A Multivariate CUSUM Procedure and a Most Active Bivariate Chart

A Multivariate CUSUM Procedure and a Most Active Bivariate Chart
A Multivariate CUSUM Procedure and a Most Active Bivariate Chart

Quality Technology & Quantitative Management Vol. 3, No. 4, pp. 401-414, 2006

Q T Q M ?

ICAQM 2006

A Multivariate CUSUM Procedure and a Most Active Bivariate Chart

Ruojia Li 1 and Richard A. Johnson 2

1

Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA 2Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA

(Received March 2005, accepted October 2005) ______________________________________________________________________ Abstract: We propose a new multivariate cumulative sum (CUSUM) scheme whose components are the difference between the Page [10] univariate CUSUM statistic for detecting an increase and that for detecting a decrease. Our procedure also applies when monitoring principal components. We then suggest a new quality chart procedure where, at each new observation, the results for the two most active components are graphed. These two components are selected to have the largest value of the appropriate bivariate CUSUM statistic. This novel graphical approach, intended to augment the information in the chart based on all of the variables, is illustrated with an application to data from an automobile assembly process. We compare our new scheme with the classic charts and a number of other existing multivariate CUSUM schemes, including the scheme proposed in Crosier[2]. In our simulations, among existing procedures, Crosier[2] has the best overall average run length (ARL) performance. Our new multivariate scheme has ARL performance that is usually comparable with that of Crosier’s scheme. 2T Keywords: CUSUM statistic, graphical procedure, most active bivariate plot process capability plots, multivariate quality monitoring.

______________________________________________________________________

1. Introduction

n this paper, we address the general problem of detecting a change in the level of a sequence of independent random vectors. Nowadays, with automated data collection a common practice, several characteristics are continually monitored in order to detect a change in the quality of a manufactured product.

I Consider a sequence of random vectors where the components of each random vector correspond to the measured characteristics being monitored. The sequence is “in control” if all of the observed variation is due to chance and the process mean is at some acceptable value. The sequence is considered to be “out of control” if, from some time point on, the mean has shifted to some other value. We are interested in sequential quality monitoring schemes for detecting a small or moderate shift in the mean of the process.

Sequential control schemes are evaluated in terms of their average run length (ARL). An effective scheme should have a large ARL when the process mean is at its desired level and have a small ARL when the process mean deviates from this value.

We propose a new multivariate CUSUM scheme in Section 2. In Section 3, we present the proposed most active bivariate chart. At each new observation, a figure is created for the two components having the largest value of the corresponding bivariate CUSUM statistic. Our CUSUM scheme for all of the variables and the most active bivariate chart are both illustrated with an application.

402 Li and Johnson

In Section 4, we take a simulation approach to compare the exact properties of our procedure and several competing monitoring schemes. The simulation studies show that, among the existing multivariate procedures, the CUSUM scheme proposed by Crosier[2] has the best overall performance. The ARL performance of our new scheme is usually comparable with Crosier’s scheme and better in a few circumstances.

2. Our New CUSUM Scheme

All of the multivariate procedures we treat are based on the sequence of independent 1p × random vectors 1X , ..., n X , ... where each has the target mean value a and the same covariance matrix . If is unknown, it will be estimated from a long series of observations taken when the process is stable. As is common with most of the literature, we describe our multivariate monitoring scheme in terms of a known covariance matrix .

ΣΣΣInitially, we define our new procedure in a univariate setting where , , ... is a sequence of independent random variables and a is the target mean value. We first define two cumulative sums with drifts:

1X 2X (1)1

()n

n i i S X k ?==?∑,

(2)1()n n i i S X k +==?∑,

As in Page’s CUSUM scheme, the two constants satisfy and . When the sequence of random variables , , ... are normally distributed, typically we can set k +>a a k ?<1X 2X k a k σ+=+ and k a k σ?=?, where σ is the standard deviation of and is one-half of the specified mean shift (expressed in standard deviations) that should be detected by the scheme.

X k Following Page [10], we then define

(1)(1)max ,n m n m S S ?≤=n S ?n ? (1)

(2)(2)max .n n m n m S S S +≤=?

(2)

With an eye towards multivariate extensions, we consider the difference . In particular, our new univariate CUSUM scheme signals when n S S +?n n S S h σ+??≥ (3)

for some specified positive constant .

h In the multivariate setting, each p -dimensional random vector , has covariance matrix =i X ,1,2,[,,...,]'i i i p X X X Σ and target mean vector 12=a [,,...,]'p a a a . To generalize our univariate CUSUM procedure to the multivariate setting, we begin by defining the multivariate CUSUM statistics and .

(1)n S (2)n S (1)(1)(1),1,[,...,]'n n n p S S S =1

(),?==?∑n i i X k (4) (2)(2)(2),1,[,...,]'n n n p 1

(S S S =);+==?∑n i i X k (5)

A Multivariate CUSUM Procedure 403

where ?=k 1[,...,]',p k k ??+=k 1[,...,]'p k k ++ and j j k a +> j j k a ?< for

j =1, 2, …, p . When each of the random vectors has multivariate normal distribution, typically, we take

12,,...X X ?=k ?a k σ and ?=k +a k σ (6)

so that (4) and (5) can be written as (1)=n S 1=( ?+∑n i )k σ and 1=i (2)=n S (??∑n

i X a X a i )k σ, Here =σ1[,...,]'p σσ, where j σ is the standard deviation of the j -th component of the i X ’s, and the constant k can be chosen as one-half of the specified shift in mean on the j -th component (expressed in standard deviations).

For each component j = 1, ..., p , we define the two sequences of statistics

(1)(1),,max n j m n m j n j S S ?≤=?,S ,,

(2)(2),,max n j n j m n m j S S S +≤=?.

and then the two multivariate statistics n S + and n S ? where

+=n S ,1,[,...,]'n n p S S ++ (7)

?=n S ,1,[,...,]'n n p S S ?? (8)

We now define our CUSUM statistic in terms of the differences . ,D n S n n S S +??,D n S =()()112n n n n S S S S ['+??+??Σ?]

(9) Our multivariate CUSUM scheme signals when ,D n S =()()112[']n n n n S S S S +??+??Σ?≥ h (10)

for some specified control limit h . For any given Σ and , simulation can be used to determine the control limit h to attain a specified ARL when the process is on target.

k When the dimension p is large, it is common practice to monitor principal components. Johnson and Wichern[6] describe an widely applied scheme due to Kourti and MacGregor

[9] where the first two principal components are monitored visually and the remaining principal components are combined into a single statistic for a second chart. Alternatively, we can apply our statistic to all or to just a few of the principal components. The principal components are based on the eigenvalue and eigenvector pairs (k λ, ) determined from

k e Σλ=j e j e (11)

and ordered so that 12...p λλ≥≥≥λ. The value of the first principal component, for random vector , is

i X ,j i Y =()1'?i e X μ

404 Li and Johnson and those of the other principal components, for random vector i X , are

,j i Y =()'j i e X μ? for j =1, …, p

As long as the smallest eigenvalue is not too small, it is convenient to standardize the

values of the principal components so that they all have variance 1. That is, we use

.,j i j i Z ==()'μ?j i e X for j

=1, …, p (12) The value for the statistic calculated from the ,D n S ,j i Z is the same as its value calculated from the ,j i Y but the value for only needs to be determined once for a given dimension since the resulting covariance matrix is always the identity.

h 3. A Most Active Bivariate Chart

We will introduce most active bivariate charts in the context of an application where we also give an application of our multivariate CUSUM procedure based on the statistic . We refer to the automobile sheet metal assembly data used in Johnson and Li [5], Section 4. More detail on the body assembly process is given in Ceglarek and Shi[1].

,D n S The data, collected by Dr. Darek Ceglarek, consist of 50 observations on 6 variables of which four were measured when the car body was complete and two were measured on the underbody at an earlier stage of assembly.

All measurements were taken by sensors that recorded the deviation from the nominal value in millimeters.

1x =deviation at mid right hand side – body complete

2x =deviation at mid left hand side – body complete

3x =deviation at back right hand side – body complete

4x =deviation at back left hand side – body complete

5x =deviation at mid right hand side of underbody

6x =deviation at mid left hand side of underbody

From the individual variable plots and chart, given in the appendix, the first 30 observations appear to be stable. Although this sample size is rather small, for illustrative purposes, we obtain the sample covariance matrix and the mean from these 30 observations.

2T S = 0.0626 0.0616 0.0474 0.0083 0.0197 0.00310.0616 0.0924 0.0268 0.0008 0.0228 0.01550.0474 0.0268 0.1446 0.0078 0.0211 0.004??90.0083 0.0008 0.0078 0.1086 0.0221 0.00660.0197 0.0228 0.0211 0.0221 0.3428 0.01460.0031 0.0155 0.0049 0.0066 0.0146 0.03??66????????????????????

[0.5063 0.2070 0.0620 0.0317 0.6980 0.0650]'=??????x

A Multivariate CUSUM Procedure 405

Using the estimated covariance matrix S in place of Σ, we chose = 0.5 and then used simulation to obtain the value = 7.54 so the scheme has an in-control ARL of about 200. In this simulation, sequences of independent normal random variables having mean vector and covariance matrix k h =0a Σ were generated. For this example, the value for h was estimated using 1000 sequences.

The values for our statistic, are shown in Figure 1. A shift is indicated at the 42nd observation and from 44th observation on.

Figure 1. Chart of based on original data. ,D n S Since six dimensions cannot be simultaneously graphed, we suggest that at each new observation, the results for the two components having the largest value of the bivariate CUSUM statistic be graphed. We call this the most active bivariate dimension and the most active bivariate chart shows the ellipse, determined from squaring both sides of (10), for all of the values of the appropriate 2 components of the differences +??m S S m , for m = 1, 2, ..., n . The bivariate value for the last point, the current position +??n n S S +??S S , is shown as a solid dot to distinguish it from the earlier points. When component j is active, the axes is simply marked Sj but the plotted values employ the j ?th components of the differences . m

m The most active bivariate chart, for the automotive data, is given in Figure 2. The first chart is for observation number 31, the first after those used to estimate the covariance matrix. It presents components 2 and 3. The second chart, for observation number 32, presents component 1 and 3 and so on. We immediately see which component or two are contributing heavily to the multivariate CUSUM statistic.

If the process is stable for long periods of time, for visual clarity, it may be best to retain just the most recent 10-30 observations. It may even be desirable to shade the observations from black for the most recent to white for the oldest to reflect time order.

We can also apply our procedure to the principal components. First choosing k = 0.5, we used simulation to produce the value h = 6.94 for an in control ARL of about 200.

406 Li and Johnson

Figure 2. Most active bivariate chart for using the original data. ,D n S

The eigenvectors and eigenvalues of the sample covariance matrix S , which define the sample principal components and their variances, are given in Table 1.

It is clear that the first three principal components explain a large proportion of the variance but we will use all six standardized principal components to determine our statistic The chart is shown in Figure 3. This chart signals at the 38th and 39th observations as well as from the 46th on.

,.D n S

A Multivariate CUSUM Procedure 407

Table 1. Eigenvalues and eigenvectors of S . Variable

1e 2e 3e 4e 5e 6e

1x 0.119 0.469 0.075 0.291 -0.267 -0.777

2x

0.13 0.458 0.251 0.624 -0.037 0.566 3x

0.143 0.717 -0.116 -0.632 0.175 0.147 4x

0.096 0.053 -0.956 0.257 -0.062 0.072 5x

0.968 -0.231 0.070 -0.064 -0.032 0.003 6x

0.052 0.013 -0.008 0.238 0.944 -0.22 i λ

0.3544 0.1864 0.1076 0.0972 0.0333 0.0088

Figure 3. Chart of based on the standardized principal components.

,D n S The most active bivariate chart for the principal components, shown in Figure 4, begins with the 31st observation and that case is based on the fourth and fifth principal components. The most active bivariate chart in Figure 4 uses the standardized values of the principal components (12) so that the ellipses reduce to circles. This most active chart signals a shift at the 39th observation and the fourth and fifth principal components are the two involved.

408 Li and Johnson

Figure 4. Most active bivariate chart based on principal components. The most active bivariate chart is not tied exclusively to our CUSUM procedure. For instance, the classical chart could be used in place of the chart in Figure 1 or Figure 3. We can then construct the most active bivariate chart using the usual ellipse format chart (see Johnson and Wichern [6]) We create the ellipse based on the constant for the p = 6 variable chart. This chart shows directly which one or two components had shifted in level.

2T Figure 5 illustrates the most active bivariate chart where the bivariate data themselves are plotted on the two axes. The first ellipse, for observation 31, shows the components and . Observation number 39, see the ninth ellipse displayed, is out of control mostly because of the sixth variable.

2T 1x 3x

A Multivariate CUSUM Procedure 409

Figure 5. Most active bivariate chart for using the original data.

2T 4. Comparisons of the ARL Performance of Multivariate Schemes

We begin by reviewing four popular multivariate procedures (see also Fuchs and Kenett[3], Johnson and Li[5], Lowry and Montgomery [7], and Yang and Trewn [13]). All of the competing multivariate procedures are also based on the sequence of independent 1p × random vectors 1X , ..., n X , ... where each has the target mean value and the same covariance matrix . Most of the multivariate schemes discussed below involve a constant k and a positive control limit .

a Σh The traditional multivariate chart [4] reduces each multivariate observations to a scalar by defining

2T

410 Li and Johnson

()()21'?=?n n n T X a X a Σ?k ? (13)

The multivariate scheme signals a shift in mean when first exceed a specified level . That is, the scheme signals when .

2T 2n T h 2n T h ≥The CUSUM of (COT) scheme forms a CUSUM of the scalar statistics defined in (13).

n T n T Let and be specified constants. Then, the COT statistic is iteratively defined as

00S ≥0k >1max(0,),n n n S S T ?=+ for 1,2,...n = (14)

where k is a specified positive constant.

The COT scheme signals when for a specified level .

n S h ≥h The Crosier [2] multivariate CUSUM scheme starts at 00=S . For a specified constant , the statistic is iteratively defined as k n 10 if ()(1) otherwise

n n n n C k S S X a k C ?≤?=?+??? (15) where 1111[()'()].???=+?Σ+?n n n n n C S X a S X a

For another specified constant , the Crosier multivariate scheme signals a shift in mean when

h =n Y '112≥h []n n S S ?Σ

Lowry et al . [8] proposed a multivariate exponentially weighted moving average (EWMA) that begins from . The multivariate EWMA statistic is iteratively defined as

00=Z n Z 1()()?=?+?n n Z R X a I R Z n for n =1, 2, (16)

where the weight matrix 1(,...,)p diag r r =R , 01j r ≤≤, j = 1, ..., p . This reduces to the situation where a univariate EWMA is applied to each individual component. When there is no priori reason to weight the p quality characteristics differently, it is suggested to use a common value , where 1...p r r ===r 01r ≤≤ is a constant.

The multivariate EWMA scheme signals, for a specified constant h , when

11[]n n 'h ?≥Z Z Σ.

The choice of weight matrix R has a considerable influence on the resulting ARL behavior.

To compare different schemes, we set the in-control ARL’s to be nearly equal and compare the ARL’s when there is a shift. Several authors have also compared various existing multivariate monitoring procedures including Pignatiello[11] and Lowry[7].

In our simulation, we chose the reference value and decision value so that the resulting schemes, which are designed to detect a shift of one standard deviation from the k h

A Multivariate CUSUM Procedure 411

target, have an in-control ARL of about 200.

We first generate bivariate normal observations with either =ΣΙ (uncorrelated)

or =Σ 1.0.6.6 1.0????????

(correlated) to compare the performances of different schemes. Table 2 and Table 3 show the results of our simulation for our CUSUM procedure based on , the multivariate chart, the CUSUM of T (COT) scheme, Crosier’s multivariate scheme, and the multivariate EWMA schemes with weight parameter ,D n S 2T r =0.1, 0.4, and 0.8.

Table 2. ARL Comparison under Bivariate Normal Observations(uncorrelated).

The estimated standard error is given below each estimated ARL. Shift h 2T 10.63 COT 4.04 Cros 5.55 .D n S 5.1

EW(.1) 8.73 EW(.4) 10.37 EW(.8) 10.6 (0, 0) 198.8 197.3 204.5 200.8 200.6 203.9 202.9

2.8 2.7 2.9 2.7 2.8 2.8 2.8 (1, 0) 42.0 20.4 9.5 9.4 9.8 1

3.1 28.1

0.6 0.2 0.1 0.1 0.1 0.1 0.4 (0, -1) 41.0 20.3 9.6 9.5 9.9 13.5 27.8

0.6 0.2 0.1 0.1 0.1 0.2 0.4 (.7, .7) 42.0 20.0 9.4 10.3 9.7 13.1 28.5

0.6 0.2 0.1 0.1 0.1 0.2 0.4 (.7, -.7) 41.8 19.9 9.3 10.1 9.6 12.9 28.9

0.6 0.2 0.1 0.1 0.1 0.2 0.4 (.5, 0) 117.2 81.0 28.8 32.2 27.5 54.0 94.9

1.6 1.1 0.3 0.4 0.3 0.7 1.3 (.4, -.4) 116.3 80.2 28.6 35.7 27.1 5

2.6 96.4

1.6 1.1 0.3 0.5 0.3 0.7 1.3 (2, 0) 7.0 4.7 4.0 3.6 4.2 3.4 4.9 0.1 0.0 0.0 0.0 0.0 0.0 0.1 (1.4, -1.4) 7.1 4.7 4.0 3.8 4.2 3.4 4.7

0.1 0.0 0.0 0.0 0.0 0.0 0.1 For each choice of and shift in mean, a series of observations was generated and the multivariate statistics were calculated until a shift is signaled. This procedure was repeated 5000 times and we calculated the ARL and its estimated standard error for each scheme. The values of estimated ARL and standard error are presented in Table 2 and Table 3. The estimated standard errors are given below the corresponding ARL.

ΣFrom our simulation and existing literature, we conclude that, due to the fact that the value of the statistic only depends on the most current observation, it is not sensitive to small and moderate shifts in the mean of a process even if the shift is persistent. By taking the CUSUM of , the COT procedure has ARL performance that is significantly improved over that of the chart. The ARL of Crosier’s scheme is considerably better than that of the COT scheme. The performance of multivariate EWMA schemes, depend heavily on the value of the weight parameters. If the weight is appropriately selected, the 2T T 2T

412 Li and Johnson multivariate EWMA will have very good ARL performance, which is comparable with Crosier’s scheme. Our proposed new procedure provides good overall ARL performance that is, in most cases, comparable with that of Crosier’s scheme and could be better in a few situations. Additional simulation results on ARL, for the existing tests, are given in Johnson and Li [5].

Table 3. ARL Comparison with Bivariate Normal data(correlated).

The estimated standard error is given below each estimated ARL

Shift h

2

T

10.63

COT

4.04

Cros

5.6

.D n

S

5.4

EW(.1)

8.71

EW(.4)

10.36

EW(.8)

10.6

(0,

0) 198.8 197.3 212.8 206.4 198.1 202.9 202.9

2.8 2.7

3.0 2.9 2.8 2.8 2.8

(.8,

0) 41.9 20.4 9.6 11.6 9.7 13.2 28.7

0.6 0.2 0.1 0.1 0.1 0.2 0.4

(0,

-.8) 41.0 20.4 9.6 11.7 9.9 13.4 27.7

0.6 0.2 0.1 0.1 0.1 0.2 0.4

(.4,

.4) 42 20.0 9.5 15.1 9.7 13.1 28.5

0.6 0.2 0.1 0.2 0.1 0.2 0.4

(.4,

-.4) 118.0 82.3 29.0 30.5 27.0 54.3 95.2

1.6 1.1 0.3 0.4 0.3 0.7 1.3

(.4,

0) 116.8 82.2 29.1 42.2 27.3 52.9 97.0

1.6 1.1 0.3 0.5 0.3 0.7 1.4

(.2, -.2) 173.6 154.7 85.5 89.9 74.0 126.8 157.1

2.4 2.1 1.1 1.2 1.0 1.7 2.2

(1.6,

0) 6.9 4.7 4.0 4.1 4.2 3.4 4.8

0.1 0.0 0.0 0.0 0.0 0.0 0.1

(.9, -.9) 41.6 20.1 9.6 9.5 9.8 13.2 28.3

0.6 0.2 0.1 0.1 0.1 0.2 0.4 References

1. Ceglarek, D. and Shi, J. (1995). “Dimensional Variation Reduction for Automotive

Body Assembly”, Manufacturing Review, Vol. 8, No. 2, 139-154.

2. C rosier, Ronald B. (1988). “Multivariate Generalizations of Cumulative Sum Quality

Control Schemes”, Technometrics, Vol.30, No. 3, 291-303.

3. Fuchs, C. and Kenett, R. S. (1998). Multivariate Quality Control: Theory and Applications.

New York: Marcel Dekker.

4. Jackson, J. E. (1959). “Quality Control Methods for Several Related Variables”,

Technometrics, Vol. 1, 359-377.

5. Johnson, Richard A. and Li, Roujia (2005). Multivariate Statistical Process Control

Schemes for Controlling a Mean. Editors H. Pham and C. F. Wu, Handbook of Engineering Statistics, Springer.

6. Johnson, Richard A. and Wichern, Dean W. (2002). Applied Multivariate Statistical

Analysis. New Jersey: Prentice Hall.

7. Lowry, C.A. and Montgomery, D.C. (1995). “A review of multivariate control charts”,

IIE Transactions, Vol.27, 800-810.

A Multivariate CUSUM Procedure 413

8. Lowry, C. A., Woodall, W . H., Champ, C. W . and Rigdon, S. E. (1992). “A multivariate exponentially weighted moving average control chart”, Technometrics , Vol. 34, No. 1, 46-53.

9. Kourti, Theodora and MacGregor John F . (1996). “Multivariate SPC Methods for Process and Product Monitoring”, Journal of Quality Technology , Vol. 28, No. 4, 409-428.

10. Page, E.S. (1954). “Continuous Inspection schemes”, Biometrics , Vol. 41.

11. Pignatiello, J. J. and Runger, G. C. (1990). “Comparisons of Multivariate CUSUM Charts”, Journal of Quality Technology , 22(3), 173-186.

12. Tracy, N. D., Young, J. C., and Mason, R. L. (1992) “Multivariate Quality Control Charts for Individual Observations”, J. Quality Technol . Vol. 24, 88-95.

13. Yang, K. and Trewn, J. (2004). Multivariate Statistical Methods in Quality Management. New York: McGraw-Hill.

Appendix: Stability of the Car body Data

As in Johnson and Li [5], we conclude that the first 30 observations are stable because the individual variable time plots and the graph of the statistic do not exhibit noticeable lack of stability for the first 30 observations. These plots are 2T

Figure 6 . Individual variable plots of the car body observations

414 Li and Johnson

Figure 7. chart based on the first 30 car body observations.

2T

Authors’ Biographies:

Richard A. Johnson is a Professor of Statistics at the University of Wisconsin. His research and consulting interests include reliability and life length analysis, applied multivariate analysis, and applications to engineering. He is a Fellow of the American Statistical Association, a Fellow of the Institute of Mathematical Statistics, and an elected member of the International Statistical Institute. He has been editor of Statistics and Probability Letters, since in began 25 years ago, and co-author of six books and several book chapters, and over one-hundred papers in the statistical and engineering literature. Ruojia Li is a research scientist at Eli Lilly & Company. She recently completed her Ph. D. degree in Statistics from the Department of Statistics at the University of Wisconsin. This research was conducted while she was a student, under the supervision of Professor Johnson. Her research interests include multivariate quality monitoring schemes and statistical applications in phamecutical research.

关于宽容的初二作文600字三篇

关于宽容的初二作文600字三篇 篇一 比房子大的,是天空;比天空大的,是地球;比地球大的是宇宙;比宇宙大的,是人们拥有的一颗!一颗宽容的心! 古人常说,“海纳百川,有容乃大",可见宽容在人们心中是非常重要的,可以说,在中国,每十个人中,就有七个人拥有宽容的美德,他们都拥有一颗宽容的心,那么,那三个人呢?他们很自私,凡事以个人为中心,从不会顾及别人的感受,他们认为“海纳百川,有容乃大",这句话就是在说大话,而自己却从来没有从对方的角度去思考,这就印证了“己所不欲,勿施于人"的道理。 在人群中,在公共汽车上,不小心踩了别人的脚;在雨天,骑自行车上路的时候,不小心溅了别人一身水,这时候,我们应该站在别人的角度,从别人的角度想问习题,这样,我们就做到了宽容。 宽容是中华名族的传统美德,也是当代人必备的道德品质。宽容包括着理解。有了理解,就会有谅解,有同情;多一分理解,就少一分误解,少一分怨恨,多一分和谐。

我听过这样的一个故事:有一天,小刚和小刘一起吃草莓,一共有十一个,他们一个人分了五个,还剩一个没有分,然而这一个,小刚和小刘都想吃掉,可是该怎么分呢?两个人发生了争执,大家猜,最后怎样呢?小刚主动的对小刘说:“小刘,你先吃吧,你是哥哥,你先吃”。“弟弟,你吃吧!当哥哥的应该让着弟弟。”最后,两兄弟最后把草莓给了妈妈吃!这样就多了一份和谐。 宽容是一种美德;宽容是一种境界。宽容可以体现个人修养,唯宽得以容人,唯厚可以载物,我们应该做一个宽容的人,弘扬中华名族的传统美德! 篇二 人们在生活中不可避免会发生冲突,假如不及时处理,就会感到不愉快,甚至会发生更为极端的现象。要想使自己生活愉快,顺利,学会宽容就是的规定。每一个人都要学会宽容。 我们学生也不例外,在这个学习的气氛里。我们要懂得如何与人相处,善待别人就必须要有宽容的心态。做人要宽容,更要学会宽容。宽容是一种修养,是一种品质,更是一种美德。宽容不是胆小无能,而是一种一应俱全的情怀。“人非圣贤,孰能无过?”即便犯了过错,也不要冷眼相对。毕竟,“过而能改,善莫大焉”。宽容别人的同时

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

你是我的眼七年级作文600字

你是我的眼七年级作文600字 当我的眼睛被蒙上的那一刻,四周寂静无声,我第一次感受到了恐惧和无助,像是从光明的殿堂一下坠入黑暗的深渊,怎么办?我该怎样做?前方,等待我的是一个数…… 前所未有的孤独感悄然而至,我想大声呼喊,可声音到了喉咙间却发不出来。我的双手在一片黑暗中茫然的舞动,试图抓住一切能带给我希望的事物来减轻孤独。 这时,一双手伸到了我的面前,它紧紧地握住我那茫然的双手,那是多美的一双手啊!温暖、干净,我还仿佛感受到了它的红润。有了这双手的出现,眼前虽还是一片黑暗,可我的心里却充满了无限的光明。 她扶着我,一步步向前走。“注意,我们要下楼梯了,抬脚,跨!现在我们下了一层,继续加油!”她那甜美的声音如一股暖流,滋润了我的心田,我的心中不再孤独,也不再恐惧,取而代之的,是美好与甜蜜,还有珍贵的友谊。 她带着我,来到了滑滑梯前,“我们来玩滑滑梯吧!来,该上楼梯了,我站在后面推着你,你扶着扶手,慢慢往上走。”我坐在滑梯上,她用手轻轻一推,我一下子滑了下去。此时此刻,我仿佛又回到了小时候,体验到滑下去那一瞬间刺激的感觉。 接着,我们又来到了弯曲的小路旁,她拉着我的手,轻轻地带我抚摸柳叶,感受着它的柔嫩;走在小草中间,草儿调皮地在我脚面上刷来刷去,痒酥酥的,特别舒服;“这儿有一丛花儿,你来闻一闻。”

我把鼻尖凑上去,顿时,一股香气沁人我的心脾。这时,一阵凉风吹来,我张开双臂,拥抱凉风,风儿温柔地抚摸着我的脸,在我耳边轻轻地吹拂。我第一次发觉,这世界竟是如此美好! 摘下眼罩的那一刻,我猛吸一口新鲜空气,欣喜的眼光打量着眼前的一切,感觉四周变了:天更蓝了,云更白了,柳条更绿了,绿的发亮,小草油旺旺的,就连褐色的泥土,也散发出阵阵芳香。我的好朋友还拉着我的手,满面笑容地看着我…… 谢谢你,朋友,是你让我在失明时感受到了世间美好的一切。那一刻,你就是我的眼!

数列通项公式求法大全(配练习及答案)

数列通项公式的几种求法 注:一道题中往往会同时用到几种方法求解,要学会灵活运用。 一、公式法 二、累加法 三、累乘法 四、构造法 五、倒数法 六、递推公式为n S 与n a 的关系式(或()n n S f a = (七)、对数变换法 (当通项公式中含幂指数时适用) (八)、迭代法 (九)、数学归纳法 已知数列的类型 一、公式法 *11(1)()n a a n d dn a d n N =+-=+-∈ 1 *11()n n n a a a q q n N q -== ?∈ 已知递推公式 二、累加法 )(1n f a a n n +=+ (1)()f n d = (2)()f n n = (3)()2n f n =

例 1 已知数列{} n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 2n a n = 例 2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。(3 1.n n a n =+-) 三、累乘法 n n a n f a )(1=+ (1)()f n d = (2)()f n n =, 1 n n +,2n 例3 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 ((1)1 2 32 5 !.n n n n a n --=???) 评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+?转化为 1 2(1)5n n n a n a +=+,进而求出 13211221 n n n n a a a a a a a a a ---?????L ,即得数列{}n a 的通项公式。 例4 (20XX 年全国I 第15题,原题是填空题) 已知数列{}n a 满足112311 23(1)(2)n n a a a a a n a n -==++++-≥L ,,求{}n a 的通项公式。(! .2 n n a = ) 评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为 1 1(2)n n a n n a +=+≥,进而求出 132122 n n n n a a a a a a a ---????L ,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。

成本核算方法

成本核算方法介绍 移动加权: 又名移动加权平均法,此种计价方法是以库存均价作为商品成本(销售成本),即库存金额/库存数量。并且在每次入库时计算一次存货的价格。 其计算公式为:商品库存成本=现库存金额/现库存数量 A、商品入库:库存成本=(本次入库金额+原库存金额)÷(本次入库数量+原库存数量 B、商品出库:是以出货仓库当时的成本均价作为成本价计算。 手工指定: 引入批次的概念,按照批次9要素对同一商品进行批次的划分后分别管理。批次9要素有:商品、供货商、进价、批号、生产日期、效期、仓库、货位、是否受托代销。对于库存商品来说,只要这9要素中有一个不相同,那么系统将其分为不同批次进行管理,并分批次计算成本、计算利润及统计销售等。在9要素全部相同的情况下,系统认为是同一批次,将合并起来管理。该方法不允许负库存销售。 例一:某商品A,有的从四川渠道进货,有的从广东渠道进货,那么这两批货的供货商不同,由于供货商是批次9要素之一,所以在系统中将其分为两个批次。 例二:某商品B,都是从山西渠道进货,第一次进价5元,第二次进价3元,那么它们的成本价(即进价)不一样,由于进价是批次9要素之一,所以系统将其分为两个批次。 例三:某商品C,购进200个,它的供货商、进价、批号、效期、仓库都相同,但在仓库中堆放时有150个放在货位1,有50个放在货位2;同理,货位是批次9要素之一,系统会将其分为两个批次。如果都放在货位1,那么就符合批次9要素完全相同的条件,将作为一个批次进行管理。 先进先出: 先进先出法是以先购入的存货应先发出这样一种存货实物流转假设为前提,对发出存货进行计价的方法。入库时采用和手工指定同样的批次处理办法,只是出库时严格按照先入库的批次先出库。 后进先出: 后进先出法是以后购入的存货应先发出这样一种存货实物流转假设为前提,对发出存货进行计价的方法。入库时采用和手工指定同样的批次处理办法,只是出库时严格按照后入库的批次先库。

中考满分作文600字范文赏析【三篇】

中考满分作文600字范文赏析【三篇】 导读:本文中考满分作文600字范文赏析【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。 【篇一:倾心一爱】通宝三年,安阳的花如同战争般壮烈而决绝地生长。月上柳梢头,月光下一个清瘦的人影,左手酒盏右手狼毫。 "如此好酒你怎能独享?'一个豪壮的声音从饮酒人背后传来带着一丝不可节制的诗情 "杜甫兄。" "李白兄。" "今夜你可愿意与我共饮" 当夜两人月下饮酒作诗,都为对方的的才识所叹服。两人酒酣,杜甫对李白说:'下月你我都要入朝为官,今夜是最后一次你我对酒的倾心一爱 以后唯有国家能使我们倾心一爱。" …… 通宝十二年,长安皇城灯火如炬,歌舞升平。 范阳,安录山,史思明发动叛乱。范阳被占领,城池上的战旗战旗全部逆着风向北方翻转。 皇城。"报。叛军已经占领范阳,朝着长安进发"歌台舞榭顿时因一句传报声乱成一团。皇帝吓得躲在龙椅后面。李白跪在皇帝面前请

求带兵打丈。皇帝同意了,然后皇帝逃往四川。 李白随永王李鳞随军东下,部队的马蹄扬起一路尘土。永王李鳞。李白。还有他们的军队面对如野火般攻击的叛军毫不畏惧,战场乱作一团,战旗倒地,尸骸满地,青草染成了血的红色。可最终他们还是打了败仗。李白被关进了叛军的牢房中。一夜李白望着漫天的繁星辗转反侧难以入眠之时,牢门幽幽地开了。"李兄"李白知道谁来了。"杜兄""李兄快跑此地不宜久留,我已买通了狱官咱们快跑。"李白与杜甫冲出了监狱,翻身上马,朝着四川的方向绝尘而去。 四川的冬天,凉意阵阵。阳光照在人们的身上,没有温暖,反而有更加寒冷的错觉。李白与杜甫还没有进入皇上新修的皇宫就下起雪来,太阳逐渐向地平线靠近。李白和杜甫看见皇宫发出刺眼的亮光,听见皇宫依旧奏鸣的管乐,想到皇上依旧不问国家政事,在战乱之时依旧荒淫无度。美食满桌…… 此情此景李白跪地,仰*叹道:"国君何时能对国家倾心一爱啊!" 【篇二:考试的滋味】明天又要进行月考了,虽然不能决定命运,但是年级排名次、班级排名次及排位子,各科老师讲评,家长狂轰滥炸……就够我们受的了。我们或是心悦诚服总结教训,或是口是心非地承认不足,或什么感觉都没有。不管怎么样,我们还得临阵磨枪呀!夜车也不能不快开喽! 第二天,我机械地走进考场,直挺挺地坐在座位上,等待监考老师。这时大脑里一片空白。接过卷子,我的心咚咚乱跳,头皮发胀,眼前卷子上的字也直跳。我闭上眼睛晃晃脑袋,想想老师曾讲过要镇

求通项公式的几种方法与总结

睿博教育学科教师讲义讲义编号: LH-rbjy0002 副校长/组长签字:签字日期:

问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101 i i i )b (a =12010×2010×?3+4021? 2=2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1?q -2?=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =-3?1-3n ?1-3+n ·3n +1=32 (1-3n )+n ·3n +1 =32+? ? ???n -123n +1. 所以数列{a n b n }的前n 项和为S n =34+2n -14 3n +1 .

常用的几种成本核算方法

常用的几种成本核算方法 1)、移动平均 存货的计价方法之一。是平均法下的另一种存货计价方法。即企业存货入库每次均要根据库存存货数量和总成本计算新的平均单位成本,并以新的平均单位成本确定领用或者发出存货的计价方法。单位成本=存货成本/存货数量移动加权平均法,是指以每次进货的成本加上原有库存存货的成本,除以每次进货数量与原有库存存货的数量之和,据以计算加权平均单位成本,以此为基础计算当月发出存货的成本和期末存货的成本的一种方法.移动加权平均法是永续制下加权平均法的称法。移动加权平均法:移动加权平均法下库存商品的成本价格根据每次收入类单据自动加权平均;其计算方法是以各次收入数量和金额与各次收入前的数量和金额为基础,计算出移动加权平均单价。其计算公式如下:移动加权平均单价= (本次收入前结存商品金额本次收入商品金额)/(本次收入前结存商品数量本次收入商品数量)移动加权平均法计算出来的商品成本比较均衡和准确,但计算起来的工作量大,一般适用于经营品种不多、或者前后购进商品的单价相差幅度较大的商品流通类企业。 2)、全月平均 加权平均法,亦称全月一次加权平均法,是指以当月全部进货数量加上月初存货数量作为权数,去除当月全部进货成本加上月初存货成本,计算出存货的加权平均单位成本,以此为基础计算当月发出存货的成本和期末存货的成本的一种方法。加权单价=(月初结存货成本+本月购入存货成本)/(月初结存存货数量+本月购入存货数量)注:差价计算模块中原来就是按这种方法处理月综合差价率=(期初差价+入库差价)/(期初金额+入库金额)差价=出库金额*月综合差价率 3)、先进先出 物料的最新发出(领用)以该物料(或该类物料)各批次入库的时间先后决定其存货发出计价基础,越先入库的越先发出。采用先进先出法时,期末结存存货成本接近现行的市场价值。这种方法的优点是企业不能随意挑选存货的计价以调整当期利润;缺点是工作量比较繁琐,特别是对于存货进出量频繁的企业更是如此。同时,当物价上涨时,会高估企业当期利润和库存价值;反之,会低估企业存货价值和当期利润。 4)、后进先出 与先进先出发正好相反。在物价持续上涨时期,使当期成本升高,利润降低,可以减少通货膨胀对企业带来的不利影响,这也是会计实务中实行稳健原则的方法之一 5)、个别计价法 个别计价法是指进行存货管理时存货以单个价格入帐 6)、计划成本法

一、求数列通项公式的三种常用方法

一、求数列通项公式的三种常用方法 2; 3.n n S a ?? ??? 1、利用与的关系;、累加(乘)法、构造法(或配凑法、待定系数法) 1、利用n n S a 与的关系求通项公式: 1-11-1=1; =-.-n n n n n S a S S S S S ?? ≥? , 当n 时利用 ,当n 2时注意:当也适合时,则无需分段(合二为一)。 例1、设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,11a b =且2211().b a a b -= (Ⅰ)求数列}{n a 和}{n b 的通项公式; 解:(1),24)1(22,22 21-=--=-=≥-n n n S S a n n n n 时当 当;2,111===S a n 时也满足上式。 故{a n }的通项公式为42,n a n =- 设{b n }的公比为q , 111 , 4, .4 b qd b d q ==∴=则 故1 111 122,44n n n n b b q ---==? = 12 {}.4 n n n b b -=即的通项公式为 例2、数列}{n a 的前n 项和为S n ,且111,3, 1,2,3,n n a S a n +===,求: (1)2a 的值。(2)数列}{n a 的通项公式; 解:(1)由得,,3,2,1,31,111 == =+n S a a n n .3 1 3131112===a S a

1112342222 11 ()(2), 33 44 ,(2),...33114,()(2). 333 1, 1,,{}14(), 2.33 n n n n n n n n n n n n a a S S a n a a n a a a a q a a n n a a n +-+---=-=≥=≥===≥=?? =?≥??(2)由得即,,,是以为首项,为公比的等比数列 又所以所以数列的通项公式为 例3 已知函数 f (x ) = a x 2 + bx -23 的图象关于直线x =-3 2 对称, 且过定点(1,0);对于正数 列{a n },若其前n 项和S n 满足S n = f (a n ) (n ∈ N *) (Ⅰ)求a , b 的值; (Ⅱ)求数列{a n } 的通项公式; (Ⅰ)∵函数 f (x ) 的图象关于关于直线x =-3 2 对称, ∴a ≠0,-b 2a =-3 2 , ∴ b =3a ① ∵其图象过点(1,0),则a +b -2 3 =0 ② 由①②得a = 16 , b = 1 2 . 4分 (Ⅱ)由(Ⅰ)得2112()623f x x x =+- ,∴()n n S f a ==2112 623n n a a +- 当n ≥2时,1n S -=211112 623n n a a --+- . 两式相减得 2211111 ()622 n n n n n a a a a a --=-+- ∴221111 ()()062 n n n n a a a a ----+= ,∴11()(3)0n n n n a a a a --+--= 0,n a >∴13n n a a --=,∴{}n a 是公差为3的等差数列,且 22111111112 340623 a s a a a a ==+-∴--= ∴a 1 = 4 (a 1 =-1舍去)∴a n =3n+1 9分 2、累加(乘)法: 11-111 12-1. 2 3+2. 3 2-1.1 4 . (n+1) n n n n n n n n n a a n a a n a a a a n ++++=+=+=+=+例如:、 、、、

成本计算基本方法举例公式

成本計算基本方法舉例 一、品種法舉例 (一)資料:某廠為大量大批單步驟生產的企業,採用品種法計算產品成本。企業設有一個基本生產車間,生產甲、乙兩種產品,還設有一個輔助生產車間-運輸車間。該廠200×年5月份有關產品成本核算資料如下: 3、該月發生生產費用: (1)材料費用。生產甲產品耗用材料4410元,生產乙產品耗用材料3704元,生產甲乙產品共同耗用材料9000元(甲產品材料定額耗用量為3000千克,乙產品材料定額耗用量為1500千克)。運輸車間耗用材料900元,基本生產車間耗用消耗性材料1938元。 (2)工資費用。生產工人工資10000元,運輸車間人員工資800元,基本生產車間管理人員工資1600元。 (3)其他費用。運輸車間固定資產折舊費為200元,水電費為160元,辦公費為40元。基本生產車間廠房、機器設備折舊費為5800元,水電費為260元,辦公費為402元。 4、工時記錄。甲產品耗用實際工時為1800小時,乙產品耗用實際工時為2200小時。 5、本月運輸車間共完成2100公里運輸工作量,其中:基本生產車間耗用2000公里, 企業管理部門耗用100公里。 6、該廠有關費用分配方法: (1)甲乙產品共同耗用材料按定額耗用量比例分配; (2)生產工人工資按甲乙產品工時比例分配; (3)輔助生產費用按運輸公里比例分配; (4)製造費用按甲乙產品工時比例分配; (5)按約當產量法分配計算甲、乙完工產品和月末在產品成本。甲產品耗用的材料隨加工程度陸續投入,乙產品耗用的材料于生產開始時一次投入。 要求:採用品種法計算甲、乙產品成本。(解答如下)

1、進行要素費用的分配 (1)材料費用分配表 材料費用分配會計分錄: 借:基本生產成本-甲產品 10410 基本生產成本-乙產品 6704 輔助生產成本-運輸車間 900 製造費用 1938 貸:原材料 19952 (2)工資費用分配表 工資費用分配會計分錄如下: 借:基本生產成本-甲產品 4500 基本生產成本-乙產品 5500 輔助生產成本-運輸車間 800 製造費用 1600 貸:應付工資 12400 (3)其他費用匯總表 其他費用分配會計分錄如下: 借:輔助生產成本-運輸車間 400 製造費用 6462

求数列通项公式的种方法

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的7种方法: 累加法、 累乘法、 待定系数法、 倒数变换法、 由和求通项 定义法 (根据各班情况适当讲) 二。基本数列:等差数列、等比数列。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一。 例1已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。 例2已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以13n +,得 11 121 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+ ,故 因此11 (13)2(1)211 3133133223 n n n n n a n n ---=++=+--?, 则21133.322 n n n a n =??+?- 练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12 +-n n 练习2.已知数列}{n a 满足31=a ,) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 12- = 评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .

食品成本计算方法

成本是指企业在生产可经营中所支持的各项费用之和。 成本在企业管理中有重要的作用:成本是制定商品价格的依据,成本控制是市场竞争的重要手段,成本高低是企业管理的综合反映,成本是经营决策的重要数据。 要改善经营管理必须重视成本核算。成本核算的意义还在于它能全面反映生产状态,能保证各项经济预测值的准确,有利于正确执行物价政策。 成本核算的任务是( 1)计算单位产品的成本,用以确定产品销售价格;(2)调整成本的结构促进技术和服务水平提高,加强企业管理;( 3)指出成本变化的原因,提高经济效益。 要科学、准确地实行成本核算,必须具有以下的基本条件: ⑴面包、点心用料的定额标准 ⑵面包、点心生产的原始记录 ⑶执行符合国家标准的计量体系。 成本核算通常每月一次,成本核算是普遍采用“以存计耗”法即: 本月耗用原材料成本 =月初成本结存额 +本月领用(入库)额—月末原材料盘存额烘焙业的生产成本由两方面构成:费用和原材料成本 一、费用管理 费用是指对原材料加工、产品销售过程中劳动力、物料方面的开支。 1.费用的分类⑴以用途 分类可以分为: 经营费用:包括运输费、水电费、广告宣传费、差旅费、物料消耗、低值易耗品 摊销、折旧费、修理费、铺租、生产和销售人员工资及福利、工作餐等。

管理费用:包括工会劳动保险、排污费、房产税、土地使用税、车船使用税、印 花税,开办费摊销、交际应酬费、坏帐损失、存货盘亏、办公室人员工资和福利等。 财务费用:包括银行利息、集资费等。 烘焙业发生数额较大的必需开支费用项目有:人员工资和福利、电费、铺租、设 备费(折旧费和低值易耗品摊销)运输费等。可酌量开支的费用有办公费、广告 宣传费等。 ⑵依费用与经营量的依赖程度分 变动费用:与经营量大小成正比例关系的费用,如人工费、运输费、水电费等。 固定费用:与经营量大小关系不大的费用,如铺租、设备费、办公费等。经营量对 固定费用总额影响不大,但经营量越大,相对固定费用越低;经营量越小,相 对固定费用越高。在生产经营能力许可的范围内,企业总是尽可能扩大产量,这样产品的单位固定费用可以下降,总成本的平均水平也会下降。 2.主要费用项目的控制 ( 1)铺租 租凭的厂店铺租占费用总额的比例很大。一般来说旺铺租贵,淡铺租平。铺租占营业额的4-5%为宜。很旺的地方,铺租也不要高于10%,超过10%(即3 天的营业收入)的话,即使每天营业额很高仍然不会获得好的利润。 ( 2)电费 现在供电部门提高了电费标准,电费对烘焙成本的影响已越来越大了。烘焙生产用电包括照明用电、通风用电、动力用电、冷柜用电、电热用电。电热用电由分醒发室用电和烘烤用电,其中烘烤用电占的比重很大。烘炉用电可再分解为预热用电和烘烤用电。我把烘烤用电的电费看成是变动费用,其他用电的电费看成是固定费用。其他用电是工场的规模和工艺条件而定。

你是我的眼(800字)作文

精选作文:你是我的眼(800字)作文 你是我的眼,带我领略四季的变换;你是我的眼,带我穿越拥挤的人潮;你是我的眼,带我阅读浩瀚的书海。因为你是我的眼,让我看见这世界就在我眼前。伴着这首熟悉的歌,我的思绪又回到了姥姥的那个时代。姥姥虽没上过几天学,但那些做人的道理她都懂,并不是谁刻意教给她,而是她天生就淳朴善良。姥姥过了一辈子,身体上的苦没少受。在那个重男轻女的时代,姥姥没少受我太奶奶的欺负,但她从无怨言,忍气吞声。可这并不代表她懦弱,除了自己的亲人,她不会像其他任何人低头,特别是再生了妈妈和姥姨之后,她总是会护着她们,不会让她们受任何委屈:姥姥是要强的。等到妈妈生了我之后,姥姥更加宠爱我了,甚至变得有些溺爱,但是姥姥并不会因此使我变得刁蛮任性,她是很耐心的教我该如何做人。去年暑假,我去姥姥家玩。正在吃晚饭,突然听到有人敲门,我连忙去开门。开门后看见一位陌生的老奶奶,还没等我开口,那位老奶奶便笑吟吟的走进来,塞给我一篮子煮熟的毛豆,还嘱咐我:拿去和你姥姥一块吃啊!这邻里邻外的,她可没少帮忙。我说着谢谢,便送她出了门,等问过了姥姥才知道,原来是姥姥帮人家把花园浇了,我听了后十分感动。又是一个晴朗的早晨,姥姥带我去田野玩。一路上我边走边跳,又捉蝴蝶又捉蜻蜓,把姥姥落得远远的。等我跑累了,往回走,去找姥姥,发现姥姥正蹲在地上,专心致志的挖着什么。我跑过去问:姥姥,您在挖什么呢?姥姥疲惫的抬起头,我看见姥姥鼻尖上那豆大的汗珠。哦,挖点野菜,邻家张姥姥挺爱吃,忘不了这味呀。就手挖点。火辣辣的阳光照着我们,也照在我的心里;姥姥的汗珠滴在地上,也滋润了我的心灵;姥姥为别人做的每一件微不足道的小事,都深深印在我的心里。姥姥,您是我的眼,带我认知纯洁的心灵;您是我的眼,带给我爱的温暖;您是我的眼,带我阅读人生的真谛。因为您是我的眼,让我看到这世间最质朴无私的情,就在我身边。初三:stranger 篇一:作文:你是我的眼 9.阅读下面的文字,根据要求作文。(60分) 歌手林宥嘉的《你是我的眼》深受青少年的喜爱。其中有这几句歌词: “你是我的眼带我领略四季的变换 你是我的眼带我穿越拥挤的人潮 你是我的眼带我阅读浩瀚的书海 因为你是我的眼 让我看见这世界就在我眼前。” 是啊,在我们的人生旅途中,总有一些给予我们帮助、启发、教育??的人。他们或是亲人或是朋友或是师长??他们就是我们人生道路上的“眼”。 请结合自身经历,以“你是我的眼”为题写一篇记叙文。 要求: (1)文章中不得出现校名、人名,如必须出现,一律用“×××”代替。 (2)不少于600字。

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

以你是我的阳光小学作文600字5篇

以你是我的阳光小学作文600字5篇你是我的阳光,助我健康成长,融化我人生中的寒冰,温暖我人生中的初芽,照耀我人生中的繁枝嫩叶,下面是橙子为大家带来的有关你是我的阳光小学作文600字5篇。 你是我的阳光 “父爱是沉默的,如果你感觉到了那就不是父爱了。”这似乎是冰心对父爱最好的诠释。我从未体会过这句话的深奥,因为在我看来,父亲只是一艘航船,早出晚归,给我的陪伴也是少之又少。但是今天,生活告诉我,这无言的父爱,却是我生命中最温暖的一抹阳光。 那一天,是学校组织春游的日子。从出门到登上巴士,父亲如往常一样一路无言。我透过车窗,望着那些抢着把孩子送上车却又不忘千叮咛万嘱咐一番的家长们。父亲算得上是个家长吗?不知过了多久,车缓缓地开动了。司机好像知道父母们的心思,沿着人群让开的路慢慢地开着,留下充足的时间让热情的他们与自己的孩子挥手告别。我从未期望父亲能如他们一般关心我,但心中仍有些不明原因的失落。我的目光扫过一张张洋溢着笑容的脸,就这样意外的停在了他身上——是父亲!他怎么可能等在那?车开始加速,正在注视着我的父亲立刻发觉了我的目光,还没等我再看他一眼,就像个小孩子似的慌忙钻进人群中不见了。我望着他消失的地方,笑了。原来,父亲也是陪伴着我的一抹暖阳。 “这次比赛的冠军是……”顿时,礼堂里响起一阵掌声。我也一

起鼓掌,只是这掌声中带着不甘和失落——这掌声不是属于我的。从小就学习古筝的我参加过大大小小的比赛,但这次失利是我完全没有想到的。为什么汗水换来的不是收获?为什么失败的偏偏是我?为什么上天对我如此不公?我望着舞台上万众瞩目的聚光灯,泪水不争气地留了出来。记得那天,父亲是陪着我走回家的。一路上,我不知多少次抬起头,想仰起脸让泪水停止奔流,但昏暗的天空告诉我,一切都是徒劳。我不指望父亲能给我些许安慰,便一路无言,听着自己的哽咽,留着无声的泪。果然,父亲也只是沉默。到家后,心灰意冷的我打算进屋练琴,可就在这时,身后的父亲突然说:“没关系,别灰心!”我猛地回过头,四目相对,他的眼中闪烁着我从未见过的,温柔却坚定的目光。顿时,一股暖意涌入心中,我抿着泪水笑了。原来,父亲也是陪伴着我的一抹暖阳。 暑假,父亲为了让我体验生活,给我报了夏令营。母亲如往常一样唠叨个不停,嘱咐着无关紧要的事情。而父亲却只是默默地把手机放进行李箱中,说:“记得每天晚上给我们打电话啊。”到了出发的那天,从没离开过父母陪伴的我有些紧张。父亲沉默地走过来,轻轻地拍了拍我的肩膀。他并没有看着我,而是望着前方的人群。这些简单的动作仿佛有着无穷的力量,使我心中一下子安定了许多。我看不出他的眼神中藏着什么,但我知道,那里,有不舍。我回过头,用微笑回应了父亲。原来,父亲也是陪伴着我的一抹暖阳。 也许,我与父亲之间不会有太多语言。但我知道,我拥有的爱不比任何一个人少。是啊,一路上有了父爱的暖阳,我永远都不会孤单。

求通项公式的几种方法与总结

睿 博 教 育 学 科 教 师 讲 义 讲义编号: LH-rbjy0002 副校长/组长签字: 签字日期: 教学内容 数列通项及求和 主干知识整合: 1.数列通项求解的方法 (1)公式法;(2)根据递推关系求通项公式有:①叠加法;②叠乘法;③转化法.(3)不完全归纳法即从特殊到一般的归纳法;(4)用a n =?? ? S 1n =1 S n -S n -1n ≥2 求解. 2.数列求和的基本方法: (1)公式法;(2)分组法;(3)裂项相消法;(4)错位相减法;(5)倒序相加法. ? 探究点 一 公式法 如果所给数列满足等差或者等比数列的定义,则可以求出a 1,d 或q 后,直接代入公式求出a n 或S n . 已知{a n }是等差数列,a 10=10,前10项和S 10=70,则其公差d =________. ? 探究点二 根据递推关系式求通项公式 如果所给数列递推关系式,不可以用叠加法或叠乘法,在填空题中可以用不完全归纳法进行研究. 例2 (1)已知数列{a n }满足a 1=2,a n +1=5a n -13 3a n -7(n ∈N *),则数列{a n }的前100项的和为________. (2)已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l

时,都有a i +b j =a k +b l ,则 12010∑=+2010 1 i i i )b (a 的值是________. (1)200 (2)2012 【解析】 (1)由a 1=2,a n +1=5a n -133a n -7(n ∈N * )得a 2=5×2-133×2-7=3,a 3=5×3-133×3-7= 1,a 4=5×1-13 3×1-7 =2,则{a n }是周期为3的数列,所以S 100=(2+3+1)×33+2=200. (2)由题意得a 1=1,a 2=2,a 3=3,a 4=4,a 5=5;b 1=2,b 2=3,b 3=4,b 4=5,b 5=6.归纳得a n =n , b n =n +1;设 c n =a n +b n ,c n =a n +b n =n +n +1=2n +1,则数列{c n }是首项为c 1=3,公差为2的等差数列,问题转化为求数列{c n }的前2010项和的平均数. 所以12010∑=+20101i i i )b (a =12010× 2010× 3+4021 2 =2012. ? 探究点四 数列的特殊求和方法 数列的特殊求和方法中以错位相减法较为难掌握,其中通项公式{a n b n }的特征为{a n }是等差数列,{b n }是等比数列. 例4 在各项均为正数的等比数列{a n }中,已知a 2=2a 1+3,且3a 2,a 4,5a 3成等差数列. (1)求数列{a n }的通项公式; (2)设b n =log 3a n ,求数列{a n b n }的前n 项和S n . 【解答】 (1)设{a n }公比为q ,由题意得q >0, 且?? ? a 2=2a 1+3,3a 2+5a 3=2a 4, 即??? a 1q -2=3,2q 2 -5q -3=0, 解得?? ? a 1=3,q =3 或? ?? ?? a 1 =-6 5,q =-12(舍去), 所以数列{a n }的通项公式为a n =3·3n -1=3n ,n ∈N *. (2)由(1)可得b n =log 3a n =n ,所以a n b n =n ·3n . 所以S n =1·3+2·32+3·33+…+n ·3n ,① 3S n =1·32+2·33+3·34+…+n ·3n +1.② ②-①得,2S n =-3-(32+33+…+3n )+n ·3n +1 =-(3+32+33+…+3n )+n ·3n +1, =- 31-3n 1-3 +n ·3n +1=3 2 (1-3n )+n ·3n +1

见证作文600字优秀作文

见证作文600字 篇一:见证张东辉 珍珠,圆润剔透,见证了贝壳的辛苦;黑夜,凄冷阴暗,见证了一现的昙花 题记 翻开中国的历史,有太多太多的杰出人物活跃其中。苏武、司马迁、杜甫、苏轼、林则徐、秋瑾一代代、一批批的仁人志士、英雄豪杰,都曾经在他们的时代光芒万丈,并被人们传诵至今。 你,手持免征大汉的竹节,伫立在茫茫的大漠,心爱着塞外秋风的萧瑟,不时向南眺望,单于给了你那么优厚的条件,为什么不投降匈奴呢?不!作为大汉的使节,我不能使我的国家受到侮辱!问者惊奇,答者义正辞严,而这番对话被秋风听到,于是中国历史上铭刻了一个光荣的名字。 秋风见证了一位使者苏武的忠勇! 你,出生于史官世家,本可以安安宁宁、平平稳稳地完成使命,了此一生。而你却为了大义不惜冒犯皇威为李陵辩护,结果是经受了世间最屈辱的刑罚宫刑。对一个士人来说,受此巨辱,必会以死明志。然而,你没有这样做,正因为此,也许正彰显出作为普通人的你并不普通。你有一种大胸怀,一种可以忍受肉体与精神双重折磨的大胸怀,你有着超凡脱俗的决心与勇气,于是一篇鸿篇巨著轰然出世。 《史记》见证了一位史学家司马迁的坚忍! 你,作为一名女性,积极投身于拯救家国的革命事业,显得尤为难能可贵。你的勇敢、执著和大无畏的精神无愧于巾帼英雄这个光荣称号。革命计划被泄漏,你被威逼利诱数次,但你的忠诚让敌人彻底绝望了。于是你被押赴刑场,面对黑暗的现实,你发出了秋风秋雨愁煞人的感叹,最后从容就义,你的伟大献身造就了一位为人景仰的女性楷模。 鲜血见证一位革命者秋瑾的刚烈! 历史已经成为过去,英雄已经化为尘土,但他们的精神永远铭刻在人们心中,生生不息。篇二:见证韦安顺 成功者在未成功之前所经历的苦难是不为人所知的,就像没有人去见证蜡梅在未开花之前所经历的彻骨寒风一样。 题记 一 我是一株蜡梅,我最向往的是像母亲那样在风雪中傲然地开出花朵,让天地见证我们梅花是万花丛中的最强者,可是母亲对我说过,我还要再经历三年风雪的考验才能开出属于自己的花朵。 二 昨天我所在的院子里来了一个人,他就住在与我正对着的那间小屋里,所以我可以看到他所做的一切。我发现他有床不睡却要睡在柴草堆里,每次吃饭前总是要尝一尝苦胆的滋味。他似乎有很多事情要做,每天都在忙碌着,有时甚至彻夜不眠,趴在桌子上写着什么,我听说他是一个国王,但我却想不通他身为国王却为何生活得如此艰苦。就这样我和他一起在院

相关文档
最新文档