 ] 。

2. 2 PA/ POE 体系

最近几年来,POE 的应用范围已开始渗透到尼龙工程塑料领域, POE 作为尼龙( PA) 的新型改性剂正引起人们的特别关注。与传统EPDM相比,在相同增韧剂含量和相同相容剂含量下, POE 增韧尼龙的效果较好[22 ] 。

PA66 与POE 共混可以相互取长补短,获得所需要的使用性能。但PA66 与POE 属不相容体系,以前使用较多的增容剂是EPDM 接枝马来酸酐( EPDM2g2MA H) ,但马来酸酐MA H 的接枝率和转化率较低,增容效率不高。而POE 接枝马来酸酐( POE2g2MA H) 能显著改善PA66 与POE 间的相容性和界面粘结性,POE-g-MA H 可使PA66/ POE2g2模MA H 共混材料的缺口冲击强度提高至纯PA66材料的14 倍左右。实验发现共混材料分散相的弹性体颗粒内部存在较多份量的有序结构,分散相颗粒具有明显促进结晶的作用,此作用引起PA66 基体结晶温度增加,结晶度增大,并在分散相质量分数为15 %的脆韧转变条件下,达到极大值。试样熔体的冷却速率越快,则此种促进结晶的作用就越明显[ 23 ] 。

陆波等[24 ] 研究了POE 对PA6/ POE/ POE-g-MA H 共混物的力学性能、耐热性和流变性能的影响。结果表明: 在12. 5 份POE-g-MA H 存在的条件下,随着POE 用量增大,共混物的缺口冲击强度不断增大,而拉伸强度、维卡软化温度、表观粘度降低。在混合体系中, POE-g-MA H 具有增容和增韧的双重作用;加入30 份POE 时,共混物的维卡软化温度下降12 ℃,这是因为PA6 在共混物中是连续相, POE 为分散相, PA6 的耐热性比POE 好。

H. Chen 等[25 ] 用挤出的方法制得PA1010/POE-g-MA H 共混物样品,研究了不同接枝率和不同含量的弹性体对共混体系力学性能的影响。结果表明,当弹性体含量一定、接枝率为0. 51 %时,共混体系的综合力学性能最好;在PA1010/POE-g-MA H 体系中, 随POE-g-MA H 含量增加,弹性体粒子的平均尺寸保持不变,这是因为挤出过程形成的共聚物PA1010/ POE-g-MA H 阻碍了弹性体粒子的聚集。

2. 3 PPO/ PA/ POE 体系

将非晶性的聚苯醚( PPO) 和结晶性的PA 进行共混,所得共混物兼具PA 和PPO 的优点,在不损失PPO 的高玻璃化转变温度和尺寸稳定性的前提下, 又赋予PA 耐溶剂性和成型性。但PPO 与PA 是典型的非相容体系,因此,改善两者的相容性是关键[26 ] 。

冯威等[ 27 ] 研究PPO/ PA6/ POE-g-MA H 共混体系的相态结构和力学性能, POE-g-MA H 增强了PPO 和PA6 之间的相互作用,在所研究的范围内,PPO 和POE 分散在PA6 连续相中,共混物的脆韧转变受控于相间的界面强度和弹性体的用量。在保证共混体系各组分间具有适当相容性的情况下,可以制得高韧性的PPO/ PA6/ POE-g-MA H 共混物, 体系的缺口冲击强度可达600 J / m。透射电镜( TEM) 观察发现,冲击断面下方应力发白区有大量空穴,表明弹性体的空穴化是诱发剪切带从而吸收能量的原因。

2. 4 其它工程塑料/ POE 体系

刘晓红[28 ] 比较了不同种类和用量的增韧剂对聚碳酸酯(PC) 力学性能的影响。结果表明,乙烯-醋酸乙烯酯( EV A) 的加入使材料缺口冲击强度提高至纯PC 的25 倍,但拉伸强度急剧下降; POE-g-MA H 对PC 的增韧效果仅次于EV A ,但材料拉伸强度降低程度比EV A 小且材料的断裂伸长率提高很多。而其它两种共混体系PC/ 乙烯2丙烯酸共聚物( EAA) 、PC/ 马来酸酐接枝线型低密度聚乙烯(LLDPE-g-MA H) 的性能介于EV A 和POE-g-MA H 之间。综合考虑材料的各种机械性能,添加质量分数20 %的POE2g2MA H的PC 性能最佳。POE 可以改性热塑性聚氨酯( PU) 。含有PU 质量分数30 %~90 %,POE 质量分数10 %~70 % ,特殊的双酰胺0. 1 %~5. 0 %的复合材料具有中等强度、高弹性和低的永久变形,可用于制备薄膜和片材[29 ] 。

湖南省塑料研究所采用POE、苯乙烯、丙烯腈共聚物(AS) 和EV A 三元共聚物材料制造运动鞋底、跑道、铝塑复合板芯和电动工具手柄等。由于POE 是非极性弹性材料,与AS 的粘合性差,加入EV A 作相容剂,POE 对共混材料的影响起主导作用,拉伸强度、断裂伸长率、压缩永久变形随POE 用量的增加而增加[30 ] 。

3 展望

塑料改性是改善或提高塑料制品质量档次,降低加工成本,提高附加值的有效方法,也是获得具有独特功能的新型高分子材料的最佳途径。POE 是一种优异的新型热塑性弹性体,广泛应用于塑料改性中, 增加对POE 接枝改性以及与POE 形成共聚物的研究,进一步提高POE 与塑料基体之间的相容性,可以扩大其在塑料领域中的应用。另外,笔者认为随着改性技术的发展,单纯的共混、接枝、加入增容剂等改性技术呈现了一定的局限性,单项性能的提高通常会导致其它性能的降低,因此将各种改性技术复合,从而制备出综合性能优异的材料是研究的热点。相信随着广大科研人员的研究和开发,POE

将在更广阔的领域中得到应用。

聚烯烃弹性体POE的性能及使用范围

POE是由辛烯和聚烯烃树脂组成的,连续相与分散相呈现两相分离的聚合物掺混物,通过扫描电子显微镜或相差显微镜的图像表明,可以形成以橡胶为连续相、树脂为分散相或以橡胶为分散相、树脂为连续相,或者两者都呈现连续相时的互穿网络结构。随着相态的变化,共混物的性能也随之而变。若橡胶为连续相时,呈现近似硫化胶的性能;树脂为连续相时,则性能近于塑料。

加工与配合:POE不需混炼和硫化。可采用通常热塑性塑料加工设备进行加工成型。成型加工温度和加工压力一般应略高一些,可在极高的加工速度下加工。可以注射成型、挤出成型,也可用压延机加工成板材或薄膜,并可吹塑成型,利用热成型可制造形状复杂的制品。可根据需要添加各种颜料制成不同的颜色。有些生产厂家依制品的使用要求,提供如耐油型、阻燃型、电稳定型以及可静电涂料型等各种品级的特殊配合料。有时为改善加工性能和某些制品的使用性能或降低成本时,也可以加入某些配合剂,如抗氧剂、软化剂和填充剂、着色剂等。边角料和废料可回收重复加工使用。但一般掺入比例不超过30%,这样对性能无影响POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

基本特性:(1)POE具有热塑性弹性体的一般物性,如成型性、废料再利用和硫化胶性能等。(2)价格低,并且相对密度小,因而体积价格低廉。(3)耐热性、耐寒性优异,使用范围宽广。(4)耐候性、耐老化性良好。(5)耐油性、耐压缩永久变形和耐磨耗等不太好。应用范围:主要用于改性增韧PP、PE和PA在汽车工业方面制作保险杠、挡泥板、方向盘、垫板等等。电线电缆工业上耐热性和耐环境性要求高的绝缘层和护套。也用于工业用制品如胶管、输送带、胶布和模压制品。医疗器械以及家用电器、文体用品、玩具等,以及包装薄膜等等。

POE弹性体材料的性能用途--7086、7256、8556、7380、7270、7447、7467

DuPont Dow弹性体公司的Engage ENR 7086(门尼粘度26,0.901g/cm3,>0.5g/10min)是一种高熔体强度的乙烯-丁烯共聚物,设计用于改性PP均聚或共聚物,应用于吹塑、挤出和热成型。它也是能用于提高填充HDPE挤出料的熔体强度和韧性。当与PP混合后(用量15%~20%),可吹塑更大的部件,如艇的护舷物,允许采用更大的牵引和更宽的加工窗口进行热成型。它也能提高透明PP的冲击强度,以替代PET和PS。

ENR 7256(2g/10min,0.885g/cm3,邵A硬度79,乙烯-丁烯)和ENR 8556(2g/10min,0.885g/cm3,邵A硬度68,乙烯-辛烯)都为管材、型材和线/缆的发泡和挤出进行过优化。二者的加工性能得到改进,挤出速率更快。用于线/缆,与填料或交联结合可提高物理性能;用于挤出型材,则挤出速率更快,产量更高。目标市场包括交联弹性体和韧性热塑性材料。

ENR 7380(门尼粘度48,0.870g/cm3)是一种丁烯品级,设计在软质TPE中作为一种弹性添加剂。当25%~30%的7380与SEBS混合时,可使材料保持所有关键性的同时降低成本5%~10%。其低的结晶度和增强的熔体强度也使它可作为热成型PP的优异改性剂。

ENR 7270(0.8 g/10min, 0.880 g/cm3),ENR 7447(5 g/10min, 0.865 g/cm3)和ENR 7467(1.2 g/10min, 0.862 g/cm3)是三种丁烯品级,设计用于汽车TPO和非汽车塑料改性。ENR 7467是一种高性能品级,具有极低的结晶度和优异的低温韧性。ENR 7270则是一种通用品级,提供了良好的性价比,用于改性PP和HDPE。ENR 7447是一种高流动低密度的品级,设计用于与别的Engage弹性体一起微调PP和HDPE的改性。在PP和HDPE中用5%~10%,ENR 7270和7447就能显著提高家具、电器和草坪/花园设备的抗冲击性能。

增韧剂(POE)应用于PP改性

聚丙烯是五大通用塑料之一,但它的成型收缩率大、易翘曲变形等缺点,限制了其在结构材料和工程塑料方面的应用。以POE为增韧剂,对体系进行增韧改性,同时配以碳酸钙在降低成本的同时,使复合材料取得各项均衡的力学性能,拓展了聚丙烯的应用空间。

1、碳酸钙的活化

随着复合材料工业的迅速发展,碳酸钙已不仅仅是一种填充剂,同时也是一种重要的改性剂。在聚丙烯共混改性体系中,加入碳酸钙可以降低制品的成型收缩率和原料成本,提高改性聚丙烯制品的刚性和耐热性。但是,碳酸钙是无机填料,与聚丙烯的相容性较差,所以在使用前需进行活化处理,以提高碳酸钙与聚合物分子链的结合力,提高填充聚丙烯材料的力学性能,建议使用800目以上的重质碳酸钙,经干燥处理后投入高速搅拌机中,然后加入适量的磷酸脂偶联剂,高速搅拌15-20分钟,对碳酸钙进行活化处理。或者直接使用800目以上的活性重质碳酸钙。

在共混体系中随着活化碳酸钙含量的增加,体系的冲击强度先快速增加,30份以后增加缓慢,40份以后冲击强度降低。用偶联剂活化过的碳酸钙,能使材料的冲击强度增加,这是因为活化碳酸钙的粒子表面发生了物理化学结构和性质的改变,更易分散在基体中。当碳酸钙的含量超过一定程度时,会出现无机粒子集结堆积现象,使共混体系的结构产生内部缺陷,造成各项力学性能的下降。所以,碳酸钙的用量以不超过40份为宜。

2、POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

3、老化

为了使该材料有良好的耐候性,在体系中加入适量的防老化母料或抗氧剂,经测试,试片在氙灯紫外线辐射1000h,相当于一年的时间,冲击强度、拉伸强度保持率分别为88%和86%。氙灯紫外线辐射3000h,相当于三年的时间,冲击强度和拉伸强度的保持率分别为74%和71%,优良的耐老化性能,使该材料的使用周期长,减少了废弃塑料对环境的污染

聚烯烃弹性体(POE)塑料的特性和应用范围介绍

POE是由辛烯和聚烯烃树脂组成的,连续相与分散相呈现两相分离的聚合物掺混物,通过扫描电子显微镜或相差显微镜的图像表明,可以形成以橡胶为连续相、树脂为分散相或以橡胶为分散相、树脂为连续相,或者两者都呈现连续相时的互穿网络结构。随着相态的变化,共混物的性能也随之而变。若橡胶为连续相时,呈现近似硫化胶的性能;树脂为连续相时,则性能近于塑料。

加工与配合:POE不需混炼和硫化。可采用通常热塑性塑料加工设备进行加工成型。成型加工温度和加工压力一般应略高一些,可在极高的加工速度下加工。可以注射成型、挤出成型,也可用压延机加工成板材或薄膜,并可吹塑成型,利用热成型可制造形状复杂的制品。可根据需要添加各种颜料制成不同的颜色。有些生产厂家依制品的使用要求,提供如耐油型、阻燃型、电稳定型以及可静电涂料型等各种品级的特殊配合料。有时为改善加工性能和某些制品的使用性能或降低成本时,也可以加入某些配合剂,如抗氧剂、软化剂和填充剂、着色剂等。边角料和废料可回收重复加工使用。但一般掺入比例不超过30%,这样对性能无影响POE对共混体系的影响

POE是采用茂金属催化剂的乙烯和辛烯实现原位聚合的热塑性弹性体,其特点是:(1)辛烯的柔软链卷曲结构和结晶的乙烯链作为物理交联点,使它既有优异的韧性又有良好的加工性。(2)POE分子结构中没有不饱和双键,具有优良的耐老化性能。(3)POE分子量分布窄,具有较好的流动性,与聚烯烃相容性好。(4)良好的流动性可改善填料的分散效果,同时也可提高制品的熔接痕强度。

随着POE含量的增加,体系的冲击强度和断裂伸长率有很大的提高。可见,POE对PP有优良的增韧作用,与PP、活性碳酸钙有较好的相容性。这是因为POE的分子量分布窄,分子结构中侧辛基长于侧乙基,在分子结构中可形成联结点,在各成分之间起到联结、缓冲作用,使体系在受到冲击时起分散、缓冲冲击能的作用,减少银纹因受力发展成裂纹的机会,从而提高了体系的冲击强度。当体系受到张力时,由于这些联结点所形成的网络状结构可以发生较大的形变,所以,体系的断裂伸长率有显著的增加,当POE的含量增加时,体系的拉伸强度、弯曲强度和弯曲模量均有所下降,这是由POE本身的性能决定的,故POE的含量应控制在20%以下。

POE的含量与熔融指数的关系,加入POE后,体系的熔融指数增加。POE本身的流动性较好,它的加入,同时也改善了整个体系的流动性,当POE含量超过15份以后,体系的熔融指数基本没有变化,若要继续提高体系的流动性,则不能完全依赖于POE。

基本特性:(1)POE具有热塑性弹性体的一般物性,如成型性、废料再利用和硫化胶性能等。(2)价格低,并且相对密度小,因而体积价格低廉。(3)耐热性、耐寒性优异,使用范围宽广。(4)耐候性、耐老化性良好。(5)耐油性、耐压缩永久变形和耐磨耗等不太好。应用范围:主要用于改性增韧PP、PE和PA在汽车工业方面制作保险杠、挡泥板、方向盘、垫板等等。电线电缆工业上耐热性和耐环境性要求高的绝缘层和护套。也用于工业用制品如胶管、输送带、胶布和模压制品。医疗器械以及家用电器、文体用品、玩具等,以及包装薄膜等等。

高分子改性材料的应用

天 然 高 分 子 改 性 材 料 的 发 展 以 及 运 用 景 姓名:李毅 学号:5404310016 专业班级:工业工程101

天然高分子改性材料的发展以及运用 姓名:李毅学号:5404310016 班级:工业工程101 摘要:本文介绍了淀粉、木质素、甲壳素、壳聚糖及瓜尔胶等几种天然高分子材料的研究进展以及改性方法,同时通过几种不同的化学反应详细介绍了壳聚糖的应用,同时介绍了其他几种在当代生活不同领域的应用。 关键词:天然高分子,改性,羧甲基化反应,酯化反应,酰化反应,接枝反应,运用,阻燃和耐热。 正文部分: 1.引言 近年来基于石油产品的合成高聚物材料也已广泛应用于包装、日用品、医用、建材、宇航、工业和农业各个领域,。然而,基于石油资源的合成高分子材料大量使用不仅造成环境污染,而且以后将面临石油资源逐渐枯竭的威胁。而天然高分子来源于自然界中动物、植物和微生物,它们是取之不尽,用之不竭的可再生资源。所以在石油资源日益匮乏和价格持续高涨之际,天然高分子的研究和利用出现新的发展机遇。天然高分子中含量最丰富的资源包括纤维素、木质素、甲壳素、淀粉、各种动植物蛋白质以及多糖等,它们具有多种功能基团,可通过化学、物理方法改性成为新材料,也可通过化学、物理及生物技术降解成单体或低聚物用作能源以及化工原料。因此,近年在该领域的基础和应用研究的优秀成果以及日益增强的全球环境法则的压力共同作用下已孵化出这一新兴行业。 2.天然高分子材料的研究进展以及运用 2.1 淀粉 天然淀粉资源十分丰富,如土豆、玉米、木薯、菱角、小麦等均有高含量的淀粉,据统

计,自然界中含淀粉的天然碳水化合物年产量达5000亿t,是人类可以取用的最丰富的有机资源。淀粉及其衍生物是一种多功能的天然高分子化合物,具有无毒、可生活降解等优点。它是一种六元环状天然高分子,含有许多羟基,通过这些羟基的化学反应生产改性淀粉,另外,淀粉还能与乙烯类单体如丙烯腈、丙烯酸、丙烯酰胺等通过接枝共聚反应生成共聚物。这些共聚物可用作絮凝剂、增稠剂、黏合剂、造纸助留剂等。近年来淀粉的接枝共聚研制新型絮凝剂在国内也取得长足进展,有人用淀粉与二甲基二烯丙基氯化铵接枝共聚制得阳离子淀粉,实验对炼油废水、生活废水有较好的处理效果,COD去除率可达70%以上,色度残留率低于20%,是一种较好的絮凝剂。淀粉-聚丙烯酰胺接枝共聚物作为有机高分子絮凝剂的研究早巳受到人们的重视,并有不少成果问世。我国尹华等以淀粉为基本原料,加入丙烯酰胺、三乙胺、甲醛和适量的盐酸进行接枝共聚反应,合成出一种阳离子型高分子絮凝剂FNQE,该药剂具有独特的分子结构和较高的相对分子质量分布。FNQE对高岭土悬浊液有良好的絮凝除浊效果,对城市污水在投药量为10mg/L时即能达到理想的净化效果,浊度、色度的去除率均在90%以上。 2.2 ,木质素 木质素与纤维素、半纤维素粘结在一起形成植物的主要结构,是植物界中非常丰富的天然高分子。相对于其它天然高分子,木质素具有更为复杂的组成及多级结构,是最难认识和应用的天然高分子之一。但是,木质素分子具有众多不同种类的活性官能基,兼具可再生、可降解、无毒等优点,而且工业木质素来源于造纸黑液,成本低廉,因而被视为优良的绿色化工原料,其综合利用备受关注。在应用和研究较为活跃的木质素高分子材料领域,可通过化学反应和物理共混将木质素与酚醛树脂、聚氨酯、聚烯烃、橡胶、聚酯、聚醚、淀粉、大豆蛋白等复合,提高材料的性能并降低成本。木质素是一种与工程塑料极为相似的,具有高

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

尼龙工程材料的改性

尼龙工程材料的改性 摘要: 尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。因此对尼龙66的改性受到人们的广泛关注。国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。 1.尼龙改性的研究进展 对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。 1.1共混改性 在尼龙改性研究中,高分子合金是最常用的一种手段。其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。就尼龙合金而言,主要的研究集中在以下几个方面。1.1.1尼龙与聚烯烃(PO)共混改性 聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。 在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。

聚丙烯塑料的改性及应用

聚丙烯塑料的改性及应用 1、聚丙烯在合成树脂生产中占据重要地位,发展极为迅速 聚丙烯是五大通用合成树脂中的一个重要品种,在国内外的发展均十分迅速。在全球塑料用五大合成树脂中,聚丙烯的产量占有1/4左右的份额,预计2006年世界五大通用合成树脂的总产能将达到1亿9千万吨,其中聚丙烯4878万吨,占总产能的25.6%[1]。而我国2004年聚丙烯树脂产量为474.88万吨,进口291.4万吨,出口1.53万吨,其表观消费量为764.7万吨,占当年全国五大通用树脂表观消费量总和2954万吨的25.9%。预计到2010年我国聚丙烯树脂的表观消费量将增加至1080万吨,较2004年增长40%以上。表1列出近期投产和正在建设的聚丙烯装置的地点和产能。 表1 近期投产和在建聚丙烯装置

在已宣布的新增产能中,中石化253万吨/年,中石油135万吨/年,而且大多数项目的产能都在30万吨以上,达到世界级规模。这些装置全部投产后,中石化的聚丙烯产能将超过巴赛尔公司,跃居全球榜首,中石油也将列位前五名之列,届时中国将成为生产聚丙烯树脂全球产能最大的国家。 另据报道,我国聚丙烯树脂的产量1995年仅为107.35万吨,到2005年达到522.95万吨,平均年递增38.7%,同期表观消费量也从212.92万吨增至823万吨,平均年递增28.7%,成为全球聚丙烯消费增长最快的国家[2]。 1 聚丙烯基本知识 1.1 树脂与塑料的定义和分类 树脂(Resin):高分子材料亦称高分子聚合物,分为天然高分子材料和合成高分子材料。在合成高分子材料中按塑料、橡胶、纤维三大用途分为合成树脂、合成橡胶和合成纤维三大类,其中用于塑料的合成树脂所占的比例最大,约占合成材料总量的2/3以上。 塑料(Plastics):以合成树脂为主要成分,添加有适量的填料、助剂、颜料,而且在加工过程中能流动成型的材料。 热塑性塑料(ThermoPlastics):能在特定温度范围内反复软化和冷却硬化的塑料。 热固性塑料(Thermosetting Plastics):在第一次成型之后,成为不熔、不溶性物料的塑料。

ZSM-5分子筛合成和改性的研究进展详解

ZSM-5分子筛合成和改性的研究进展 摘要:ZSM-5分子筛在工业中应用广泛。本文详细阐述了ZSM-5沸石分子筛的各种合成方法,并介绍了常用的高温水热处理、金属改性和磷改性等改性技术现状及其应用。 关键词:ZSM-5,分子筛,合成,改性 ZSM-5沸石分子筛是Mobil公司于20世纪70年代开发的一种高硅三维交叉直通道的新结构沸石分子筛。ZSM-5分子筛属高硅五元环型沸石,其基本结构单元由8个五元环组成,这种基本结构单元通过共边联结成链状结构,然后再围成沸石骨架,其理想晶胞组成为:Na n(Al n Si96-n O192)·16H2O。该沸石分子筛亲油疏水,热和水热稳定性高,大多数的孔径为0.55nm左右,属于中孔沸石。由于其独特的孔结构不仅为择形催化提供了空间限制作用,而且为反应物和产物提供了丰富的进出通道,也为制备高选择性、高活性、抗积炭失活性能强的工业催化剂提供了晶体结构基础。由此,其成为了石油工业中择形反应中最重要的催化材料之一。不仅如此,ZSM-5分子筛在精细化工和环境保护等领域中也得到了广泛的应用。因此,对ZSM-5分子筛的研究具有重要的理论意义和实践价值。 本文在介绍ZSM-5分子筛结构的基础上,分析总结了ZSM-5分子筛的各种合成方法,如有机胺合成,无机胺合成等方法。此外,浅述了ZSM-5分子筛在改性方面的研究,以及未来ZSM-5分子筛的重点研究方向。 1 ZSM-5分子筛的结构 ZSM-5分子筛属于正交晶系,晶胞参数[1]为a=2.017nm,b=1.996nm,c=1.343nm。ZSM-5的晶胞组成可表示为Na n(Al n Si96-n O192)·16H2O。式中n是晶胞中Al原子个数,可以由0~27变化,即硅铝物质的量比可以在较大范围内改变,但硅铝原子总数为96个。 ZSM-5分子筛的晶体结构由硅(铝)氧四面体所构成。硅(铝)氧四面体通过公用顶点氧桥形成五元硅(铝)环,8个这样的五元环组成ZSM-5分子筛的基本结构单元。ZSM-5分子筛的孔道结构由截面呈椭圆形的直筒形孔道(孔道尺寸为0.54 nm × 0.56 nm)和截面近似为圆形的Z字型孔道(孔道尺寸为0.52 nm × 0.58 nm)交叉所组成[2],如图1所示。两种通道交叉处的尺寸为0.9 nm,这可能是ZSM-5

qb2246-96 食品添加剂-瓜尔胶

中华人民共和国轻工行业标准 食品添加剂 瓜尔胶 QB 2246-96 前言 本标准等效采用FAO/WHO1992年瓜尔胶的标准。其中,鉴别试验、酸不溶物、硼酸盐、蛋白质、淀粉试验、砷、铅、重金属的指标均采用FAO/WHO标准;干燥减量、总灰分指标略优于FAO/WHO标准。此外还增加了粘度和细度指标。 本标准的具体检验方法采用经试验确认可靠的方法和其他标准中的检验方法,采用的标准包括FAO/WHO1992年瓜尔胶的标准和中华人民共和国国家标准。 本标准由中国轻工总会食品造纸部提出。 本标准由全国食品发酵标准化中心、卫生部食品卫生监督检验所技术归口。 本标准由中国石油天然气油田化学公司、中国食品发酵工业研究所负责起草。 本标准主要起草人:郑立凯、单齐梅、方军、吴玉宏。

1 范围 本标准规定了食品添加剂—瓜尔胶的技术要求、试验方法、检验规则以及关于包装、标志、贮存和运输的各项要求。 本标准适用于从热带豆科草本植物—瓜尔豆〖Cyamops tetragonoloba(L·)Taub〗种子经破碎,去其种皮、子叶(胚芽)后取其胚乳加工精制而成的天然植物胶。其主要成分为半乳甘露聚糖,在食品工业生产中用作增稠剂、稳定剂等。 2 引用标准 下列标准所包含的条文,通过在标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 5009.4-85 食品中灰分的测定方法 GB 6284-86 化工产品中水分含量测定的通用方法重量法 GB 8449-87 食品添加剂中铅的测定方法 GB 8450-87 食品添加剂中砷的测定方法 GB 8451-87 食品添加剂中重金属的限量试验法 GB/T 14771-93 食品中蛋白质的测定方法 3 结构式、分子量 结构式: 分子量:22万道尔顿。 4 技术要求 4.1 外观 乳白色可自由流动粉末。 4.2 理化指标 食品添加剂瓜尔胶的质量应符合表1要求。 表1

改性尼龙需要注意的问题点

聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。包括脂肪族PA,脂肪—芳香族PA和芳香族PA。其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。是美国著名化学家卡罗瑟斯和他的科研小组发明的。 尼龙中的主要品种是尼龙6和尼龙66,占绝对主导地位,其次是尼龙11,尼龙12,尼龙610,尼龙612,另外还有尼龙1010,尼龙46,尼龙7,尼龙9,尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等,尼龙的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。 尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。 尼龙[1],是聚酰胺纤维(锦纶)是一种说法. 可制成长纤或短纤。 尼龙是美国杰出的科学家卡罗瑟斯(Carothers)及其领导下的一个科研小组研制出来的,是世界上出现的第一种合成纤维。尼龙的出现使纺织品的面貌焕然一新,它的合成是合成纤维工业的重大突破,同时也是高分子化学的一个重要里程碑。 1928年,美国最大的化学工业公司——杜邦公司成立了基础化学研究所,年仅32岁的卡罗瑟斯博士受聘担任该所的负责人。他主要从事聚合反应方面的研究。他首先研究双官能团分子的缩聚反应,通过二元醇和二元羧酸的酯化缩合,合成长链的、相对分子质量高的聚酯。在不到两年的时间内,卡罗瑟斯在制备线型聚合物特别是聚酯方面,取得了重要的进展,将聚合物的相对分子质量提高到10 000~25 000,他把相对分子质量高于10 000的聚合物称为高聚物(Superpolymer)。1930年,卡罗瑟斯的助手发现,二元醇和二元羧酸通过缩聚反应制取的高聚酯,其熔融物能像制棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可达到原来的几倍,经过冷却拉伸后纤维的强度、弹性、透明度和光泽度都大大增加。这种聚酯的奇特性质使他们预感到可能具有重大的商业价值,有可能用熔融的聚合物来纺制纤维。然而,继续研究表明,从聚酯得到纤维只具有理论上的意义。因为高聚酯在100 ℃以下即熔化,特别易溶于各种有机溶剂,只是在水中还稍稳定些,因此不适合用于纺织。 随后卡罗瑟斯又对一系列的聚酯和聚酰胺类化合物进行了深入的研究。经过多方对比,选定他在1935年2月28日首次由己二胺和己二酸合成出的聚酰胺66(第一个6表示二胺中的碳原子数,第二个6表示二酸中的碳原子数)。这种聚酰胺不溶于普通溶剂,熔点为263 ℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。从其性质和制造成本综合考虑,在已知聚酰胺中它是最佳选择。接着,杜邦公司又解决了生产聚酰胺66原料的工业来源问题,1938年10月27日正式宣布世界上第一种合成纤维诞生了,并将聚酰胺66这种合成纤维命名为尼龙(Nylon)。尼龙后来在英语中成了“从煤、空气、水或其他物质合成的,具有耐磨性和柔韧性、类似蛋白质化学结构的所有聚酰胺的总称”。 聚酰胺(尼龙) 聚癸二酸癸二胺(尼龙1010) 聚十一酰胺(尼龙11) 聚十二酰胺(尼龙12) 聚己内酰胺(尼龙6) 聚癸二酰乙二胺(尼龙610) 聚十二烷二酰乙二胺(尼龙612) 聚己二酸己二胺(尼龙66) CAS编码:32131-17-2

尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/2117539079.html,)尼龙的改性特性以及应用范围 由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。 因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。主要在以下几方面进行改性: ①改善尼龙的吸水性,提高制品的尺寸稳定性。 ②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。 ③提高尼龙的机械强度,以达到金属材料的强度,取代金属 ④提高尼龙的抗低温性能,增强其对耐环境应变的能力。 ⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。 ⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。 ⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。 ⑧降低尼龙的成本,提高产品竞争力。

总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。 改性PA产品的最新发展 前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。 20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。 20世纪90年代,改性尼龙新品种不断增加,这个时期改性尼龙走向商品化,形成了新的产业,并得到了迅速发展,20世纪90年代末,世界尼龙合金产量达110万吨/年。 在产品开发方面,主要以高性能尼龙PPO/PA6,PPS/PA66、增韧尼龙、纳米尼龙、无卤阻燃尼龙为主导方向;在应用方面,汽车部件、电器部件开发取得了重大进展,如汽车进气歧管用高流动改性尼龙已经商品化,这种结构复杂的部件的塑料化,除在应用方面具有重大意义外,更重要的是延长了部件的寿命,促进了工程塑料加工技术的发展。 改性尼龙发展的趋势 尼龙作为工程塑料中最大最重要的品种,具有很强的生命力,主要在于它改性后实现高性能化,其次是汽车、电器、通讯、电子、机械等产业自身对产品高性能的要求越来越强烈,相关产业的飞速发展,促进了工程塑料高性能化的进程,改性尼龙未来发展趋势如下。

沸石研究进展

沸石在环境中的吸附特性的研究进展 张艳艳 南京工业大学环境学院环境工程 摘要:沸石是一种优良的吸附剂,具有成本低、使用方便、安全且不会造成二次污染等特点。其特性对于控制环境污染极为重要,尤其适用于水处理,净化空气,脱水方面,同时还可作滤料。沸石的应用前景广泛,应继续加大对各种天然沸石性能、结构和其改性工艺的研究,充分发挥其应用性能、拓宽其应用范围,使其在环境保护和污染处理中得到更好的应用。 关键词:沸石吸附作水处理 Study on investigation processes of zeolite adsorption effect in the environment Zhang Yanyan Nanjing University of Technology Collgege of Environmental Sciences Abstrac t:Zeolite is a superior adsorbent,which is cheap, convenient, safe and without any secondary pollution. Its characteristics are quite useful for the environmental pollution-control, particularly suitable for water treatment, air purification, dehydration aspect, and it can also be a filter. The application prospects of zeolite is quite extensive,the attention should be focused on the further study of all kinds of natural zeolites and their character, structure and modification to widen their application in water treatment. Key words: zeolite; adsorption ;water treatment 1 引言 沸石作为一种具有优异功能的非金属矿物材料,在工业中有广泛的应用。其显著特点是孔隙度高、比表换性、吸附性、催化性、耐酸性、耐热性、耐辐射性

尼龙改性中使用的相容剂和增韧剂

尼龙改性中主要可以使用的相容剂为POE接枝相容剂ST-2,另外还有EPDM接枝相容剂ST-18,我们现在生产得最多的是POE 接枝相容剂ST-2,在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙以及增韧尼龙中,我们都建议大家使用ST-2,因为POE接枝相容剂ST-2在尼龙中的增韧效果比较理想,ST-2在尼龙中的作用主要是提高尼龙的韧性及冲击强度。在玻纤增强尼龙、防火尼龙、玻纤防火增强尼龙中,建议大家使用ST-2的添加量为5-10%时较为理想,添加量太少,可能增韧效果达不到要求,添加量太多,可能对尼龙的防火、拉伸强度以及耐温会有一定的影响,任何事物只能是量力而为,相容剂的使用亦是如此。而在上述尼龙改性中的一些特殊情况,如用户只要求冲击强度达到一定高度而对尼龙耐温和拉伸强度没有什么要求,则ST-2的使用量可以在10%以上。另外ST-2的一个大的用途是在超韧尼龙和超韧耐寒尼龙中使用,这时ST-2的建议使用量为15-20%,甚至在一些高要求的情况中,ST-2的使用量需达25%以上。ST-2在尼龙中使用时,尼龙最高缺口冲击强度可达120KJ/ m2,耐寒尼龙最低温度可做到零下35℃,另外在超韧耐寒尼龙改性中,对尼龙的粘度的选择亦有较高要求,这一点是许多尼龙改性工作者所不注意的,在超韧耐寒尼龙改性中,要求尼龙粘度达2.8以上,否则,相容剂加得再多,冲击强度也难提高。我公司ST-2在PBT改性中亦能起到很好的相容增韧作用,用户如作高韧性要求的PBT改性产品,ST-2 一定会让你得到意想不到的帮助。 EPDM接枝相容剂ST-18主要用于超耐寒尼龙中,如要求尼龙的耐寒在-35℃到-40℃的情况,就需用它。

尼龙材料相关整理

1.聚酰胺特性 聚酰胺(PA)具有品种多、产量大、应用广泛的特点,是五大工程塑料之一。但是,也由于聚酰胺品种繁多,在应用领域方面有些产品具有相似性,有些又有相当大的差别,需要仔细区分。 聚酰胺(Polyamide)俗称尼龙,是分子主链上含有重复酰胺基团-[-NHCO-]-的热塑性树脂总称。 尼龙中的主要品种是PA6和PA66,占绝对主导地位;其次是PA11、PA12、PA610、PA612,另外还有PA1010、PA46、PA7、PA9、PA13。新品种有尼龙6I、尼龙9T、特殊尼龙MXD6(阻隔性树脂)等;改性品种包括:增强尼龙、单体浇铸尼龙(MC尼龙)、反应注射成型(RIM)尼龙、芳香族尼龙、透明尼龙、高抗冲(超韧)尼龙、电镀尼龙、导电尼龙、阻燃尼龙、尼龙与其他聚合物共混物和合金等。 1.1.性能指标 尼龙为韧性角状半透明或乳白色结晶性树脂,作为工程塑料的尼龙分子量一般为15000-30000。尼龙具有很高的机械强度,软化点高,耐热,摩擦系数低,耐磨损,具有自润滑性、吸震性和消音性,耐油,耐弱酸,耐碱和一般溶剂;电绝缘性好,有自熄性,无毒,无臭,耐候性好等。尼龙与玻璃纤维亲合性十分良好,因而容易增强。但是尼龙染色性差,不易着色。尼龙的吸水性大,影响尺寸稳定性和电性能,纤维增强可降低树脂吸水率,使其能在高温、高湿下工作。其中尼龙66的硬度、刚性最高,但韧性最差。尼龙的燃烧性为UL94V2级,氧指数为24-28。尼龙的分解温度﹥299℃,在449℃-499℃会发生自燃。尼

龙的熔体流动性好,故制品壁厚可小到1mm。 1.2.性能特点与用途 1.2.1.PA6 物性:乳白色或微黄色透明到不透明角质状结晶性聚合物;可自由着色,韧性、耐磨性、自润滑性好、刚性小、耐低温,耐细菌、能慢燃,离火慢熄,有滴落、起泡现象。最高使用温度可达180℃,加抗冲改性剂后会降至160℃;用15%-50%玻纤增强,可提高至199℃,无机填充PA能提高其热变形温度。 加工:成型加工性极好,可注塑、吹塑、浇塑、喷涂、粉末成型、机加工、焊接、粘接。 PA6是吸水率最高的PA,尺寸稳定性差,并影响电性能(击穿电压)。 应用:轴承、齿轮、凸轮、滚子、滑轮、辊轴、螺钉、螺帽、垫片、高压油管、储油容器等。 1.2.2.PA66 物性:半透明或不透明的乳白色结晶聚合物,受紫外光照射会发紫白色或蓝白色光,机械强度较高,耐应力开裂性好,是耐磨性最好的PA,自润滑性优良,仅次于聚四氟乙烯和聚甲醛,耐热性也较好,属自熄性材料,化学稳定性好,尤其耐油性极佳,但易溶于苯酚,甲酸等极性溶剂,加碳黑可提高耐候性;吸水性大,因而尺寸稳定性差。 加工:成型加工性好,可用于注塑、挤出、吹塑、喷涂、浇铸成型、机械加工、焊接、粘接。

ZSM_5沸石分子筛的合成和表面改性研究进展

ZSM -5沸石分子筛的合成和表面改性研究进展 杨少华 崔英德 陈循军 涂 星 (广东工业大学轻工化工学院,广州510090) 摘 要 综述了近年来ZS M -5沸石分子筛的合成及表面改性研究进展。合成方面重点介绍了有机胺合成、无机胺合成及负载合成方法;表面改性方面重点介绍了水蒸气改性、离子交换改性及化学气相沉积改性方法。 关键词 ZS M -5沸石 分子筛表面改性 合成 收稿日期:2003202221。 作者简介:杨少华,广东工业大学在读研究生,主要从事高分子材料的合成研究。 沸石是一种结晶态的铝硅酸盐,由SiO 4和AlO 4四面体单元交错排列成空间网络结构。在 晶体结构中存在着大量的空穴,空穴内分布着可移动的水分子和阳离子。这种结构特点使沸石具 有选择吸附、催化和离子交换三大特性〔1〕 。ZS M -5沸石分子筛是M obil 公司于20世纪70年 代开发的高硅三维直通道结构沸石,属于中孔沸石,由于它没有笼,所以在催化过程中ZS M -5沸石催化剂不易积碳,并且有极好的热稳定性、耐酸 性、疏水性和水蒸气稳定性〔2〕。 1 ZSM -5沸石分子筛的合成1.1 有机胺合成 有机胺合成是合成沸石分子筛最常用的方 法。常用的有机胺模板剂可分为5类〔3〕 :(1)直链或环状烷基胺,如苄基丁胺、四乙基铵盐、三丁胺、三乙胺、二异丙胺、异丁胺、二异丁胺、叔辛胺、新戊基胺、环己胺、环庚胺、1,2-二氨基环己烷、2-或4-甲基环己胺、四甲基乙基二胺、R 4N +-螺旋化合物等;(2)含氧有机化合物,如羟基二胺、氯化钠-三乙醇胺、含1个或2个氧原子的饱和环胺、与Ⅳ族金属络合的醚(尤为环醚类)、乙醇胺、饱和低碳醇;(3)含氮杂环化合物,如吡啶、2-氨基吡啶、甲基紫等;(4)烷基磺酸盐;(5)含氮正离子的紫罗烯或其离子交联聚合物等。 模板剂对ZS M -5分子筛的粒径有显著影响。孙慧勇等人分别以正丁胺、乙二胺和己二胺作模板剂,用水热合成法制备了粒径在200~1000nm 的小晶粒ZS M -5分子筛,研究了碱度、 温度、模板剂和初始浓度等对分子筛粒径和分布 的影响〔4〕 。结果表明,较高的碱度和反应物浓度 有利于晶粒杂原子分子筛的合成。水热合成中程序升温合成的分子筛颗粒小,粒度均匀,抑制了二 次成核过程。用不同模板剂合成的ZS M -5分子筛晶粒大小的顺序为:正丁胺>己二胺>乙二胺。 国外也有关于纳米级ZS M -5分子筛的报道〔5,6〕 。 有文献报道了一种高硅ZS M -5分子筛的合成方法〔7〕 ,以固体硅胶为硅源,硫酸铝或偏铝酸钠为铝源,烷基胺类有机物(Q )为有机模板剂,制备出n (SiO 2)∶n (Al 2O 3)=100~1000,n (H 2O )∶n (SiO 2)=1.0~9.5,n (Na 2O )∶n (SiO 2)=0.02~0.3,n (Q )∶n (SiO 2)=0.02~0.50的反应混合 物。然后将该反应混合物按常规方法水热晶化,或者先将反应混合物于20~105℃陈化4~48h 后再在较高温度下晶化。该方法因投料含水量较低,可以提高单釜合成效率并降低有机模板剂的用量。1.2 无机胺合成 由于有机胺合成ZS M -5分子筛的价格比较昂贵且存在较大的毒性,所以很多学者对无机胺合成ZS M -5分子筛进行了广泛的研究。已有关于用乙醇或甲醇代替有机胺合成ZS M -5分子筛 的报道〔8〕 。陈丙义等人以氨水、硫酸铝、水玻璃为主要原料合成了ZS M -5分子筛,研究了合成温 度和时间对分子筛的影响〔9〕 。结果表明,在147~177℃范围内,以氨水为模板剂可以合成出ZS M -5沸石分子筛。温度越低,合成所需时间越 长。通过XRD 分析,以氨水为模板剂合成的

尼龙6的增韧性研究及应用前景

尼龙6的增韧性研究及应用前景 谢敏敏 [摘要]:综述了国内外尼龙增韧改性的研究进展,介绍了高韧性尼龙 6工程塑料的研究进展及应用前景,并从不同方面对尼龙的增韧进行了探讨,例如与聚烯烃及弹性体共混增韧、掺混高韧性工程塑料增韧、无机粒子增韧。 [关键词]:尼龙6 增韧 尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键,能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。但是尼龙6存在低温和干态冲击性能差,吸水性大等弱点,使其应用领域受到一定限制,为适应工业发展的需要,近年来通过共混改性,使其向高冲击、低吸水和优化加工等方向发展的研究成为广泛关注的课题。尼龙6的增韧工作自20世纪70年代以来一直是尼龙改性的重要课题,美国、西欧、日本先后开发了各种牌号的高抗冲尼龙6合金。尼龙6是比较容易形成合金的树脂,合适的相容剂是形成韧性尼龙的关键。 高韧尼龙6合金的获得主要有以下三种途径:一是通过与聚烯烃及弹性体共混;二是掺混高韧性工程塑料;三是无机粒子增韧。 1. 聚烯烃、弹性体增韧 尼龙6与非极性或弱极性的聚烯烃、弹性体共混可以改善韧性。但尼龙6带有强极性的酰胺基团,与聚烯烃、弹性体的相容性差,导致合金的韧性下降。解决相容性的方法有两种:一种方法是尼龙6中加入单体熔融接枝聚烯烃工弹性体,单体一般为带羧基官能团的马来酸酐(MAH)、甲基丙烯酸缩水甘油醇(GMA);另一种是加入一种能同聚烯烃或弹性体相容的、带有活性基团(如环氧基)的第三组分,反应基团可以和尼龙6分子末端的胺基实现反应性相容。另外,采用聚烯烃接枝丙烯酸的方法是改善尼龙与聚烯烃弹性体相容性的另一种有效途径。这是由于接枝丙烯酸共聚物所带的羟基官能团同样能与尼龙末端的胺基反应形成化学键。虽然羟基的反应活性不如二酸酐,但是由于丙烯酸自身可以发生聚合,在接枝过程中可形成较长的聚丙烯酸支链,因而可获得较高的接枝率;所制备的接枝共聚物与尼龙

尼龙66改性的最新研究进展

xx66改性的最新进展 第一章诸论 1.1xx66的概述 尼龙66是一种高档热塑性树脂,是制造化学纤维和工程塑料优良的聚合材料。它是高级合成纤维的原料,可广泛用于制作针织品、轮胎帘子线、滤布、绳索、渔网等。经过加工还可以制成弹力尼龙,更适合于生产民用仿真丝制品、泳衣、球拍及高级地毯等。尼龙66还是工程塑料的主要原料,用于生产机械零件,如齿轮润滑轴承等。也可以代替有色金属材料作机器的外壳。由于用它制成的工程塑料具有比重小,化学性能稳定,机械性能良好,电绝缘性能优越,易加工成型等众多优点,因此,被广泛应用于汽车、电子电器、机械仪器仪表等工业领域,其后续加工前景广阔。 尼龙66由己二胺和己二酸缩合制得,常见的尼龙是一种结晶性高分子,不同牌号、不同测试方法报道的尼龙66的熔点在250-271℃之间。由于尼龙66无定型部分的酞胺基易与水分子结合,常温下尼龙66的吸水率较高。与一般塑料相比,尼龙66的冲击韧性大,耐磨性优良,摩擦噪音小,另外,尼龙66对烃类溶剂,特别是汽油和润滑油的耐受力较强。尼龙66的90%应用于工业制品领域。 其中,尼龙在汽车工业中的用量占总用量的37%,其用途包括储油槽、汽缸盖、散热器、油箱、水箱、水泵叶轮、车轮盖、进气管、手柄、齿轮、轴承、轴瓦、外板、接线柱等。尼龙66的第二大应用领域是电子电器工业,消耗量占总量的22%,其用途包括电器外壳、各类插件、接线柱等。此外尼龙66也被广泛应用于文化办公用品、医疗卫生用品、工具、玩具等场合。 我国尼龙66的生产起步于60年代中期。1964年辽阳石油化纤公司引进了法国生产技术,建设了年产 4.6万吨的生产装置。1994年,我国第二个尼龙“生产装置开工建设,该装置引进日本的技术,年产尼龙66为

瓜尔胶

天然增稠剂之————瓜尔胶 1958年8月25日,日清食品公司的创始人安藤百福(已故,原名吴百福,日籍台湾人)销售了全球第一袋方便面——袋装“鸡汤拉面”以后,方便面得到了极大的发展,2007年方便面的全球销售量大约为979亿包,全世界平均每人消费15包。公司预测,如果消费量继续保持增长,10年后方便面的全球销量有望翻一番,达到2000亿包。目前消费方便面最多的国家是中国,其后依次为印度尼西亚、日本和美国。速食方便面给我们的生活带来了极大的方便,其中的配料也是数不胜数,本篇文章主要介绍其中的食品添加剂之一,公认的天然增稠剂之一——瓜尔胶 瓜尔胶:瓜尔胶从产于印度、巴基斯坦等地的瓜尔豆(瓜尔豆在民间,其果实作为缓泻剂,并使用于因胆汁而引起的疾病。叶子可治夜盲症;煮熟的种子作成膏药用于治疗头胀痛、肝大以及骨折而引起的肿胀。瓜尔豆全草烧成灰,与油混合,调匀涂敷治疗烫伤。)种子的胚乳中提取得到,主要成分为半乳甘露聚糖,我们通常所说的瓜尔胶指的是瓜尔糖,其结构是由D甘露糖通过β-1,4甙键连接形成主链,在某些甘露糖上D-半乳糖通过α-1,6甙键形成侧链而构成多分枝的聚糖,从整个分子来看,半乳糖在主链上呈无规分布,但以两个或三个一组居多。这种基本呈线形而具有分支的结构决定了瓜尔胶的特性与那些无分支、不溶于水的葡甘露聚糖有明显的不同。因来源不同,瓜尔胶的分子量及单糖比例不同于其它的半乳甘露聚糖。瓜尔胶的分子量约为100万~200万,甘露糖与半乳糖之比约为1.5一2/1。 瓜尔胶的主要成分: 瓜尔胶的性质 瓜尔胶为白色或浅黄色,可自由流动的粉末,略微带有豆腥味,易吸潮。瓜尔胶在水溶液中表现出典型的缠绕生物聚合物的性质,一般而言,0.5%以上的瓜尔胶溶液已呈非牛顿流体的假塑性流体特性,没有屈服应力。瓜尔胶在冷水中就能充分水化(一般需要2h),能分散在热水或冷水中形成粘稠液,具体粘度取决于粒度、制备条件及温度,瓜尔胶为天然胶中粘度最高者。 瓜尔胶是一种溶胀高聚物,水是它的通用溶剂,不过也能以有限的溶解度溶解于与水混溶的溶剂中,如乙醇溶液中。此外由于瓜尔胶的无机盐类兼容性能,其水溶液能够对大多数一价盐离子(Na+、K+、Cl-等)表现出较强的耐受性,如食盐的浓度可高达60%;但高价金属离子的存在可使溶解度下降。 瓜尔胶分子主链上每个糖残基都有两个顺式羟基,在控制溶液pH值的条件下,将会通过极性键和配位键与游离的硼酸盐、金属离子进行交联,生成具有一定弹性的水凝胶,此外还能形成一定强度的水溶性薄膜。瓜尔胶与大多数合成的或天然的多糖具有很好的配伍和协同增效作用,如瓜尔胶与黄原胶、海藻酸钠、魔芋

改性瓜尔胶的研究进展

收稿日期:2005-03-15 基金项目:/十五0国家科技攻关课题(2004BA 502B03); 国家科技成果重点推广计划(2005EC000150)。 改性瓜尔胶的研究进展 朱昌玲,薛华茂,孙达峰,张卫明,史劲松,顾龚平 (南京野生植物研究院,江苏南京210042) 摘 要 瓜尔胶是一种天然的半乳甘露聚糖,广泛用于食品、日化、医药等行业。改性瓜尔胶的性能具有较大改善,近年来瓜尔胶的改性研究成为热点。论述了瓜尔胶结构和性质以及改性瓜尔胶的研究进展,为瓜尔胶进一步开发研究提供参考。 关键词 瓜尔胶;半乳甘露聚糖;改性 Progress in Studies on Amendatory Guar Gum Z hu C hangling,X ue Huamao,Sun Dafeng,Z hang Weiming,Shi Jingsong,Gugongping (Nanjing Institute for the C omprehensive Utilization of Wild Plants,Nanjing 210042,China) Abstract G uar gum is a natural polygalactomannan.The capability of amendatory guar gum is https://www.360docs.net/doc/2117539079.html,tely,the research of a mendatory guar gum becomes hotspot.The structure and character of guar gum and progress in studies on a mendatory guar gum w ere discussed in this article.Key words Guar gum;Polygalac tomannan;Amendatory 瓜尔胶又名古耳胶,瓜尔豆胶,英文名/G uar gum 0是一种天然半乳甘露聚糖胶,从产于印度、巴基斯坦等地的瓜尔豆种子的胚乳中提取得到。半乳甘露聚糖属中性多糖胶,是工业上有着广泛用途的植物多糖胶。半乳甘露聚糖胶水溶液为假塑性流体,大分子在自然状态下呈缠绕的网状结构,因而它在许多工业中用作增稠剂、稳定剂、乳化剂、粘结剂和调理剂等。食品行业的应用如冰淇淋、果汁饮料、面包、面条和调味料等,在香波、洗手液和肥皂生产中用作调理剂,在造纸、纺织和炸药行业中用作增稠剂和絮凝剂。压裂液采油和油气井钻井是多糖胶用量最大的行业之一[1,2]。 近年来随着各国对环境污染问题的日益关注和重视,天然高分子材料逐步引起人们的重视,瓜尔胶就是其中之一。瓜尔胶通过改性尤其是化学改性,理化性能方面解决了原胶的缺点,成为研究的热点。本文就改性瓜尔胶研究进展进行了综述,为瓜尔胶进一步开发研究提供参考。 1 瓜尔胶结构和性质 瓜尔胶是线状半乳甘露聚糖,属于非离子型高分子。在结构上,以B -1,4键相互连接的D-甘露糖单元为主链,不均匀地在主链的一些D-甘露糖单元的C 6位上再连接了单个D-半乳糖(B -1,6键)为支链,其半乳糖与甘露糖之比约为1B 1.8,简化为1B 2[3] 。 瓜尔胶在冷水中能充分水化(一般需要2h),能分散在热水或冷水中形成半透明粘稠液,不溶于乙醇等有机溶剂,1%水溶液粘度在4~5Pa #s 之间,具体粘度取决于粒度、制备条件及温度,为天然胶中粘度最高者。分散于冷水中2h 后呈现较强粘度,以后粘度逐渐增大,24h 后达到最高,粘稠力为淀粉糊的5~8倍,加热则迅速达到最高粘度,胶溶液的粘度随胶粉粒度直径的减小而增加;水化速率则随温度的上升而加快,如果经85e 制备,10min 即可充分水化达到最大粘度,但长时间高温处理将导致瓜尔胶本身降解,使粘度下降。瓜尔胶溶液在pH8~9时可达最快水化速度,然而大于10或小于4则水化速度反而慢[4]。 ) 9) 第24卷第4期2005年8月 中国野生植物资源Chines e W ild P lant Reso urces V ol.24No.4 A ug.2005

沸石在水处理中应用的分析研究进展及前景

沸石在水处理中应用的研究进展及前景 刘慧芳 <华南师范大学化學与环境科学学院) [摘要] 沸石是一种具有优异功能的非金属矿物材料,本文对近两年来沸石在水处理应用的研究进展进行了综合评述。介绍了沸石在去除水中氨氮、有机物质、重金属离子、等方面的应用。认为应继续加大对各种天然沸石性能、结构和其改性工艺的研究,充分发挥其应用性能、拓宽其应用范围,使其在环境保护和污染处理中得到更好的应用。 [关键词] 沸石;吸附;离子交换;氨氮;改性沸石;斜发沸石;深度处理;生态床系统;超微沸石;丝光沸石;应用 沸石作为一种具有优异功能的非金属矿物材料,在工业中有广泛的应用。其显著特点是孔隙度高、比表面积大,离子交换性、吸附性、催化性、耐酸性、耐热性、耐辐射性等性能优异, 因此被广泛用于石油化工、环境保护、农牧业、建材工业、轻工业及高新尖端技术等领域。沸石可用做催化剂、干燥剂、水质软化剂、吸附剂、离子交换剂等,在工业上常作分子筛,用来净化气体、石油及废水处理,海水提钾、淡化、硬水软化等[1]。目前国际上对天然沸石的开发、研究和生产相当活跃。本文对近两年来沸石在水处理应用的研究进展进行了综合评述,介绍了天然和改性沸石在去除水中氨氮、有机物质、重金属离子、放射性物质等方面的应用。 1 沸石的由来、结构及其特性 1.1 沸石的由来 1765年瑞典矿物学家C ronstedt在冰岛玄武岩杏仁状空隙内,首先发现一种白色透明的矿物,因其加热时出现发泡沸腾现象,便以希腊文命名为“zeolite”,意为“沸腾的石头” [2]。关于沸石的定义存在着一个演变的过程,直至1997 年,国际矿物学协会采纳了由D.S.Coombs等18名成员署名发表的有关沸石类矿物命名的建议,将沸石矿物定义为一类结晶物质,其结构以四面体连接形成的格架为特征,四面体由4个氧原子围绕一个阳离子组成[3]。 1.2沸石的结构 沸石最基本的结构单元是SiO4和AlO4四面体,相邻的四面体之间以氧桥键的方式共用氧原子。其中Si或Al位于四面体的中心,分别与氧键合,氧位于四面体各顶点。这种结合方式使其在三维方向上形成一个具有规整结构的无机聚合体。其中AlO4带一个负电荷,那么必然就有一个相反的电荷存在,以中和架电荷。因此沸石中存在很多骨架外阳离子,这实际上就是沸石能够作为催化剂的最本质的原因。同时,其骨架也搭起了一个内部空旷、充满孔隙与相互联通的孔道与笼的结构,提供催化反应的场所以及传输的通道。 1.3 沸石的特性 (1>吸附 沸石晶体的大量孔穴和孔道(孔穴度高达40%~50%>,使沸石具有很大的比表面积,因此色散力强。结构比较空旷的沸石与活性炭的比表面积(800~1050m2/g>相近,结构空旷度较低的沸石也与微孔硅胶(500~600m2/g>相近,都明显高于活性氧化铝的比表面积(200~400m2/g>。又因为晶体内部各种构造形式的笼内充填着阳离子,并且部分硅(铝>氧四面体骨架氧也有负电荷,在这些离子周围形成强大的电场,从而还有强大的静电引力。晶体内外表面过剩自由能所决定的色散力和这种静电引力的存在,使得沸石有优良的吸附性能。 (2>离子交换 由于分子筛骨架中含有大量的AlO4四面体,其骨架是荷负电的。因而在其孔内必然有大量的金属阳离子以平衡其骨架电荷。这些阳离子位于骨架外,是可以进行离子交换的离子

相关文档
最新文档