矿用通风机变频调速设计

矿用通风机变频调速设计
矿用通风机变频调速设计

本科毕业设计(论文)开题报告

题目矿用通风机变频调速系统设计

指导教师

院(系、部)电气与控制工程学院

专业班级

学号

姓名

日期2014年月日

教务处印制

一、选题的目的、意义和研究现状

选题目的:

矿用通风机是掘进巷道中的重要通风设备,它的运行状况直接影响着煤矿的安全生产。目前,许多矿用通风机的启、停仍然采用的是人工完成,这样不利于煤矿自动化生产水平的提高并且掘进巷道中风量的调节采用传统的方法,这不仅不能根据管网阻力和瓦斯浓度的变化进行风量地及时调节,还浪费了大量的电能,不利于能源的节约与利用。

因此,本文研究目的是利用PLC控制技术和变频调速技术设计煤矿局部通风机的变频调速系统。根据传感器采集的风压信号和瓦斯浓度信号求出相应的变频器模拟输入电压,从而改变风机输入电压的频率,控制风机的出气风量。

选题意义:

整个变频调速系统通过对通风机的变频调速,使矿井通风机始终保持安全经济运行。既减少许多人为调整不当,不及时因素,又进一步提高矿井通风机的自动化程度及安全可靠性、节约了大量电能、合理的调整井下工作面的供风,使新鲜风能够及时可靠的提供给急需要的工作面。改变了以往传统的人工控制局部通风机排放瓦斯的方式,极大地降低了瓦斯事故率,所以本文的设计具有良好的应用前景和经济效益。

研究现状:

由于矿井通风机是煤矿通风系统的主要设备之一,其运行状况直接影响着煤矿的安全生产。目前,许多煤矿的通风机控制系统采用继电器控制,而通风机采用防爆开关直接控制供电。为了控制掘进工作面上的风量,传统的方法多采用增阻法、减阻法和辅助通风机调节法。当掘进巷道开始掘进时,管网阻力比较小,风机的出气风量比较大,可减小矿井通风机橡胶管道的直径,从而间接增加管网的阻力,减小风机的出气风量;当井下掘进巷道延伸时,通风管网的阻力不断增加,掘进巷道中的风量随之不断减少,可增加局部通风机橡胶管道的直径,从而间接减小管网的阻力,增加风机的出气风量。无论使用何种传统的调节方法,风机依然处于工频恒速运行,使得大量的能量从节流中损失掉了,这不利于能源的节约利用。本文采用变频调速的方法控制风机的输入电压的频率从而控制风机的出气风量,达到了节约能源的目的。

二、研究方案及预期结果

研究方案:

本文的设计方案就是以煤矿局部通风机为控制对象,结合PLC 控制技术、变频调速技术和组态监控技术,设计出一种适应煤矿工作面瓦斯浓度变化的变频调速系统。既达到节能的目的,又保证了煤矿的安全生产。

1、系统方案的总体设计。以对旋轴流式通风机为控制对象,根据通风机的实验特性曲线和控制功能要求,本系统采用PLC 控制变频器,再用变频器来控制风机的变频运行的控制方案。本系统选用的是模拟量的控制方式。控制系统的方框图如图所示:

图1 控制系统方框图

2、PLC 和变频器的原理及应用。根据选定的控制方案,设计PLC 控制局部通风机变频调速系统,确定PLC 控制变频器的方式,以及对PLC 、变频器和瓦斯传感器和压力传感器等硬件进行选型。

3、硬件系统的设计。包括主电路的设计、控制电路设计和PLC 主接线设计。

4、软件系统的设计。选用西门子S7-200系列PLC ,并利用STEP7-Micro/WIN4.0编程软件完成系统PLC 控制程序的设计,编写程序流程图,实现硬件功能。

5、风机监控系统的设计。根据矿井局部通风机监控系统的功能要求,结合组态王软

上位机

PLC

A/D

D/A

瓦斯传感器T0 瓦斯传感器T1 压力传感器T2

回风流巷

掘进工作面

变频器

变频工频控制电路

对旋式轴流通风机

瓦斯浓度报警

变频器故障报警

风机故障报警

手动∕

自动变频

工频∕

停止运行

件和PLC的应用,完成局部通风机监控系统的设计。

6、抗干扰模块设计。因为工作环境比较恶劣,需要采用多种抗干扰措施,保证系统的安全可靠运行。

7、模拟试验及系统调试。

8、总结。

预期结果:

1、通风机可以实现软启动,能够进行自动和手动运行的切换,使通风机处于变频或工频的运行状态。

2、通风机处于变频运行状态时,可以根据掘进巷道延伸管网阻力增大而导致风机风量随之减少的状况,自动调节局部通风机的转速以维持所需的风量不变。另外,还可以根据掘进工作面上瓦斯浓度的大小,自动调整局部通风机的转速使其控制在规定的安全范围内。

3、当检测到掘进工作面和回风流中的瓦斯浓度突然增加,超过了《煤矿安全规程》所规定的安全标准时,系统发出声光报警,并立即切断系统电源。

4、系统具有完善的报警及处理功能,当变频器出现故障时,发出声光报警,可手动切换风机工频运行,当瓦斯浓度达到规定的报警标准时,也发出声光报警,并自动调整风机转速。

5、结合PLC与组态软件的应用,在上位机上设计的监控系统,可以实现该局部通风机运行的在线控制,以及对瓦斯浓度、风量、风压、风机转速等参量进行实时在线监控。

三、研究进度

第1-4 周:查资料,撰写开题报告、毕业实习报告;

第5-6 周:系统功能的总体设计;

第7 周:对变频调速系统的设计;

第8-10 周:PLC及各个传感器的选型和系统硬件的设计;

第11-12周:矿井通风机控制系统的软件设计;

第13-14周:系统监控系统设计以及抗干扰模块设计;

第15 周:整理并完成论文;

第16 周:准备答辩;

第17 周:毕业答辩;

四、主要参考文献

[1] 陈景熙.PWM 变频调速系统相关技术问题研究[D].武汉:华中科技大学,2007

[2] 王兆安.电力电子技术[M].北京:机械工业出版社,2008

[3] 张洪润. 传感器应用电路200例[M]. 北京:航空航天大学出版社,2006

[4] 陈国呈.PWM 变频调速及软开关电力变换技术[M].北京:机械工业出版社,2011

[5] Arefeen M S,Implementation of a Current Controlled Switched Reluctance Motor Drive Using

TMS320F2812.Texas Instruments Inc.

[6] 基于PLC控制的局部通风机变频调速系统的研究[D],左毅,2008

[7] 王树.变频调速系统设计与应用[M].北京:机械工业出版社,2005

[8] 卢义玉,李晓红.矿井通风与安[M].重庆:重庆大学出版社,2006

[9] 郭庆华.风机变频改造节能技术的应用[J]. 风机技术,2005(2):43-45

[10] W.Dzurzynski. Numerieal simulation of ventilation proeess computer programs[M].Proeeeding of the

fist school of mine ventilation.EMAG,katowiee,1999.303-309

[11] 胡崇岳.现代交流调速技术[M]. 北京:机械工业出版社,1999

[12] 张明勋.电力电子设备和应用手册[M].北京:机械工业出版社,2002

[13] 鉴定资料. 基于PLC控制的三巷掘进多局扇集成控制系统.太原理工大学,2004

[14] 王鑫哗. 基于AT89C52的矿井单巷道局部通风机集成控制系统的研究. [学位论文]. 太原理工大学,太原理工大学,2006

五、指导教师意见

液压机液压系统设计

新疆大学 专业课课程设计任务书 班级:机械12-7 姓名:麦麦提阿卜杜拉学号:20122001702 课程设计题目:基于plc的液压动力滑台控制设计 说明书页数:19页 发题日期:2016 年 2 月26 日完成日期2016年4月15日 指导教师:穆合塔尔老师

目录 1.1.1设计任务- 2 - 2.1.1负载分析和速度分析- 2 - 2.11负载分析- 2 - 2.12速度分析- 2 - 3.1.1确定液压缸主要参数- 3 - 4.1.1拟定液压系统图- 6 - 4.11选择基本回路- 6 - 4.12液压回路选择设计- 7 - 4.13工作原理:- 8 - 5.1.1液压元件的选择- 9 - 5.11液压泵的参数计算- 9 - 5.12选择电机- 10 - 6.1.1辅件元件的选择- 11 - 6.11辅助元件的规格- 11 - 6.12过滤器的选择- 11 - 7.1.1油管的选择- 12 - 8.1.1油箱的设计- 13 - 8.11油箱长宽高的确定- 13 - 8.12各种油管的尺寸- 14 - 9.1.1验算液压系统性能- 14 - 9.11压力损失的验算及泵压力的调整- 14 - 9.12液压系统的发热和温升验算- 16 -

1.1.1设计任务 设计一台校正压装液压机的液压系统。要求工作循环是快速下行→慢速加压→快速返回→停止。压装工作速度不超过5mm/s,快速下行速度应为工作速度的8~10倍,工件压力不小于10KN。 2.1.1负载分析和速度分析 2.11负载分析 已知工作负载F w =10000N。惯性负载F a =900N,摩擦阻力F f =900N. 取液压缸机械效率 m η=0.9,则液压缸工作阶段的负载值如表2-1: (表2-1) 2.12速度分析 已知工作速度即工进速度为最大5mm/s,快进快退速度为工进速度的8-10倍。即40-50mm/s. 按上述分析可绘制出负载循环图和速度循环图:

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

小型液压机液压系统设计

前言 (2) 一工况分析 (3) 二.负载循环图和速度循环图的绘制 (4) 三.拟定液压系统原理图 (4) 1. 确定供油方式 (5) 2. 调速方式的选择 (5) 4. 液压阀的选择 (8) 5. 确定管道尺寸 (9) 6. 液压油箱容积的确定 (9) 7. 液压缸的壁厚和外径的计算 (9) 8. 液压缸工作行程的确定 (9) 9. 缸盖厚度的确定 (9) 10. ................................................................................................................. 最小寻向长度的确定.. (10) 11. ................................................................................................................. 缸体长度的确定 (10) 四.液压系统的验算 (10) 1.压力损失的验算 (10) 2. ................................................................................................................... 系统温升的验算 (12) 3. ................................................................................................................... 螺栓校核 (13)

矿用局部通风机智能化管理系统

矿用局部通风机智能化管理系统随着近年来煤矿智能化系统的应用,今后矿用通风机将向集约化、高效节能化、智能化、大型化、低噪声化、选型合理化等方向发展。 煤矿井下用局部通风机,做为掘进工作面输送新鲜风流的一种重要装置;它与抽出式主通风机联合使用起到了冲淡并排出井下毒性、窒息性和爆炸性气体(瓦斯气体)和风尘,保证井下风流质量符合国家安全卫生标准,形成良好的工作环境,防止各种伤害和爆炸事故,它在矿井建设和生产期间始终占有重要的地位。 矿用局部通风机不同于主通风机,它没有专人看管,也没有实时在线监测监控系统,所以这就必须要求我们局部通风机生产厂家所生产的产品应具有实用性和可靠性(必须具备性能良好、使用寿命长等优点),但传统的局部通风机一般是独立运行的(即风量、风压范围只能随着管网阻力的增加而改变;而不是为了适应管网阻力通过调节转速而定项的改变性能)。 在掘进工作前期由于管网阻力小,常常采用单台风机单级运行;若用户初期选择局部通风机机座号大,功率也就大,其运行风量也大,造成掘进工作面上的粉尘与颗粒无法消除,从而不光给掘进面上的工作人员带来了污染,而且也造成了部分电能的浪费。逐步的由于管网阻力加大有时单级风机运行也存在不稳定区域,造成局部通风机的损坏。 那么,如何克服以上问题。我公司愿寻求有实力的合作商共同开发煤矿井下智能化局部通风机。其管理系统可分为:通风机本体,变频控制及智能管理系统三部分组成。 1、通风机本体部分:将以往的单板叶片改为机翼型叶片,在机座号与

轮毂比不变的情况下,其性能和效率将提升3%~6%,从而给电机留出一定的富余量。 2、变频控制器与局部通风机智能管理系统相结合,从而起到单机及单级风机过流、过压、轴承过温和绕组过温等保护措施;而且最显著的功能是主、备局部通风机单台故障自动切换功能及掘进巷道瓦斯气体严重超标时,主备通风机并联同时起动运行功能;另外局部通风机智能管理系统还具有双电源自动切换功能,即由两个不同变电所提供给同一个用电设备,当一方停电或因故停机后可自动切换到另一方,可有效的抑制因井下通风设备停机而带来不必要损失。 通过变频控制器驱动局部通风机,不光能减小因直接启动带来对电网的冲击;而且还能通过改变转速来实时调节局部通风机性能与管网阻力相匹配,改变以往局部通风机因前期工作存在的大马拉小车现象,及单级运行存在的缺陷,更能够起到节能降耗的功效。 以上为我厂对矿用局部通风机智能化管理系统做出的优化设计,具体实用与否,还有待调研考证,或与矿方了解后作出更优化的系统设计。

液压传动课程设计液压系统设计举例

液压系统设计计算举例 液压系统设计计算是液压传动课程设计的主要内容,包括明确设计要求进行工况分析、确定液压系统主要参数、拟定液压系统原理图、计算和选择液压件以及验算液压系统性能等。现以一台卧式单面多轴钻孔组合机床动力滑台液压系统为例,介绍液压系统的设计计算方法。 1 设计要求及工况分析 设计要求 要求设计的动力滑台实现的工作循环是:快进 → 工进 → 快退 → 停止。主要性能参数与性能要求如下:切削阻力F L =30468N ;运动部件所受重力G =9800N ;快进、快退速度υ1= υ3=0.1m/s ,工进速度υ2=×10-3m/s ;快进行程L 1=100mm ,工进行程L 2=50mm ;往复运动的加速时间Δt =;动力滑台采用平导轨,静摩擦系数μs =,动摩擦系数μd =。液压系统执行元件选为液压缸。 负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30468N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N 196098002.0s fs =?==G F μ 动摩擦阻力 N 98098001.0d fd =?==G F μ (3) 惯性负载 N 500N 2.01 .08.99800i =?=??= t g G F υ (4) 运动时间 快进 s 1s 1.0101003 11 1=?==-υL t 工进 s 8.56s 1088.010503 322 2=??==--υL t 快退 s 5.1s 1.010)50100(3 3 2 13=?+=+= -υL L t 设液压缸的机械效率ηcm =,得出液压缸在各工作阶段的负载和推力,如表1所列。

【精品】液压传动系统设计计算

液压传动系统设计计算 液压系统的设计步骤与设计要求 液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行.着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 1.1设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1.2明确设计要求

设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、转换精度等性能方面的要求; 6)自动化程序、操作控制方式的要求; 7)对防尘、防爆、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 制定基本方案和绘制液压系统图 3。1制定基本方案 (1)制定调速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题.

方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向阀的有机组合实现所要求的动作。对高压大流量的液压系统,现多采用插装阀与先导控制阀的逻辑组合来实现。 速度控制通过改变液压执行元件输入或输出的流量或者利用密封空间的容积变化来实现.相应的调整方式有节流调速、容积调速以及二者的结合——容积节流调速。 节流调速一般采用定量泵供油,用流量控制阀改变输入或输出液压执行元件的流量来调节速度。此种调速方式结构简单,由于这种系统必须用闪流阀,故效率低,发热量大,多用于功率不大的场合。

液压机液压系统设计

攀枝花学院 学生课程设计说明书 题目:液压传动课程设计 ——小型液压机液压系统设计学生姓名: 学号: 所在院系:机电工程学院 专业:机械设计制造及其自动化班级: 指导教师:职称: 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 注:任务书由指导教师填写。

摘要 液压机是一种用静压来加工金属、塑料、橡胶、粉末制品的机械,在许多工业部门得到了广泛的应用。液压传动系统的设计在现代机械的设计工作中占有重要的地位。液体传动是以液体为工作介质进行能量传递和控制的一种传动系统。本文利用液压传动的基本原理,拟定出合理的液压传动系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格。确保其实现快速下行、慢速加压、保压、快速回程、停止的工作循环。 关键词:液压机、课程设计、液压传动系统设计

Abstract Hydraulic machine is a kind of static pressure to the processing of metal, plastic, rubber, the powder product of machinery, in many industrial department a wide range of applications. The design of the hydraulic drive system in modern mechanical design work occupies an important position. Transmission fluid is the liquid medium for the work carried out energy transfer and control of a transmission system.This paper using hydraulic transmission to the basic principle of drawing up a reasonable hydraulic system map ,and then after necessary calculation to determine the liquid pressure system parameters , Then according to the parameters to choose hydraulic components specification. To ensure the realization of the fast down, slow pressure, pressure maintaining, rapid return, stop work cycle. Key words:hydraulic machine, course design, hydraulic transmission system design.

国外矿用风机的使用现状和发展趋势

国外矿用风机的使用现状和发展趋势 1、国外矿用风机的使用现状和发展趋势 1.1 矿用主通风机 ( 1)美国煤矿使用的主通风机以轴流式为主,离心式风机所占比例不到3%, 而且轴流式主通风机所占比例仍有继续增加的趋势, 并将从单纯的风量控制向集中式环境控制系统发展。美国的矿用通风设备制造公司正在研制新式矿用粉尘、瓦斯、有毒有害气体、噪声等探测和控制设备。拟采用计算机控制的动叶可调轴流式或调速固定叶片轴流式或离心式主通风机, 可根据井下探头提供的(粉尘、瓦斯、有毒有害气体、噪声)相关数据自动控制变频器来调节风量和压力, 实现主通风机风量的按需调节。还可采用压入式主通风机与空调装置联机, 使井下保持恒温环境。轴流式风机转子的直径和重量要比同功率的离心式风机小或轻1/3~ 2/3, 转速较高, 惯性矩小, 其加速性能和动态特性要优于离心式风机, 无论是调速式还是动叶可调式轴流式风机的性能调节范围都比离心式风机的宽, 运行效率比离心式风机高。 美国早在1987年就开始使用在运行中通过自动改变叶片角度的液压动叶可调式矿用主通风机。这种通风机的价格是普通通风机价格的5~ 7倍, 价格虽然昂贵, 但节能效果好。 ( 2)德国TLT ( Turbo Lufttechnik)公司是欧洲一家有代表性的矿用风机制造公司, 在矿用风机制造方面有70a历史, 该公司在液压式动叶调节技术方面积累了丰富的经验。液压调节系统包括液压伺服机构和锁定系统, 结构非常复杂, 制造精度很高。德国Turm ag公司生产的矿用轴流主扇最大直径可达5m, 风量达700m3/s, 单级风压达4500Pa, 还可按用户的需求单独设计。最高装置效率可达86% , 高效性能区域宽广, 覆盖面大。有多种调节动叶角度的方法可供选择: 停机手动调节单个动叶角度, 停机手动一次性同时调节全部动叶角度, 在运行中或停机时采用液压机构一次性同时调节全部动叶角度。传动轴承的设计寿命都在10万工作小时以上, 轴承的监控包括温度控制、振动控制和冲击脉测定( SPM )系统。扩散塔有立式及卧式两种。立式布置时传动轴从风机扩散器出口端伸出, 故来流可沿轴向较为均匀地进入风机, 改善了风机的进气条件,有利于提高风机装置效率。在立式扩散塔底部设置90b弯头, 内设弧形导风板, 扩散塔直立伸向空中, 这样一方面大大降低了90b弯头的局部阻力损失, 另一方面主通风机的高频噪声得到了自然衰减。该公司特制的熔岩混凝土砖与消音织物一起作为扩散塔的衬里, 用于隔音和消音, 必要时, 在扩散塔出口再安装消音器, 使风机装置的出口噪声严格满足环境卫生要求。但其工程造价要比卧式的高一些。 ( 3)前苏联使用离心式矿用风机为主。20多年来, 他们致力于改进离心式风机的气动性能, 使最大静压效率从72% 提高到88%, 平均静压效率从52% 提高到75% , 最大风量从300m3/ s增加到700m3/s, 最大功率从 2 000kW 增加到5 000kW。使用总功率增加了2. 3倍, 风机的外型尺寸却减小了1. 5~ 2倍, 取得了突出的成效。 近十几年来, 前苏联顿涅茨煤炭机械制造设计局, 据中央流体动力研究所等提出的气动略图研制的BOKò型矿用轴流主通风机, 效率比旧型号的提高10% ~

小型液压机液压系统课程设计

攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号:vvvvvvvv 所在院(系):机械工程学院 专业: 班级: 指导教师:vvvvvv 职称:vvvv 2014 年06 月15 日 攀枝花学院教务处制

攀枝花学院本科学生课程设计任务书 目录

前言 (5) 一设计题目 (6) 二技术参数和设计要求 (6) 三工况分析 (6) 四拟定液压系统原理 (7) 1.确定供油方式 (7) 2.调速方式的选择 (7) 3.液压系统的计算和选择液压元件 (8) 4.液压阀的选择 (10) 5.确定管道尺寸 (10) 6.液压油箱容积的确定 (11) 7.液压缸的壁厚和外径的计算 (11) 8.液压缸工作行程的确定 (11) 9.缸盖厚度的确定 (11) 10.最小寻向长度的确定 (11) 11.缸体长度的确定 (12) 五液压系统的验算 (13) 1 压力损失的验算 (13) 2 系统温升的验算 (15) 3 螺栓校核 (16) 总结 (17) 参考文献................................................................................................. 错误!未定义书签。

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

风机特性曲线

用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—7 2No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。

通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

正确选择风机,是保证通风系统正常、经济运行的一个重要条件。所谓正确选择风机,主要是指根据被输送气体的性质和用途选择不同用途的风机;选择的风机要满足系统所需要的风量,同时风机的风压要能克服系统的阻力,而且在效率最高或经济使用范围内工作。具体选择方法和步骤如下: 1.根据被输送气体的性质,选用不同用途的风机。例如,输送清洁空气,或含尘气体流经风机时已经过净化,含尘浓度不超过150mg/m3时,可选择一般通风换气用的风机;输送腐蚀性气体,要选用防腐风机;输送易燃、易爆气体或含尘气体时,要选用防爆风机或排尘风机。但在选择具体的风机型号和规格时,还必须根据某种类型风机产品样本上的性能表或特性曲线图才能确定。

液压传动系统的设计和计算word文档

10 液压传动系统的设计和计算 本章提要:本章介绍设计液压传动系统的基本步骤和方法,对于一般的液压系统,在设计过程中应遵循以下几个步骤:①明确设计要求,进行工况分析;②拟定液压系统原理图;③计算和选择液压元件;④发热及系统压力损失的验算;⑤绘制工作图,编写技术文件。上述工作大部分情况下要穿插、交叉进行,对于比较复杂的系统,需经过多次反复才能最后确定;在设计简单系统时,有些步骤可以合并或省略。通过本章学习,要求对液压系统设计的内容、步骤、方法有一个基本的了解。 教学内容: 本章介绍了液压传动系统设计的内容、基本步骤和方法。 教学重点: 1.液压元件的计算和选择; 2.液压系统技术性能的验算。 教学难点: 1.泵和阀以及辅件的计算和选择; 2.液压系统技术性能的验算。 教学方法: 课堂教学为主,充分利用网络课程中的多媒体素材来表示设计的步骤及方法。 教学要求: 初步掌握液压传动系统设计的内容、基本步骤和方法。

10.1 液压传动系统的设计步骤 液压传动系统的设计是整机设计的一部分,它除了应符合主机动作循环和静、动态性能等方面的要求外,还应当满足结构简单,工作安全可靠,效率高,经济性好,使用维护方便等条件。液压系统的设计,根据系统的繁简、借鉴的资料多少和设计人员经验的不同,在做法上有所差异。各部分的设计有时还要交替进行,甚至要经过多次反复才能完成。下面对液压系统的设计步骤予以介绍。 10.1.1 明确设计要求、工作环境,进行工况分析 10.1.1.1 明确设计要求及工作环境 液压系统的动作和性能要求主要有:运动方式、行程、速度范围、负载条件、运动平稳性、精度、工作循环和动作周期、同步或联锁等。就工作环境而言,有环境温度、湿度、尘埃、防火要求及安装空间的大小等。要使所设计的系统不仅能满足一般的性能要求,还应具有较高的可靠性、良好的空间布局及造型。 10.1.1.2 执行元件的工况分析 对执行元件的工况进行分析,就是查明每个执行元件在各自工作过程中的速度和负载的变化规律,通常是求出一个工作循环内各阶段的速度和负载值。必要时还应作出速度、负载随时间或位移变化的曲线图。下面以液压缸为例,液压马达可作类似处理。 就液压缸而言,承受的负载主要由六部分组成,即工作负载,导向摩擦负载,惯性负载,重力负载,密封负载和背压负载,现简述如下。 (1)工作负载w F 不同的机器有不同的工作负载,对于起重设备来说,为起吊重物的重量;对液压机来说,压制工件的轴向变形力为工作负载。工作负载与液压缸运动方向相反时为正值,方向相同时为负值。工作负载既可以为定值,也可以为变量,其大小及性质要根据具体情况加以分析。

矿井通风设备选型

矿井通风设备选型 一、通风方式和通风系统 (一)通风方式 本矿井通风方法为机械抽出式。矿井采用中央并列式通风。 (二)通风系统 进风井为主斜井、副斜井,回风井为回风斜井。 投产期通风系统:主斜井、副斜井进风,回风斜井回风,新鲜风流从主斜井、和副斜井进入,经运输暗斜井、轨道暗斜井、运输大巷、轨道大巷、运输下山、轨道下山、运输石门、采面运输巷至10701采面,乏风经回风斜巷进入回风斜井,然后排至地面。 本矿按煤与瓦斯突出矿井进行设计。在风井场地设通风机,通风方式为并列式。 选用型高效节能防爆对旋轴流通风机;当矿井初期风量和负压较小时,可调节风机叶片安装角度和采用变频方式改变风机的转速来满足矿井通风要求。 反风方式,采用风机反转反风。 二、回风斜井通风设备选型 ㈠计依据: 容易时期风量:73m3/s;负压:860.6Pa 困难时期风量:73m3/s;负压:1174.6Pa 回风井的井口海拔标高为+1316m,当地大气密度ρ1=1.03kg/m3。 ㈡通风设备选型: 根据矿井通风资料,经多方案比较筛选后可供选择的方案列于表7-2-1。 表7-2-1 回风斜井通风机选型比较表

由表7-2-2可知GAF型轴流通风机,投资高、占地面积大、土建费用高、土建施工工期长。而FBCDZ风型风机具有投资低,占地面积小,土建费用低,安装、维护简单等优点。故推荐方案一。 经技术经济比较,回风井选用风机FBCDZ-8-No21B型,740 r/min,一台工作,一台备用。配套电机为防爆电动机(660V,132kW,740r/min),每台风机额定风量为48~107m3/s,额定风压为670~2600Pa。风机特性曲线参见图7-2-2。 根据本矿井前后期负压变化较大的特点,在调整好需要的叶片角度后,通过变频调速达到实际所需风量,可实现风机前后期均处于较佳的工况点运行。 风机订货前应由厂家针对本矿井风量、负压情况对风机选型进行校验,设计

液压传动系统设计与计算

液压传动系统设计与计算 第九章液压传动系统设计与计算 液压系统设计的步骤大致如下: 1.明确设计要求,进行工况分析。 2.初定液压系统的主要参数。 3.拟定液压系统原理图。 4.计算和选择液压元件。 5.估算液压系统性能。 6.绘制工作图和编写技术文件。 根据液压系统的具体内容,上述设计步骤可能会有所不同,下面对各步骤的具体内容进行介绍。第一节明确设计要求进行工况分析 在设计液压系统时,首先应明确以下问题,并将其作为设计依据。 1.主机的用途、工艺过程、总体布局以及对液压传动装置的位置和空间尺寸的要求。 2.主机对液压系统的性能要求,如自动化程度、调速范围、运动平稳性、换向定位精度以及对系统的效率、温升等的要求。 3.液压系统的工作环境,如温度、湿度、振动冲击以及是否有腐蚀性和易燃物质存在等情况。 位移循环图图9-1 在上述工作的基础上,应对主机进行工况分析,工况分析包括运动分析和动力分析,对复杂的系统还需编制负载和动作循环图,由此了解液压缸或液压马达的负载和速度随时间变化的规律,以下对工况分析的内容作具体介绍。 一、运动分析 主机的执行元件按工艺要求的运动情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移循环图表示,由此对运动规律进行分析。 1.位移循环图L—t 图9-1为液压机的液压缸位移循环图,纵坐标L表示活塞位移,横坐标t表示从活塞启动到返回原位的时间,曲线斜率表示活塞移动速度。该图清楚地表明液压机的工作循环分别由快速下行、减速下行、压制、保压、泄压慢回和快速回程六个阶段组成。 2.速度循环图v—t(或v—L) 工程中液压缸的运动特点可归纳为三种类型。图9-2为三种类型液压缸的v—t图,第中实线所示,液压缸开始作匀加速运动,然后匀速运动,9-2一种如图

小型液压机液压系统课程设计

$ 攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号: vvvvvvvv < 所在院(系):机械工程学院 专业: 班级: 指导教师: vvvvvv 职称: vvvv # 2014 年 06 月 15 日 攀枝花学院教务处制

》 攀枝花学院本科学生课程设计任务书

目录 前言 (1) 一设计题目 (2) 二技术参数和设计要求 (2) 三工况分析 (2) 四拟定液压系统原理 (3) . 1.确定供油方式 (3) 2.调速方式的选择 (3) 3.液压系统的计算和选择液压元件 (4) 4.液压阀的选择 (6) 5.确定管道尺寸 (6) 6.液压油箱容积的确定 (7) 7.液压缸的壁厚和外径的计算 (7) 8.液压缸工作行程的确定 (7) [ 9.缸盖厚度的确定 (7)

10.最小寻向长度的确定 (7) 11.缸体长度的确定 (8) 五液压系统的验算 (9) 1 压力损失的验算 (9) 2 系统温升的验算 (11) 3 螺栓校核 (11) 总结 (13) : 参考文献 (14)

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

矿用风机的现状和发展趋势

矿用风机的现状和发展趋势 1、国外矿用风机的使用现状和发展趋势 1.1矿用主通风机 ( 1)美国煤矿使用的主通风机以轴流式为主,离心式风机所占比例不到3%, 而且轴流式主通风机所占比例仍有继续增加的趋势, 并将从单纯的风量控制向集中式环境控制系统发展。美国的矿用通风设备制造公司正在研制新式矿用粉尘、瓦斯、有毒有害气体、噪声等探测和控制设备。拟采用计算机控制的动叶可调轴流式或调速固定叶片轴流式或离心式主通风机, 可根据井下探头提供的(粉尘、瓦斯、有毒有害气体、噪声)相关数据自动控制变频器来调节风量和压力, 实现主通风机风量的按需调节。还可采用压入式主通风机与空调装置联机, 使井下保持恒温环境。 轴流式风机转子的直径和重量要比同功率的离心式风机小或轻1/3~ 2/3, 转速较高, 惯性矩小, 其加速性能和动态特性要优于离心式风机, 无论是调速式还是动叶可调式轴流式风机的性能调节范围都比离心式风机的宽, 运行效率比离心式风机高。美国早在1987年就开始使用在运行中通过自动改变叶片角度的液压动叶可调式矿用主通风机。这种通风机的价格是普通通风机价格的5~ 7倍, 价格虽然昂贵, 但节能效果好。 ( 2)德国TLT ( Turbo Lufttechnik)公司是欧洲一家有代表性的矿用风机制造公司, 在矿用风机制造方面有70a历史, 该公司在液压式动叶调节技术方面积累了丰富的经验。液压调节系统包括液压伺服机构和锁定系统, 结构非常复杂, 制造精度很高。 德国Turm ag公司生产的矿用轴流主扇最大直径可达5m, 风量达700m3/s, 单级风压达4500Pa, 还可按用户的需求单独设计。最高装置效率可达86% , 高效性能区域宽广, 覆盖面大。有多种调节动叶角度的方法可供选择: 停机手动调节单个动叶角度, 停机手动一次性同时调节全部动叶角度, 在运行中或停机时采用液压机构一次性同时调节全部动叶角度。传动轴承的设计寿命都在10万工作小时以上, 轴承的监控包括温度控制、振动控制和冲击脉测定( SPM )系统。扩散塔有立式及卧式两种。立式布置时传动轴从风机扩散器出口端伸出, 故来流可沿轴向较为均匀地进入风机, 改善了风机的进气条件,有利于提高风机装置效率。在立式扩散塔底部设置90b弯头, 内设弧形导风板, 扩散塔直立伸向空中, 这样一方面大大降低了90b弯头的局部阻力损失, 另一方面主通风机的高频噪声得到了自然衰减。该公司特制的熔岩混凝土砖与消音织物一起作为扩散塔的衬里, 用于隔音和消音, 必要时, 在扩散塔出口再安装消音器, 使风机装置的出口噪声严格满足环境卫生要求。但其工程造价要比卧式的高一些。 ( 3)前苏联使用离心式矿用风机为主。20多年来, 他们致力于改进离心式风机的气动性能, 使最大静压效率从72% 提高到88%, 平均静压效率从52% 提高到75% , 最大风量从300m3/ s增加到700m3/s, 最大功率从 2 000kW 增加到5 000kW。使用总功率增加了2. 3倍, 风机的外型尺寸却减小了1. 5~ 2倍, 取得了突出的成效。近十几年来, 前苏联顿涅茨煤炭机械制造设计局, 据中央流体动

液压传动课程压力机液压系统设计

安徽建筑工业学院 液压传动 设计说明书 设计题目压力机液压系统设计 机电工程学院班 设计者 2010 年4 月10 日 液压传动任务书 1. 液压系统用途(包括工作环境和工作条件)及主要参数: 单缸压力机液压系统,工作循环:低压下行→高压下行→保压→低压回程→上限停止。自动化程度为半自动,液压缸垂直安装。 最大压制力:20×106N;最大回程力:4×104N;低压下行速度:25mm/s;高压下行速度:1mm/s;低压回程速度:25mm/s;工作行程:300mm;液压缸机械效率。 2. 执行元件类型:液压缸 3. 液压系统名称:压力机液压系统。 设计内容 1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 设计液压缸; 4. 验算液压系统性能; 5. 编写上述1、2、3和4的计算说明书。 压力机液压系统设计

1 压力机的功能 液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它常用于压制工艺和压制成形工艺,如:锻压、冲压、冷挤、校直、弯曲、翻边、薄板拉深、粉末冶金、压装等等。 液压机有多种型号规格,其压制力从几十吨到上万吨。用乳化液作介质的液压 机,被称作水压机,产生的压制力很大,多用于重型机械厂和造船厂等。用石油型液压油做介质的液压机被称作油压机,产生的压制力较水压机小,在许多工业部门得到广泛应用。 液压机多为立式,其中以四柱式液压机的结构布局最为典型,应用也最广泛。图所示为液压机外形图,它主要由充液筒、上横梁2、上液压缸3、上滑块4、立柱5、下滑块6、下液压缸7等零部件组成。这种液压机有4个立柱,在4个立柱之间安置上、下两个液压缸3和7。上液压缸驱动上滑块4,下液压缸驱动下滑块6。为了满足大多数压制工艺的要求,上滑块应能实现快速下行→慢速加压→保压延时→快速返回→原位停止的自动工作循环。下滑块应能实现向上顶出→停留→向下退回→原位停止的工作循环。上下滑块的运动依次进行,不能同时动作。 2 压力机液压系统设计要求 设计一台压制柴油机曲轴轴瓦的液压机的液压系统。 轴瓦毛坯为:长×宽×厚 = 365 mm×92 mm×7.5 mm 的钢板,材料为08Al ,并涂有轴承合金;压制成内径为Φ220 mm 的半圆形轴瓦。 液压机压头的上下运动由主液压缸驱动,顶出液压缸用来顶出工件。其工作循环为:主缸快速空程下行?慢速下压?快速回程?静止?顶出缸顶出?顶出缸回程。 液压机的结构形式为四柱单缸液压机。 图 液压机外形图 1-充液筒;2-上横梁;3-上液压缸;4-上滑块;5-立柱;6-下滑块;7-下液压缸;8-电气操纵箱;9-动力机构

小型液压机的液压系统课程设计

小型液压机的液压系统课程设计

学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号:vvvvvvvv 所在院(系):机械工程学院 专业: 班级: 指导教师:vvvvvv 职称:vvvv 2014 年06 月15 日

课程设计任务书 题 小型液压机的液压系统设计 目 1、课程设计的目的 液压系统的设计和计算是机床设计的一部分。设计的任务是根据机床的功用、运动循环和性能等要求,设计出合理的液压系统图,再经过必要的计算,确定液压系统的主要参数,然后根据计算所得的参数,来选用液压元件和进行系统的结构设计。 使学生在完成液压回路设计的过程中,强化对液压元器件性能的掌握,理解不同回路在系统中的各自作用。能够对学生起到加深液压传动理论的掌握和强化实际运用能力的锻炼。

2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) 要求学生在完成液压传动课程学习的基础上,运用所学的液压基本知识,根据液压元件、各种液压回路的基本原理,独立完成液压回路设计任务。 设计一台小型液压机的液压系统,要求实现的工作循环:快速空程下行——慢速加压——保压——快速回程——停止。快速往返速度为4m/min,加压速度为40-250mm/min,压制力为300000N,运动部件总重量为20000N。。设计结束后提交:①5000字的课程设计论文;②液缸CAD图纸2号一张;③三号系统图纸一张。 3、主要参考文献 [1]左健民.液压与气压传动.第 2 版.北京机械工业出版社2004. [2]章宏甲.液压与气压传动.第 2 版.北京机械工业出版社2001. [3]许福玲. 液压与气压传动. 武汉华中科技大学出版社2001. [4]张世伟.《液压传动系统的计算与结构设计》.宁夏人民出版社.1987. [5]液压传动手册. 北京机械工业出版社2004.

煤矿局部通风机管理制度

$$矿局部通风机管理制度 我矿属高瓦斯矿井,为保证局部通风机安全可靠运行,避免瓦斯超限事故发生,确保矿井安全生产,特制定以下管理制度。 一、总则 1、使用局部通风机供风的地点必须实行风电、瓦斯电闭锁。主副局部通风机互为切换使用时,都必须实行风电闭锁,保证停风后能够切断停风区域内全部非本质安全型电气设备的电源。 2、局部通风机管理要做到专项设计,专项措施,专人安装,专人验收,专人管理,实现定制化管理程序,即施工单位提出申请→通风区编制设计→机电区审批→矿总工程师批准→通风队安装局部通风机、下机电队安装电缆及开关、信息中心安装电力监测监控系统→组织验收移交使用队组。 3、局部通风机执行焦煤单双日切换使用规定。 4、局部通风机电力集控系统只作为后备控制,用于主副局部通风机均失电或非机械故障停机后恢复运行的应急处置。 5、井下任何人员不得私自、随意开停局部通风机。 二、安装调试、维护、回收 1、掘进巷道安装的局部通风机型号、功率、风筒规格、风量计算等设计及安装,应列入掘进巷道的《作业规程》,其他地点的安设必须制定措施,报矿总工程师批准。 2、每组局部通风机必须是两台同型号、同等能力的局部通

风机。 3、局部通风机入井前,由机电区组织有关单位检查其“产品合格证”、“煤矿矿用产品安全标志”及安全性能,并经机运督查组检查其防爆性能,由通风队和机修厂配合进行绝缘测定,电机定子绕组对机壳冷态绝缘电阻不得小于50M欧姆,并要求带电试运行30分钟以上,按局部通风机入井审批单内容认真检查验收,机运督查组签发合格后方准入井,验收单机电区负责存档。 4、局部通风机的安装由通风部门负责,局部通风机必须严格按照《规程》要求安设在进风流中,距掘进巷道回风口不得小于10米。 5、局部通风机落地安装时采用专用支撑架,保证局部通风机距地面不小于300mm;局部通风机吊挂安装时采用专用吊架,且吊挂时不准直接吊挂风机,应吊挂专用风机吊架,且吊挂点不得少于四处,吊挂安装时要考虑便于检修维护;局部通风机集流侧严禁放置或悬挂异物,以免吸入造成事故;集流侧保护栏损坏时,风机不得运行。 6、局部通风机在装运及安装过程中不得受撞击,防止机壳受力变形而导致叶片与壳体摩擦,壳体变形时不准安装使用,装运时要使用专用平板车。 7、主副局部通风机风电闭锁装置的安装、检查、维护由使用队组负责,保证当正常工作的主或副局部通风机停止运转后,能切断停风区域内全部非本质安全型电气设备的电源。使用2组

液压系统的设计计算

液压系统的设计计算2 题目:一台加工铸铁变速箱箱体的多轴钻孔组合机床,动力滑台的动作顺序为快速趋进工件→Ⅰ工进→Ⅱ工进→加工结束块退→原位停止。滑台移动部件的总重量为5000N ,加减速时间为0.2S 。采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1。快进行程为200MM ,快进与快退速度相等均为min /5.3m 。Ⅰ工进行程为100mm ,工进速度为min /100~80mm ,轴向工作负载为1400N 。Ⅱ工进行程为0.5mm ,工进速度为min /50~30mm ,轴向工作负载为800N 。工作性能要求运动平稳,试设计动力滑台的液压系统。 解: 一 工况分析 工作循环各阶段外载荷与运动时间的计算结果列于表1 液压缸的速度、负载循环图见图1

二 液压缸主要参数的确定 采用大、小腔活塞面积相差一倍(即A 1=2A 2)单杆式液压缸差动联接来达到快 速进退速度相等的目的。为了使工作运动平稳,采用回油路节流调速阀调速回路。液压缸主要参数的计算结果见表2。 按最低公进速度验算液压缸尺寸 故能达到所需低速 2 7.163 1005.06.253 min min 2 2cm v Q cm A =?=>= 三 液压缸压力与流量的确定

因为退时的管道压力损失比快进时大,故只需对工进与快退两个阶段进行计算。计算结果见表3 四液压系统原理图的拟定 (一)选择液压回路 1.调速回路与油压源 前已确定采用回油路节流调速阀调速回路。为了减少溢流损失与简化油路,故采用限压式变量叶片泵 2.快速运动回路 采用液压缸差动联接与变量泵输出最大流量来实现 3.速度换接回路 用两个调速阀串联来联接二次工进速度,以防止工作台前冲(二)组成液压系统图(见图2)

相关文档
最新文档