《粉体表面改性》--3表面改性剂

聚合物表面改性方法

聚合物表面改性方法 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由1mol 的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓硫酸100份,将聚乙烯或聚丙烯室温条件下在处理液中浸泡1~1.5h,66~71℃条件下浸泡1~5min,80~85℃处理几秒钟,此外还有过硫酸铵的氧化处理液[3]。其配方为硫酸铵60~120g,硫酸银(促进剂)0.6g,蒸馏水1000ml,将聚乙烯室温条件下处理20min,70℃处理5min,当用来处理聚丙烯时,处理温度和时间都需增加一些,70℃lh,90℃10min,其中促进剂硫酸银效果不明显,可以去掉,但此处理液有效期短,通常只有lh。这两种处理方法,效果都不错。 1.3聚醚型聚氨酯 Wrobleski D. A.等[4]对聚醚型聚氨酯Tecoflex以化学浸渍和接枝聚合进行表面改性。且用Wilhelmy平衡技术测定接触角,结果表明,经聚乙烯基吡咯烷酮(PVP)和PEG化学浸渍修饰表面,以及用VPHEMA对2-丙烯酰胺基-2-甲基-1-丙磺酸及其钠盐(AMPS和NaAMPS)光引发表面接枝。其表面能增大,表面更加亲水。化学浸溃使前进和后退接触角降低20和30~40

偶联剂表面改性Sb_2O_3的研究

Sb 2O 3表面含有一定数量的羟基,因而具有亲 水性,与有机高聚物相容性差,不仅影响其阻燃效果,而且导致高聚物制品的机械性能和加工性能下降。因此,对其进行表面改性,使Sb 2O 3表面连接一层有机长链分子,便可以使Sb 2O 3粉末具有亲油性,提高与单体及高聚物树脂的相容性,另一方面还可提高Sb 2O 3的添加量,降低生产成本。 本文研究了不同偶联剂对Sb 2O 3的改性效果,考察了反应时间和反应温度对表面改性效果的影响,通过实验和理论计算确定了偶联剂的最佳用量,并阐述了偶联剂的作用机理。 1 实验部分 1.1 原料 Sb 2O 3,平均粒径895nm ,广东东莞市达利锑 品冶炼有限公司;硅烷偶联剂,A-151,A-172和 KH-570,南京康普顿曙光有机硅化工有限公司;钛酸酯偶联剂,NDZ-101,NDZ-201和NDZ-311, 南京康普顿曙光有机硅化工有限公司;正庚烷,分析纯,江苏宜兴市第二化学试剂厂;去离子水,自制。 1.2实验设备 500mL 玻璃夹套釜;数控恒温水槽,THD-06Q ,宁波天恒仪器厂;激光粒径分析仪,LS-230, 美国Coulter 公司,测量范围在0.04~2000μm ,以重均粒径作为比较的标准;视频光源接触角测试仪,OCA20,德国Data-physics 公司。 1.3试验方法 称取适量的硅烷偶联剂和钛酸酯偶联剂,溶 于正庚烷中,加入经干燥的Sb 2O 3粉末,在一定反应温度下搅拌若干时间,然后烘干。用液压机压制成片后用去离子水进行接触角测试。 2 结果与讨论 2.1 不同偶联剂对改性效果的影响 偶联剂表面改性Sb 2O 3的研究 何 松 (福建省建筑科学研究院,福州,350025) 摘要研究了不同偶联剂表面改性Sb 2O 3的改性效果和条件,结果发现钛酸酯偶联剂NDZ-101的 改性效果最佳,其最佳用量为1.0%与理论计算值相当;当改性时间大于30min ,改性温度大于60℃,改性效果趋于稳定。 关键词 三氧化二锑 偶联剂 表面改性 Study on Surface Modification for Sb 2O 3with Coupling Agent He Song (Fujian Academy of Building Research,Fuzhou,350025) Abstract:The effects and conditions of surface modification for antimonous oxide (Sb 2O 3)with different coupling agents were studied,the conclusions were obtained as follows:titanate coupling agent NDZ-101has the best modifying effect and the optimum loading of the coupling agent is 1.0wt%;the modifying effect stabilizes when modificntion time is longer than 30min and modification temperature is higher than 60℃. Keywords:antimonous oxide;coupling agent;surface modification 收稿日期:2008-07-14 塑料助剂2008年第5期(总第71期) 46

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

聚合物表面改性方法综述

聚合物表面改性方法综述 连建伟 (中国林业科学研究院林产化学工业研究所) 摘要:本文综述了聚合物表面改性的多种方法,主要包括有溶液处理法、等离子体处理法、表面接枝法、辐照处理法和新兴的原子力显微探针震荡法,并结合具体聚合物材料有重点的详细介绍了改性方法及其改性机理。 关键词:聚合物;表面改性;应用 聚合物在日常生活及化工领域都有非常广泛的应用,但是由于这些聚合物表面的亲水性和耐磨损性较差,限制了聚合物材料的进一步应用。为了改善这些表面性质,需要对聚合物的表面进行改性。聚合物表面改性是指在不影响材料本体性能的前提下,在材料表面纳米量级范围内进行一定的操作,赋予材料表面某些全新的性质,如亲水性、抗刮伤性等。 聚合物的表面改性方法很多,本文综述了溶液处理方法、等离子体处理法、表面接枝法、辐照处理方法和新兴的原子力显微探针震荡法。下面将结合具体聚合物材料详细介绍各种改性方法。 1溶液处理方法 1.1含氟聚合物 PTFE或Teflon具有优良的耐热性、化学稳定性、电性能以及抗水气的穿透性,所以在化学和电子工业上广泛地应用,但由于难粘结,所以应用上受到局限。为了提高粘结性能,需对表面进行改性,化学改性的方法通常用钠萘四氢呋哺液溶处理它。此处理液的配制是由 1mol的金属钠(23g)一次加到1mol萘(128g)的四氢呋喃(1L工业纯)中去,在装有搅拌及干燥管的三口瓶中反应2h,直至溶液完全变为暗棕色即成[1]。 将氟聚合物在处理液中浸泡几分钟,取出用丙酮洗涤,除去过量的有机物。然后用蒸馏水洗。除去表面上微量的金属。氟聚合物在处理液中浸泡时,要求体系要密封,否则空气中氧和水能与处理液中络合物反应而大大降低处理液的使用寿命。正常情况处理液贮存有效期为2个月。处理后的Teflon与环氧粘结剂粘结,拉剪强度可达1100~2000PSi。处理过的表面为黑色,处理层厚低于4×10-5mm 时,电子衍射实验表明处理过的材料本体结构没有变化,材料的体电阻、面电阻和介电损耗也没有变化,此方法有三个缺点:一、处理件表面发黑,影响有色导线的着色;二、处理件面电阻在高湿条件下略有下降,三、处理过的黑色表面在阳光下长时间照射,粘结性能降低,因此目前都采用低温等离子体技术来处理。 1.2聚烷烯烃 聚乙烯和聚丙烯是这类材料中的大品种,它们表面能低。如聚乙烯表面能只有 31×10-7J/cm2。为了提高它们表面活性,有利于粘接,通常需对它们的表面进行改性,其中化学改性方法有用铬酸氧化液处理,此处理液的配方[2]重铬酸钠(或钾)5份,蒸馏水8份,浓

无机分体表面改性方法综述

无机粉体表面改性方法综述 唐亚峰 (南华大学化学化工学院无机非金属材料系湖南衡阳) 摘要:表面改性是无机粉体的主要加工技术之一,表面改性对提高无机粉体的应用性能起着关键的作用。改性后的无机粉体分散性提高,同时也改善了粉体和有机高聚物的相容性。本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型改性方法,并对无机粉体表面改性方法进行展望。 关键词:无机粉体;表面改性;改性方法;新型方法; 前言 无机粉体具有很高的应用性能和应用价值,添加到聚合物材料当中不仅能降低其生产成本,还提高了复合材料的力学性能和综合性能,甚至赋予其绝缘、阻燃等特殊的物理化学性质。 无机粉体一般为微米或纳米级颗粒,由于其粒径小、比表面积大、表面能高,容易发生团聚,难以在复合材料中均匀分散,影响添加效果。无机粉体的表面性质和聚合物有机体系相差甚远,这也使得无机粉体不能很好的分散到材料中。因此,当无机粉体添加到高聚物复合材料时,首先要对无机粉体进行表面改性,使其粒子表面有机化,改善其亲油性和与基体的相容性,增强界面结合能力,从而发挥无机粉体的功能[1]。 本文介绍了无机粉体表面改性的机理、传统的几类改性方法以及两种新型的改性的方法,并分析了这些方法各自的优缺点。最后对无机粉体表面改性方法进行了展望。 1 无机粉体表面改性的机理 由于无机矿物材料是极性或强极性的亲水矿物,而有机高聚物基质具有非极性的疏水表面,彼此相容性差,通常无机矿物材料难以在有机基体中均匀分散,因此如果过多地或者直接将无机矿物材料填充到有机基体中,容易导致复合材料的某些力学性能下降甚至出现脆化等问题。无机粉体表面改性是利用粉体表面的活性基团或电性与某些带有两性基团的小分子或高分子化合物( 表面改性剂) 进行复合改性,使其表面性质由疏水性变为亲水性或由亲水性变为疏水性,从而改善粉体粒子表面的浸润性,增强粉体粒子在介质中的界面相容性,使粒子容易分散在水中或有机化合物中。粉体表面改性是材料制备工程的重要手段,也是新材

表面改性剂总结

表面改性剂:涂料油墨的点睛之笔 简介 为什么改变涂料表面特性 改变表面能 优化表面 消光蜡 蜡在涂料油墨中起什么作用 蜡的消光性能 回到改变表面能 怎样加入添加剂 实际应用 结论 简介 涂料和油墨的表面暴露在“外面的世界”里,必须经受一些严峻的环境考验,很可能导致体系本身的快速老化。除了这一点,表面还是形成涂料外观的主要原因,比如光泽和“质感”,这些都来自于表面。 绝大多数情况下,不加入改变涂料表面性能的特定添加剂――也就是表面改性剂,就无法得到优越的表面性能。加入不同种类的添加剂,现在我们可以改变以下性能: ?斥水性 ?耐刮擦、片落、损伤性能 ?耐磨性能 ?提高,或降低光泽 ?流动和流平性 ?柔和,平滑的质感 ?抗粘联性能 ?表面纹理 为什么要改变涂料的表面性能?

改变涂料的表面基本上有两个原因。第一个是需要降低表面张力/表面能,以便获得与此相关的特定性能。第二个原因,是获得不同的光学效果,比如消光,或者表面纹理。后一种添加剂不一定需要影响体系的表面能――不过这要根据化学结构来看――也有很多种类的添加剂,同时改变了这项特性。 改变表面能 设计涂料油墨配方时,必须明白表面张力和表面能的规律和关系,因为这个现象控制着很多我们需要的涂膜特性,比如流平性、润湿性、耐刮擦和损伤能力、斥水性以及表面“质感”等等。所有这些特性,都严重依赖涂膜的表面张力。 涂料和油墨中使用的大多数介质表现出高表面能。最常用的介质――比如以环氧为例――表面能是47达因/厘米(参见图表)。涂料油墨中使用的大多数其他介质――除了硅树脂以外――数值都在差不多的水平。由于一般涂膜具有这个相对较高的表面能数值,所以很难得到优越的流平性、质感和耐刮擦、损伤性能。硅树脂、各种蜡产品以及特定的表面活性剂,都是专门设计,用来提高这些性能的。我们将进一步讨论这些产品的优劣。尽管它们都能用来改变表面能,但它们的化学性质差别却很大。 优化表面 很多情况下,必须改变涂料或者油墨的表面光学效果,比如降低光泽或者特定纹理。要降低体系的光泽,可以通过引进一种“微观粗糙”的表面,来“破坏”高光涂膜的光滑表面,这样入射光线就会被反射到各个不同的方向(如图)

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

硅烷偶联剂

Unitive@ silane coupling agents MP-320 2,3-环氧丙基丙基三甲氧基硅烷 2,3-epoxypropyl trimethoxy silane ·环氧官能团偶联剂,提供可稳定储存且不泛黄1的粘接促进效果,适宜作为聚硫、聚氨酯、环氧、丙烯酸类密封剂和胶黏剂的粘合促进剂 ·可显著提高涂料、油墨对玻璃、金属、陶瓷等无机材料的附着力和耐水性。 ·改善环氧树脂电子材料、灌封料、印刷电路板的电气性能,尤其是湿态电气性能。 ·作为无机填料的表面处理剂,适用于硅微粉、玻璃微珠、氢氧化铝、陶土、滑石粉、硅灰石、白炭黑、石英粉、金属粉末等。

MP-321 氨基官能团三甲氧基硅烷 Aminofunctional trimethoxysilane · 是一款强附着性多功能Adherant 附着力促进剂, 为一种含有氨基官能团硅烷偶合物。 · 针对特定的镁、铝、铁、锌等复合金属材料、氧 化涂层的涂覆和黏合的要求而设计。 · 更适用于接着剂、弹性体、填缝剂,油墨等,以 提高长时间的优良附着性涂膜耐水性、防蚀性与抗盐雾性。 · 对环氧树脂、酚醛、三聚氰胺、丙烯酸、聚氨酯、 有机硅等有优异的相容性,高温烘烤260℃不影响光泽度及色彩的鲜艳性。 MP-383 巯基官能团硅烷偶联剂 (3-Mercaptopropyl)trimethoxy silane · 随着巯基官能团的引入使得其具有碳碳双键的光聚合反应,与树脂体系产生双重交联固化。巯基官能团还可与聚 氨酯树脂发生亲核加成反应,在光固化和双组份交联固化体系作为金属表面保护剂具有特殊功效。 · 用其处理金、银、铜等金属表面,可增强其表面的耐腐性、抗氧化性以及耐水性和耐老化性、增加其与树脂等高 分子的粘接性。 · 用于处理白炭黑,炭黑,玻璃纤维、云母等无机填料,能有效提高橡胶的力学性能和耐磨性能等。 MP-397 异氰酸酯基硅烷偶联剂 3-Isocyanatopropyltrimethoxysilane · 在涂料、油墨、粘合剂中作为交联剂和助粘剂使用。出众的湿性粘附性能在玻璃、金属和其他无机基底上广泛应 用;还可以较好的附着于难以粘附的有机材料,如尼龙和其他塑料产品。 · 在大气湿度存在下可以快速水解,不黄变且具有非常好的热稳定性、化学稳定性和UV 稳定性。 · 适合的聚合物:丙烯酸类、硅树脂类(Si)、PU-预聚物等。 MP-328 乙烯基三(2-甲氧基乙氧基)硅烷 Vinyl tris(2-methoxyethoxy) silane · 特殊的乙烯基硅烷偶合物,对各类塑 胶、金属、玻璃及其他无机材料具有持久的湿膜和干膜附着力。 · 可明显增强涂膜的耐湿热、水煮和盐 雾性能,在气干性塑胶涂料及UV 光固化体系同样有效。 · 优异的储存稳定性在各类涂料,油 墨,胶黏剂中有广泛的应用。

复合偶联剂改性和KH

复合偶联剂改性和KH-560改性硅微粉的性能对比 【摘要】本文着重介绍了通过复合硅烷偶联剂和KH-560硅烷偶联剂进行表面处理后的硅微粉,在与环氧树脂混合后,通过多种性能的试验、分析、对比,结果表明,复合硅烷偶联剂改性的硅微粉性能优于KH-560单一改性的硅微粉。 【关键词】复合改性KH-560 硅微粉性能 目前,国内生产偶联化活性硅微粉的企业,主要以传统的生产工艺和KH-560单一硅烷偶联剂进行硅微粉表面处理改性,其质量难以控制,活性硅微粉作为环氧树脂配方设计中的功能性填料,其质量好坏将直接影响到环氧树脂固化物的机械性能、物理性能、电气绝缘性能填料加入量,而填料加入量的多少又直接影响到环氧树脂固化物的收缩率、内应力和生产成本。 本公司在以KH-560硅烷偶联剂生产偶联化活性硅微粉的基础上,又研究、开发设计了复合硅烷偶联剂以单分子的形态,进行硅微粉表面处理改性,从而彻底改变了传动比诉活性硅微粉简单包覆生产工艺。复合硅烷偶联剂扆性硅微粉颗粒,除保留了单一KH-560改性硅微粉的一切特性外,在活性度、抗沉降性、低吸水率、久置不易水解、填充量增大等方面,都得到不同程度的提高。复合硅烷偶联剂改性硅微粉能与多种环氧树脂有较好的相容、亲和、浸润性,在进行环氧树脂配方配制工艺过程中,受温度、时间影响较小,能保持硅微粉颗粒在环氧树脂配方体系混合物中分布均匀,无分层现象;同时,既不促进也不阻滞醉体系的反应,仍保持原有的环氧树脂配方体系的生产工艺,从而充分展现了复合改性硅微粉的活性度和应用效果。 一、复合改性粉与KH-560单一改性粉性能评价 用同一颗粒组合的硅微粉,分别用复合硅烷偶联剂及KH-560硅烷偶联剂进行表面处理改性,对改性后的活性硅微粉进行憎水性、沉降率、吸水率、粘度、浸润性、吸油率及机械强度等性能的测试,性能评价如下: 1.憎水性:活性硅微粉憎水时间的长短是检验硅烷偶联剂与硅微粉颗粒包覆牢固及紧密程度的标志,憎水时间长,活性度好,能使硅微粉在环氧树脂混合料中保持颗粒分布均匀不分层;反之,会引起颗粒在环氧树脂混合料中上下分布不均,从而影响制品机械强度。 两种活性硅微粉憎水性的检测方法相同:用1000ml的烧杯装800ml水,取5g粉,60目样筛过筛,憎水性见表1。 表1 两种活性硅微粉憎水性 填料复合改性硅微粉单一改性硅微粉备注 时间>8h ≥40min 单一改性硅微粉开始有细粒下降至40min沉完

硅烷偶联剂改性

改性剂用量对沉降体积的影响改性剂用量与沉降体积的关系曲线,见图1。从图1可看出,沉降体积随着改性剂用量的增加而增加,但是提高幅度不是很大。在实际应用中真正起到改性作用的是少量的改性剂所形成的单分子层,因此过多的增加改性剂的用量是不必要的,不仅会在粒子间搭桥导致絮凝,使稳定性变差,而且还增加不必要的经济付出。实验所选择的硅烷偶联剂的用量在1%~2%。 2.2 改性时间对沉降体积的影响实验结果见图2。从图2可看出,当改性时间为10min时,沉降体积达到极大值,然后随着改性时间的增加,沉降体积缓慢下降。在改性时间为30min 和60min时,均保持在一个相对稳定的水平。但是改性时间为40min时出现异常,沉降体积大幅度下降。硅烷偶联剂对高岭土进行表面改性,理论上以化学键合作用为主,改性效果不会出现较大的变化,出现异常的原因还有待进一步的研究。 2.3 改性温度对沉降体积的影响采用硅烷偶联剂作为改性剂时,为了保证较好的改性效果,需要确定适宜的表面改性温度。改性温度对沉降体积的影响,见图3。从图3可看出,沉降体积随改性温度的增加而增加。当温度升高至90℃时,沉降体积达到最大值14.4ml。继续提高温度,则沉降体积下降。因此,改性剂对高岭土的最佳改性温度为90℃。 沉降性能分析称取2g改性前后的纳米高岭土,置于50ml液体石蜡中,磁力搅拌10min,倒入刻度试管,静置观察沉降性能。纳米高岭土在液体石蜡中的沉降体积随时间的变化关系,见图4。从图4可看出,未经改性的纳米高岭土由于表面具有亲水性,在有机相中倾向于团聚,大粒子沉降较快,小粒子被沉降较快的大粒子所夹带,所以在开始的时间内沉降很快,沉降速度随时间增加逐渐减慢;而高岭土经过改性处理后,表面呈现亲有机性,在有机相中倾向于分散均匀,所以在开始的时间内沉降速度较未改性高岭土慢。 随着沉降时间的增加,沉降体积均达到平衡。未改性高岭土的平衡沉降体积为13.4ml,而经过硅烷偶联剂改性处理后,样品的平衡沉降体积为21.3ml。在相同的实验条件下,沉积物的体积变大,说明改性高岭土在液体石蜡中的分散性和稳定性提高。 2.5 FT-IR分析硅烷偶联剂改性前后的纳米高岭土的红外吸收光谱,见图5。从图5可看出,改性处理后,高岭土在2800cm-1~3000cm-1之间出现的微弱峰是-CH3 和-CH2 的伸缩振动吸收峰;在1120cm-1 ~1000cm-1之间的Si-O和Si-O-Si振动吸收区变宽,这是由于硅烷偶联剂与高岭土表面形成的R-Si-O-Si与高岭土的Si-O-Si振动吸收带重合所致;出现在1034cm-1处的Si-O的伸缩振动吸收峰移至1036cm-1处;在3670cm-1处的微弱的OH吸收峰消失,这是表面官能团化学键的振动模式受到影响的结果。上述吸收峰的变化均说明硅烷偶联剂与高岭土发生了化学键合作用。 从表1可看出,硅烷偶联剂改性后,高岭土表面O元素的含量下降15.92%,C元素的含量为17.03%,而Si和Al元素的含量变化不大。硅烷偶联剂改性前后纳米高岭土的C1s价带谱图,见图7。从图7可知C1s峰发生偏移,在287.5eV附近出现C-O峰,另外,硅烷偶联剂引入了Si元素,其特征峰发生偏移,从102.35eV移至102.85eV,上述现象均说明硅烷偶联剂对于纳米高岭土的改性不是一种物理吸附而是一种化学键合作用。

岗石粉体助磨改性剂,降低20%的吸油值

岗石粉体助磨改性剂,降低20%的吸油值 人造岗石用的微粉填料主要是一种重质碳酸钙,通常使用立磨粉碎大理石矿石获得,也称为立磨粉,但是立磨粉本身是亲水性粉体,在岗石原料树脂中的相容性和分散效果不足,故使用前需要采用专用的碳酸钙助磨改性剂对其进行改性处理,才能得到优质的立磨粉。 人造岗石用碳酸钙助磨改性剂是较低分子量的聚合物, 集助磨、改性、润滑、偶联、分散等功能于一体,每个分子有多个极性基团,它在无机粉体表面的吸附是部分极性基团朝无机粉体表面,另一部分则朝油性溶液,并通过分子间力或氢键与油性溶液产生缔合,从而形成立体屏障防止颗粒间接触聚集,起到粒子间分散作用。

一、物理性能: 碳酸钙助磨改性剂通常呈乳白色液体状,粘度15 ±2mPa.S (25℃),PH值:8-9,比重:1.014± 0.02g/ml,易溶于水。 碳酸钙助磨改性剂它有优良的活化改性,助磨分散,偶联作用,能大幅度降低粉体吸油量,并使粉体具有优良的亲水亲油特性,与不饱和树脂体系相容性更好,从而达到人造石生产中高填充、低粘度的加工要求。使用这种碳酸钙助磨改性剂改性的碳酸钙吸油值理想状态下可下降10-20%。还可以使岗石粉填料在不饱和树脂液中有持久的分散防沉性,使得制品不会出现气孔、起皮、龟裂等现象;制品表面发色均匀、自然、光亮。 二、碳酸钙助磨改性剂应用范围 它适用于各种无机粉体,如重质碳酸钙、轻质碳酸钙、高岭土、二氧化硅、滑石粉、炭黑、颜料和其他粉体的表面分散改性;改性后的粉体特别适合人造石行业客户的使用。

三、碳酸钙助磨改性剂用法及用量: 1.用法与一般粉体的改性方法相同,也可与其他表面活性剂或助剂混用,但通常不能同时加入,需先加入碳酸钙助磨改性剂,再加入其它组分。以粉体固含量计算,加入量约占粉体的0.1%—0.5%。 2.使用计量泵,将1-20倍稀释好的助剂计量喷雾在二次破碎的原矿表面,矿石通过螺旋进料或皮带输送进研磨主机,进行干法研磨加工。 3.为达到最佳效果,在生产过程中可单独补加水,以利于助剂对钙粉的充分润湿和包覆。补水量根据设备的排水能力而定,以产品水分合格为准。 粉体改性是现代无机粉体,几乎都离不开粉体表面改性这个重要课题,因为通过改性后的粉体,在各项性能方面都有一个质的提升,在人造岗石领域是一个大势所趋的课题。

表面改性剂

一粉体表面改性概念 粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性的目的 (1)改善粉体颗粒的分散性、稳定性和相容性。 (2)提高粉体颗粒的化学稳定性,如耐药性、耐 光性、耐候性等。 (3)改变粉体的物理性质,如光学效应、机械强 度等。 (4)出于环保和安全生产目的。 三粉体表面改性技术的应用 ?(1)有机/无机复合材料(塑料、橡胶等) ?改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能 ?(2)油漆、涂料 ?提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等 ?(3)无机/无机复合材料 ?提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料 ?(4)吸附与催化材料 ?提高选择性、活性和机械强度 ?(5)健康与环境保护 ?(6)超细和纳米粉体制备中的抗团聚 ?(7) 其它(插层改性) 四粉体表面改性的主要研究内容 ?(1)粉体表面改性的原理和方法 ?表面或界面性质与其应用性能的关系 ?表面或界面与表面改性剂或处理剂的作用机理和作用模型 ?各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等 ?(2)表面改性剂及其配方 ?种类、结构、分子量、活性基团与其应用性能或功能的关系 ?与粉体表面及复合材料的作用机理和作用模型 ?用量和使用方法 ?新型和专用表面改性剂的制备或合成 ?(3)表面改性工艺与设备 ?不同种类和不同用途粉体表面改性的工艺流程和工艺条件

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

偶联剂的种类、特点及应用

偶联剂是一种重要地、应用领域日渐广泛地处理剂,主要用作高分子复合材料地助剂.偶联剂分子结构地最大特点是分子中含有化学性质不同地两个基团,一个是亲无机物地基团,易与无机物表面起化学反应;另一个是亲有机物地基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中.因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间地界面作用,从而大大提高复合材料地性能,如物理性能、电性能、热性能、光性能等.偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品地耐磨性和耐老化性能,并且能减小用量,从而降低成本.偶联剂地种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯地偶联剂等,目前应用范围最广地是硅烷偶联剂和钛酸酯偶联剂. 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早地偶联剂.由于其独特地性能及新产品地不断问世,使其应用领域逐渐扩大,已成为有机硅工业地重要分支.它是近年来发展较快地一类有机硅产品,其品种繁多,结构新颖,仅已知结构地产品就有百余种.年前后由美国联碳()和道康宁( )等公司开发和公布了一系列具有典型结构地硅烷偶联剂年又由公司首次提出了含氨基地硅烷偶联剂;从年开始陆续出现了一系列改性氨基硅烷偶联剂世纪年代初期出现地含过氧基硅烷偶联剂和年代末期出现地具有重氮和叠氮结构地硅烷偶联剂,又大大丰富了硅烷偶联剂地品种.近几十年来,随着玻璃纤维增强塑料地发展,促进了各种偶联剂地研究与开发.改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂地合成与应用就是这一时期地主要成果.我国于世纪年代中期开始研制硅烷偶联剂.首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂. 结构和作用机理 硅烷偶联剂地通式为(),式中为非水解地、可与高分子聚合物结合地有机官能团.根据高分子聚合物地不同性质应与聚合物分子有较强地亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等.为可水解基团,遇水溶液、空气中地水分或无机物表面吸附地水分均可引起分解,与无机物表面有较好地反应性.典型地基团有烷氧基、芳氧基、酰基、氯基等;最常用地则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物.由于氯硅烷在偶联反应中生成有腐蚀性地副产物氯化氢,因此要酌情使用. 近年来,相对分子质量较大和具有特种官能团地硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等.等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中地甲基硅烷氧端基水解生成地硅羟基与碳纤维表面地羟基官能团进行键合,结果复合材料地拉伸强度和模量提高,空气孔隙率下降.早在年美国大学地等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面地研究中发现,用含有能与树脂反应地硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强度可提高倍以上.他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键.这是人们第一次从分子地角度解释表面处理剂在界面中地状态. 硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与无机物中地羟基反应,又能与有机物中地长分子链相互作用起到偶联地功效,其作用机理大致分以下步:()基水解为羟基;()羟基与无机物表面存在地羟基生成氢键或脱水成醚键;()基与有机物相结合.

硅烷偶联剂对碳化硅粉体的表面改性

硅酸盐学报 · 409 ·2011年 硅烷偶联剂对碳化硅粉体的表面改性 铁生年,李星 (青海大学非金属材料研究所,西宁 810016) 摘要:采用KH-550硅烷偶联剂对SiC粉体表面进行改性,得到了改性最佳工艺参数,分析了表面改性对SiC浆料分散稳定性的影响。结果表明:SiC微粉经硅烷偶联剂处理后没有改变原始SiC微粉的物相结构,只改变了其在水中的胶体性质;减少了微粉团聚现象。与原始SiC微粉相比,改性SiC微粉表面特性发生了明显变化,Zeta电位绝对值提高,浆料的分散稳定性得到了明显改善。 关键词:碳化硅;表面改性;硅烷偶联剂;分散性 中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2011)03–0409–05 Surface Modification of SiC Powder with Silane Coupling Agent TIE Shengnian,LI Xing (Non-Metallic Materials Institute of Qinghai University, Xining 810016, China) Abstract: The surface characteristics of SiC powder were modified by a KH-550 silane coupling agent. The process parameters of the modification were optimized, and the effect of surface modification on the dispersion stability of SiC slurry was analyzed. The results show that the SiC powder modified by silane coupling agent can not change the original phase structure of SiC micro-powders but reduce the aggregation of SiC particles in the powders. Compared to the original SiC powder, the surface characteristics of the modi-fied SiC powder change significantly. Zeta potential of SiC increases, and the dispersion stability of SiC slurry is improved. Key words: silicon carbide; surface modification; silane coupling agent; dispersibility 在半导体制造和煤气化工程领域,许多工程都在使用SiC陶瓷[1–2]。然而经机械粉碎后的SiC粉体形状不规则,且由于粒径小,表面能高,很容易发生团聚,形成二次粒子,无法表现出表面积效应和体积效应,难以实现超细尺度范围内不同相颗粒之间的均匀分散以及烧结过程中与基体的相容性,进而影响陶瓷材料性能的提高[3]。加入表面改性剂,改善SiC粉体的分散性、流动性,消除团聚,是提高超细粉体成型性能以及制品最终性能的有效方法之一。 SiC微粉的表面改性方法主要有酸洗提纯法、无机改性法和有机改性法等。国外SiC表面改性主要采用无机包覆改性方法[4–6],在国内,SiC表面改性采用的方法主要为有机改性法[7],有机体系的包覆改性大多是在粉体表面直接包覆有机高聚物。一般情况下,有机高聚物与无机粉体表面之间只产生物理吸附而不是牢固的化学吸附,改性效果不明显,而硅烷偶联剂是具有两性结构的化学物质,其分子的一端基团可与粉体表面的官能团反应,形成强有力的化学键合,另一部分可与有机高聚物基料发生化学反应,在粉体表面形成牢固的包覆层。 在机械力粉碎的基础上,采用KH-550硅烷偶联剂对粉碎后的SiC粉体表面进行有机包覆,提出了表面包覆的最佳工艺参数,并对改性SiC粉体进行表征,分析了改性对SiC陶瓷浆料分散性和流动性的影响。 1 实验 1.1 原料 实验选用自行加工的SiC粉体,D50=0.897μm,SiC含量为98.98% (质量分数,下同);硅烷偶联剂(KH–550,化学纯,北京申达精细化工有限公司产); 收稿日期:2010–09–25。修改稿收到日期:2010–10–30。 基金项目:青海省外经贸区域协调发展促进资金项目(2009–2160604)资助。第一作者:铁生年(1966—),男,教授。Received date:2010–09–25. Approved date: 2010–10–30. First author: TIE Shengnian (1966–), male, professor. E-mail: Tieshengnian@https://www.360docs.net/doc/2317805944.html, 第39卷第3期2011年3月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 39,No. 3 March,2011

相关文档
最新文档