外军通信对抗干扰系统发展综述

外军通信对抗干扰系统发展综述
外军通信对抗干扰系统发展综述

超短波综述

超短波综述 1.超短波的概念、特点、优势 2.超短波的工作原理优势 3.超短波现有应用情况介绍 4.结合我单位的实际情况超短波能做到的业务等 5.超短波的发展前景 一、超短波的概念 1.1无线通信的划分 通常无线通信按工作频段可分为以下几个频段:极长波、超长波、特长波、甚长波、长波、中波、短波、超短波和微波。表1-1列出了无线通信各工作频段所对应的频段名称、频率范围、波段名称和波长范围。 超短波通信是指利用波长为10~1m(频率为30~300MHz)的电磁波进行的无线电通信。由于超短波的波长在1~10m之间,所以也称为米波通信。整个超短波的频带宽度是270MHz,是短波频带宽度的将近10倍。由于频带相对较宽,被广泛应用于电视、调频广播、雷达探测、导航、移动通信、军事通信等领域。 表1-1无线通信按工作频段的划分

1.2 超短波的传播方式 图1-1描绘了几种无线电波的主要传播方式,超短波通信主要依靠地波传播和空间波视距传播,。 优点:频段宽,通信容量大;视距以外的不同网络电台可以用相同频率工作,不会相互干扰;可用方向性较强的天线,有利于抗干扰;受昼夜和季节变化的影响小,通信较稳定。 缺点:通信距离较近;受地形影响较大,电波通过山岳、丘陵、丛林地带和建筑物时,会被部分吸收或阻挡,导致通信困难或中断。 (a ) 射线 (b ) (c ) 电离层(d )

图1-1 无线电波的主要传播方式 (a)直射传播; (b)地波传播; (c)天波传播; (d)散射传播 二、超短波通信的工作原理 超短波电台一般用于近距离通信,其形式主要是车载、机载、背负、手持等,一般要求其体积小、重量轻、功能多、抗干扰能力强。超短波电台经历多年的发展,其电路形式变化不大。但就具体电路而言,新技术、新器件大量地应用于超短波电台,使超短波电台的性能和功能得到明显的提高和改善,特别是扩频通信技术在超短波电台中的应用,使得电台的抗干扰能力、组网能力都有了质的变化。 传统超短波通信系统由终端站和中继站组成,终端站装有发射机、接收机、载波终端机和天线。中继站则仅有通达两个方向的发射机、接收机以及相应的天线。 (1)超短波发射机:一般采用间接调频法,即利用调相获得调频的方法。这样可用频率稳定度较高的晶体振荡器作主振器,而不必用复杂的频率控制系统。但为了减少寄生调幅和非线性失真,调制系数不能太大(一般小于0.5 rad)。因此,在这种发射机中要用多级倍频器,以获取所需的频偏,从而提高发射频率的边带功率。发射机末端使用高频率高功率放大器。在超短波低频段尚可用集中参数元件构成调谐回路,其高频端可用微带部件。 (2)超短波接收机:一般采用典型的调频式超外差接收机。主要由高频放大、本地震荡、变频(一次或二次)、中频放大、限幅、鉴频及基带放大等部件组成。超短波段外来干扰较多,需在接收机输入端加螺旋式滤波器,在中放级加输入带通滤波器以抑制干扰。中放后的调频信号,通过限幅器,可消去混杂近来的脉冲干扰或寄生调幅波,以改善信噪比。然后用鉴频器把原来的基带信号恢复出来,加以放大,再由载波终端机分路输出相应用户。 (3)载波终端机:将超短波发射机和超短波接收机的四线基带信号分路还原合并为多路二线语音信号,接通用户或接至市话交换机的设备。载波终端机只装载超短波终端站。 (4)天线:由于超短波波长较短,一般采用结构简单、增益较高、方向性较好的三单元或五单元八木天线。在接近微波段的高频段,也可采用角形面反射天线。 现代超短波通信系统的组成可归结为发信通道、接收通道、频率合成器、逻辑控制器、跳频单元、电源及其辅助电路等,如图所示。图中,发信通道部分主要由音频信号处理部分、锁相环调频单元、功放、滤波输出单元电路组成,其作用是将音频信号放大后送至锁相环对VCO调制,形成调频波,再经功率放大、

短波通信系统介绍

一、短波通信概述 (1) 二、短波通信的优势 (2) 三、短波通信的一般原理 (2) 3.1.无线电波传播 (2) 3.2 电离层的作用 (4) 3.3 短波频率范围 (4) 3.4 短波传播途径 (4) 四、单边带概念 (5) 4.1 单边带的定义 (5) 4.2 单边带的优点 (5) 五、优化短波通信的方法 (6) 5.1 正确选用工作频率 (6) 5.2计算机测频 (7) 5.3 正确选择和架设天线地线 (7) 六、短波电台天线知识 (7) 6.1了解天线的基本工作原理 (7) 6.2正确选择电台天线 (8) 6.3正确处理天线价格与质量的关系 (8) 6.4常用的天线 (9) 6.4.1用于全方位通信的三角组合型全向全角天线 (9) 6.4.2兼顾全向和定向两种用途的高增益三线式天线 (9) 七、工程施工要点 (10) 7.1正确架设天线和连接馈线 (10) 7.2电台和天线的匹配 (10) 7.3正确埋设接地体和连接地线 (11) 7.4选用先进优质的电台和电源 (11) 八、短波电台的应用 (12) 9.1 近距离盲区及解决方法 (13) 小知识: (14) 一、衡量天线性能因素 (14) 二、几种常用的短波天线 (15)

一、短波通信概述 短波通信是利用波长为100-10米(3-30兆赫兹)的电磁波进行的无线电通信,也称高频通信,主要靠天波传播,可经电离层一次或数次反射,最远可传至上万公里,如按气候、电离层的电子密度和高度的日变化,以及通信距离等因素选择合适的频率,就可用较小功率进行远距离通信。但是由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、电话、低速传真通信和广播等方面。 由于采用大气空间及电离层为传输媒介无需投资,仅需配置短波收发信机和天线、馈线系统即可组成短波通信系统。该系统通信设备较简单,机动性大,因此,可用于电话、电报、传真和广播等业务,特别适合应急通信和抗灾通信。 短波通信载频低,可用频带窄,容量不大,并且稳定性较差,所以较少用于民用通信。但近几年,随着新技术的发展,利用计算机进行自动测量传播参数和自动选择最佳通信频率的高频自适应通信,不但使电报电话短波通信可随时保持畅通,而且还可以进行数据速率达4800比特/秒的低速数据通信。

外军通信抗干扰发展趋势

外军通信抗干扰发展趋势 1、跳频通信装备抗跟踪干扰能力日益提高,抗跟踪干扰已由定频通信抗自动瞄准式干扰发展到跳频抗跟踪干扰 外军提高跳频通信抗跟踪干扰能力的技术动态主要有两个方面,一是适当提高跳速,二是采用变速跳频。外军大部分20世纪80年代的跳频通信装备为中低跳速跳频,较新的跳频通信装备采用了中高跳速跳频,如美国的HF-2000,CHESS,HA VE-QUICKIIA,JTIDS及MILSTAR,瑞典的TRC-350,法国的ALCALTEL111等。值得注意的一点是外军有些跳频通信装备大幅度提高跳速并不是以提高抗跟踪干扰能力为出发点的,其主要目的是利用相应的技术体制,由高跳速提高数据传输速率,如:CHESS系统和JTIDS等。另外,提高跳速后,还将给交织和纠错带来方便。当然,提高跳速也会引起其他问题,需要综合考虑。变速跳频是抵抗跟踪干扰的有效措施之一,外军现役跳频电台中也有所采用,但还多是半自动变速或有限种跳速随机变速,有些是通过信令实现跳速牵引,还没有实现真正意义上的变速跳频,这里将其称为准变速跳频,如法国的ERM-9000,TRC-9600,南非的TRC-1600,TRC-600以及瑞典的SFH-41等。 2、跳频通信装备抗阻塞干扰技术逐步成熟 最初提出跳频抗干扰体制,实际上是基于频率分集原理,并以提高跳速为代价实现抗阻塞干扰为出发点的。后来由于数据传输速率越来越高,常规跳频体制的跳速难以适应,形成了实际上的慢跳频(无论绝对跳速多高)。因此,抗阻塞干扰能力一直是跳频通信的重要问题。长期以来很多国家都致力于跳频通信抗阻塞干扰技术的研究,有些成果已得到成功的应用。外军实用化研究成果主要有短波采用自适应选频与跳频相结合的体制,将经过LQA(链路质量分析)选出的最佳或准最佳频率作为跳频频率表生成的基准,如美国的SCl40、英国PATHER-2000、以色列的HF-2000,TRl78、法国的TRC-350H、南非的HF-6000,TRl78A/B,TR390以及瑞典的TRC-350等;超短波采用具有FCS(free channel searce)功能的跳频体制,在一般窄带干扰情况下,使用常规跳频,在遇到宽带阻塞干扰时,自动转到FCS功能,在当前最佳频点上定频工作,一旦宽带干扰消失,又可回到跳频方式上工作,如法国的PR4G、比利时的BAMS等;UHF波段采用了频率自适应与跳频相结合的体制,即在跳频通信过程中自动检测和删除受干扰频率,使系统在无干扰或干扰较弱的频点上跳频,如瑞典的RL-401系列跳频接力机等,但该跳频机在干扰严重时,无更有效的措施,只是自动回到常规跳频状态。 3、扩展频段成为通信抗干扰新的发展趋势 拓宽现有频段、发展多频段,不仅有利于协同通信和全谱作战,还有利于提高跳频通信抗阻塞干扰能力。在拓宽频段方面,外军少数短波电台的频段范围已拓宽到116~50MHz,如美国的M508,RF-500,AN/PRC-132短波电台等;少数超短波电台的频段范围拓宽到30~108 MHz,如比利时的BAMS、荷兰的PRC/VRC-8600、德国的SEMl73/183/193、以色列的CNR-9000、英国的PANTHER-V、法国的PR4G系列电台等,增加了20MHz的带宽。在开发新频段方面,成效显著,最具代表性的是美国的MILSTAR卫星通信系统,采用宽带亚毫米/毫米波,实现宽带高速跳频,跳频带宽达2 GHz。在研制多频段通信抗干扰装备方面更是如火如荼,电台以HF/VHF/UHF三个频段的综合运用为典型特征。如美国的AM-7177A/ARC-182(V),MBITR,MXF-610,MBMMR,SPEAKEASY,英国的SWORDFISH,BOWMAN,南非的MATADOR,TRC-1600,TR600,加拿大的AN/GRC-512(V)等,多频段接力机主要有美国的AMLD4,AMLA3,AN/GRC-226,法国的TFH-150,TFH-701,瑞典的RL401/422,俄罗斯的捷标坦特系列接力机等。 4、提高短波跳频数据速率取得突破进展 自从短波通信出现以来,由于通信体制、器件、信道带宽及天波传输特性等原因,短波

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

大学-关于通信的论文解析

通信电子战系统现状及应对 自海湾战争以来,电子战的威力已被世界所公认。电子战是现代高技术战争中的一个攻防兼备的双刃“杀手锏”,其作战目的是降低或削弱敌方战斗力并保持和增 强己方战斗力。电子战要“消灭”的不是敌人的有生力量,而是通过攻击或瘫痪敌方的,军事信息系统和降低敌方精确制导武器系统的攻击效率,使其丧失战斗力。电子战使用的武器不是枪炮、飞机、军舰、导弹等有形的硬杀伤武器,而是一种无形且有声的电磁能和定向能。电子战往往是在明火执仗的战争之前发起,战争尚未打响,电子战已先期进行。因此电子战是一种先机制敌、不见“刀光剑影”的特殊战争。电子战发展的历史虽不到百年,但其成功的战例却充满着不同时期战争的历史舞台,从日俄战争,第二次世界大战末的英美联军诺曼底登陆战役,越南战争和中东战争,直至海湾战争,电子战都充分显示了其巨大的威力。人们从这些成功的战例中吸取了丰富的营养,并根据现代战争的发展和高技术进步的推动,不断地深化对电子战理论、作战思想、作战方法和新技术、新装备的研究,把电子战这一新的军事科学技术推向一个新的历史台阶。从电子战发展现状、电子战发展趋势、电子战发展对策等几方面进行全面综述,并对我军电子战研究提出几点思考和建议。 电子战主要包括:即电子支援措施(ESM、电子对抗措施(ECM、电子反对抗措施;通信对抗措施既是电子对抗的重要组成部分,又是通信的伴生物,它的主要任务是:截收、检测、测向定位和识别敌方的通信信号,进而采取通信干扰措施,达到阻止破坏或削弱敌人C4I系统,同时又要保护己方通信畅通是双方在通信领域内为争夺制电磁权而展开的电子对抗,专家认为:未来战争,交战双方谁赢得了制电磁权,谁就赢 得战争的主动权,乃至整个战争。 一、外军通信干扰系统现状 外军通讯干扰系统主要包括固定、载式、和便携式三种,由于载式(车载、机载、舰载系统良好的机动性,能够尽可能的靠近被干扰的通信系统,因此应用的比较广泛。 (一车载式系统:

《短波通信概述》word版

短波通信概述 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一但发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比;二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波;三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界范围内获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 一、短波通信的一般原理 1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。无线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为 10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10 米,频率为1.6~30兆赫;超短波的波长为10米

~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: 1)地波(地表面波)传播。沿大地与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被大地吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 2)直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距范围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达接收天线,另一路由地面反射后到达接收天线,如果天线高度和方向架设不当,容易造成相互干扰(例如电视的重影)。限制直射波通信距离的因素主要是地球表面弧度和山地、楼房等障碍物,因此超短波和微波天线要求尽量高架。

直接序列扩频通信系统抗干扰性能分析教学提纲

直接序列扩频通信系统抗干扰性能分析

直接序列扩频通信系统抗干扰性能分析 在现代战争中,通信对抗扮演着越来越重要的角色。随 着计算机技术、微电子技术等大量高新技术的应用,军事通信获得了长足的发展,尤其是跳频、扩频等一些新的通信手段应用之后,使得通信频谱越来越宽,通信的反侦察、抗干扰能力越来越强,迫使各国加紧对通信对抗技术以及装备的研制。直接序列扩频通信由于其优良的多址接入、低截获概率、抗干扰和强保密等特性,使得它在军事通信、卫星通信和民用领域得到了广泛应用。在电子对抗中,对扩频通信的有效干扰成为制胜关键。 第一章研究背景介绍 1.1直扩通信研究背景 现代战争首先是电子战,在电子战中失去优势的一方,将导致通信中断,指挥失灵等,从而丧失战争主导权。两次海湾战争,前南斯拉夫战争以及阿富汗战争都是很好的佐证。因此,通信对抗作为C4ISR系统的核心,越来越受到各国的重视。通信对抗属于电子对抗,它包括通信侦察、通信干扰等主要对抗措施。通信对抗的目的在于:侦收和截获敌方信息,测量有关技战术参数;采用各种干扰方式阻止敌方正常通信并抑制敌方对我方的干扰,保证我方通信系统有效工作。

扩频通信作为新型的通信方式,具有优良的抗干扰、抗衰落和抗多径性能及频谱利用率高、多址通信等诸多优点,并被广泛地应用于军事通信领域,极大地提高了通信系统的抗截获和抗干扰能力。因此,扩频通信系统成为干扰方的首要作战目标,同时,扩频通信的抗干扰、抗截获、抗侦破特性给干扰方带来了巨大的困难。为取得现代电子战的胜利,针对扩频通信系统研究高效的干扰方式,如何有效的干扰成为取得现代电子战胜利的重要一环,对战时通信对抗具有重要意义。 1.2直扩通信的军事应用情况 1)直扩通信技术在舰艇卫星通信系统上应用广泛。国外舰艇卫星通信系统和国内舰艇卫星通信系统均采用码分多址通信方式,使用C波段。这样网络组织与撤收灵活,通信质量高,频道使用少。从目前使用看,这种方式充分发挥了直接序列扩频通信的特点,是扩频通信应用成功的范例。另外,美军使用的联合战术信息分发系统也使用直接扩频技术,主要用于在战术作战环境中进行抗干扰、发布保密数字信息,具有容纳用户数多和交互数据量大的特点,能快速保密地交换指挥控制信息和敌方战术设备的状态参数。 2)直扩通信技术在军用战术移动通信电台、数据分发系统中发挥重要作用。1996年美军演示了SICOM公司研制

移动通信的基本技术之抗干扰措施

移动通信的基本技术之抗干扰措施 在第三代移动通信系统中除了大量的环境噪声和干扰以外,还有大量的电台产生的干扰,如邻道干扰、公道干扰和互调干扰,更重要的是第三代移动通信系统的主流标准(WCDMA、CDMA2000等)都采用了码分多址方式,CDMA码分多址系统是一个干扰受限制系统,在信息的传输中,存在着多址干扰,多径干扰和远近效应。那么为了保证网络的畅通运行,我们也采用了第三代移动通信系统采用的相关抗干扰技术进行处理。这些技术包括:空分多址(SDMA)智能天线技术,用于抗多径干扰的RAKE接收技术,抗多址干扰的联合检测技术,并对这些技术在特定系统中的性能进行了仿真。 首先介绍一下智能天线技术,智能天线利用多个天线阵元的组合进行信号处理,自动调整发射和接收方向图,以针对不同的信号环境达到最优性能。智能天线是一种空分多址技术,主要包括两个方面:空域滤波和波达方向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图,使它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了小区间干扰。 比起只能智能天线技术抗多径干扰的RAKE接受技术又有哪些技术有点呢?智能天线抑制干扰的能力在多数情况下受天线阵元个数的限制,且当感兴趣信号存在多个非相关多径时,阵列只保留其中的一路信号,而把零陷对准其它信号,这样,阵列能够减小由非相关多径带来的干扰,但未能发挥路径分集的优势,因而是次最优的。为此,联合时域和空域处理的接收技术成为研究的热点。 当信道存在多径时延扩展,且时延大于一个码片周期时,这些多径信号既是多径干扰,又是一些有价值的分集源,由此产生了2D-RAKE接收机。目前2D-RAKE接收机讨论最多的是应用在WCDMA上行链路。 空时RAKE接收机首先对存在角度扩展的多个路径分量进行波束成型,以降低DOA可分辨的其它用户信号产生的多址干扰或期望信号的非相关多径分量,然后将经过空间滤波后的信号送入RAKE合并器,以充分利用延迟可分辨的期望信号的多个路径的能量。空间波束形成旨在衰减干扰信号,而时间多径合并旨在利用有用信号。 与时域和空域一维干扰抑制不同的是,空时二维干扰抑制不再使用强迫置零条件,而是考虑噪声的存在,使用优化准则。空时处理有名的优化准则有两个,一个是空时最小均方误差准则,另外一个是空时最大似然准则 我们介绍的第三种抗干扰技术是联合检测技术 传统的接收技术是针对某一用户进行信号检测而把其他用户作为噪声加以处理,在用户数增多时,导致了信噪比恶化,系统性能和容量都不如人意。联合检测技术是在传统检测技术的基础上,充分利用造成多址干扰的所有用户信号及其多径的先验信息(信号之间的相关性时已知的:如确知的用户信道码,各用户的信道估计),把用户信号的分离当作一个统一的相互关联的联合检测过程来完成,从而具有优良的抗干扰性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用上行链路频谱资源,显著地提高系统容量,并削弱了“远近效应”的影响。 每一样技术都有其优缺点,那么我们是否能将其结合,使技术更优化,让其在抗干扰方面体现的效果更为明显呢? 那就是智能天线与联合检测的结合(SA+JD), 其主要用于TD-SCDMA系统中,TD-SCDMA系统结合使用了智能天线和联合检测技术:1)智能天线消除小区间干扰,联合检测消除小区内干扰,两者配合使用;2)智能天线缓解了联合检测过程中信道估计的不准确对系统性能恶化的影响;3)当用户增多时,联合检测的计算量非常大,智能天线的使用减少了潜在的多用户; 4)智能天线的阵元数有限,对于M个阵元的智能天线只能抑制M-1个干扰源,而且所形成的副瓣对其它用户而言仍然是干扰,只能结合联合检测来减少这些干扰;5)在用户高速移动下,TDD模式上下行采用同样空间参数使得波束成型有偏差;用户在同一方向时,智能天线不能起到作用;还

卫星通信技术及其发展趋势

卫星通信技术及其发展趋势 朱军王培国 (成都军区) 摘要:综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。 关键词:卫星通信CDMA 抗干扰MPLS 发展趋势 卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。 1 卫星通信网络的定义 卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。 当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。 2 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现

全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。 2.2 抗干扰技术 现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。 卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。 传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。 特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大。 2.3 基于MPLS的移动卫星通信网络体系构架 MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

短波通信的发展历程

短波通信的特点 短波按照国际无线电咨询委员会(CCIR,现在的ITU-R),的划分是指波长在l00m~l0m,频率为3MHz~30MHz的电磁波。利用短波进行的无线电通信称为短波通信,又称高频(HF)通信。实际上,为了充分利用短波近距离通信的优点,短波通信实际使用的频率范围为1.5MHz~30MHz。 短波通信的发展历程 自从1921年发生在意大利罗马的一次意外事故,短波被发现可实现远距离通信以来,短波通信迅速发展,成为了世界各国中、远程通信的主要手段,被广泛地用于政府、军事、外交、气象、商业等部门,用以传送电报、电话、传真、低速数据和图像、语音广播等信息。在卫星通信出现以前,短波在国际通信、防汛救灾、海难救援以及军事通信等方面发挥了独特的重要作用。 短波通信可以利用地波传播,但主要是利用天波传播。地波传播的衰耗随工作频率的升高而递增,在同样的地面条件下,频率越高,衰耗越大。利用地波只适用于近距离通信,其工作频率一般选在5MHz以下。地波传播受天气影响小,比较稳定,信道参数基本不随时间变化,故地波传播信道可视为恒参信道。天波是无线电波经电离层反射回地面的部分,倾斜投射的电磁波经电离层反射后,可以传到几千千米外的地面。天波的传播损耗比地波小得多,经地面与电离层之间多次反射(多跳传播)之后,可

以达到极远的地方,因此,利用天波可以进行环球通信。天波传播因受电离层变化和多径传播的严重影响极不稳定,其信道参数随时间而急剧变化,因此称为变参信道。天波不仅可以用于远距离通信,而且还可以用于近距离通信。在地形复杂,短波地波或视距微波受阻挡而无法到达的地区,利用高仰角投射的天波可以实现通信。 与卫星通信、地面微波、同轴电缆、光缆等通信手段相比,短波通信也有着许多显著的优点: 1)短波通信不需要建立中继站即可实现远距离通信,因而建设和维护费用低,建设周期短; 2)设备简单,可以根据使用要求固定设置,进行定点固定通信。也可以背负或装入车辆、舰船、飞行器中进行移动通信; 3)电路调度容易,临时组网方便、迅速,具有很大的使用灵活性; 4)对自然灾害或战争的抗毁能力强。通信设备体积小,容易隐蔽,便于改变工作频率以躲避敌人干扰和窃听,破坏后容易恢复。 这些是短波通信被长期保留,至今仍然被广泛使用的主要原因。短波通信也存在着一些明显的缺点: 1)可供使用的频段窄,通信容量小。按照国际规定,每个短波电台占用3.7kHz的频率宽度,而整个短波频段可利用的频率范围只有28.5MHz。为了避免相互间的干扰,全球只能容纳

短波通信系统介绍

一、短波通信概述 (3) 二、短波通信的优势 (3) 三、短波通信的一般原理 (4) 3.1.无线电波传播 (4) 3.2 电离层的作用 (5) 3.3 短波频率围 (6) 3.4 短波传播途径 (6) 四、单边带概念 (7) 4.1 单边带的定义 (8) 4.2 单边带的优点 (8) 五、优化短波通信的方法 (8) 5.1 正确选用工作频率 (9) 5.2计算机测频 (9) 5.3 正确选择和架设天线地线 (10) 六、短波电台天线知识 (10) 6.1了解天线的基本工作原理 (10) 6.2正确选择电台天线 (11) 6.3正确处理天线价格与质量的关系 (11) 6.4常用的天线 (12) 6.4.1用于全方位通信的三角组合型全向全角天线 (12) 6.4.2兼顾全向和定向两种用途的高增益三线式天线 (12) 七、工程施工要点 (13)

7.1正确架设天线和连接馈线 (13) 7.2电台和天线的匹配 (14) 7.3正确埋设接地体和连接地线 (15) 7.4选用先进优质的电台和电源 (15) 八、短波电台的应用 (17) 9.1 近距离盲区及解决方法 (18) 小知识: (19) 一、衡量天线性能因素 (19) 二、几种常用的短波天线 (20)

一、短波通信概述 短波通信是利用波长为100-10米(3-30兆赫兹)的电磁波进行的无线电通信,也称高频通信,主要靠天波传播,可经电离层一次或数次反射,最远可传至上万公里,如按气候、电离层的电子密度和高度的日变化,以及通信距离等因素选择合适的频率,就可用较小功率进行远距离通信。但是由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、、低速传真通信和广播等方面。 由于采用大气空间及电离层为传输媒介无需投资,仅需配置短波收发信机和天线、馈线系统即可组成短波通信系统。该系统通信设备较简单,机动性大,因此,可用于、电报、传真和广播等业务,特别适合应急通信和抗灾通信。 短波通信载频低,可用频带窄,容量不大,并且稳定性较差,所以较少用于民用通信。但近几年,随着新技术的发展,利用计算机进行自动测量传播参数和自动选择最佳通信频率的高频自适应通信,不但使电报短波通信可随时保持畅通,而且还可以进行数据速率达4800比特/秒的低速数据通信。 二、短波通信的优势 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

卫星通信抗干扰技术及其发展趋势概述

卫星通信抗干扰技术及其发展趋势概述 摘要现代通信的发展过程,卫星通信技术作为主要通信方式,在社会环境和自身条件等因素的干扰下,信号传输会随之受到直接影响,若要全面提升信息的传输效果,则应该加强卫星通信的抗干扰技术研究,同时对其发展趋势进行深入了解,以促进现代通信的发展。文章首先分析卫星通信抗干扰,其次进行抗干扰技术的阐述,最后研究其发展趋势。 关键词卫星通信;抗干扰技术;发展趋势 卫星通信技术是指:将人造卫星作为中继站,利用无线电波实现地球间的有效通信,以组成角度进行分析发现,系统主要包括:地球站和通信卫星。在我国科学技术持续发展下,卫星通信技术随之取得明显进步,除了可以弥补其他通信存在的问题,而且还能广泛应用音频广播和大众传媒等领域,与此同时,工作人员还应进行卫星通信抗干扰技术的优化和完善。 1 卫星通信抗干扰的浅析 对于卫星通信来讲,可能会对其造成干扰因素比较多样化,按照其来源进行划分发现,其主要包括以下几点内容:首先,通信系统干扰,卫星通信技术发展中,与以往技术相比较发现,其卫星间隔随之出现较大变化,即由5°转变为2.5°,在缩短卫星间隔的同时,使卫星间干扰明显增加。其次,卫星通信和地面系统之间存在干扰情况,其主要表现在无线通信方面,例如:调频广播或雷达系统等,同时还包括医院或工程等设备干扰[1]。最后,自然因素干扰,如雨衰等,在电波空中传输过程,在穿过雷电和雨水区域时,此区域内障碍物、雨滴的存在,均会对电波起到衰减作用,实际衰减情况和雨滴半径存在较大联系。与此同时,日凌和电离层的闪烁情况,均属于自然界常见干扰类型,如果电磁波出现在电离层中,往往会因为电离层缺少稳定特点,使其信号出现延迟突变等问题,最终造成电离层出现闪烁情况,需要工作人员予以重视。 2 卫星通信常见抗干扰技术 2.1 天线抗干扰技术 在卫星通信系统中,因其具有覆盖广的特点,使其经常面临不同干扰,在不同抗干扰技术在中,天线抗干扰属于比较常见技术,包括自适应调零技术等。对于智能天线应用,主要是按照无线信道变化进行天线图方向的调整,从而保证天线各项性能处于良好状态,以便于对不同干扰因素进行有效控制。在智能天线中,其构成部分包括:信号通道与天线阵列等,需要特别注意:短时间内对干扰方向予以判断,同时调至零标准尤为重要,要求人员对其予以重视[2]。 2.2 限幅技术

短波通信概述

短波通信概述 短波通信是无线电通信的一种。波长在50米~10米之间,频率围6兆赫~30兆赫。发射电波要经电离层的反射才能到达接收设备,通信距离较远,是远程通信的主要手段。由于电离层的高度和密度容易受昼夜、季节、气候等因素的影响,所以短波通信的稳定性较差,噪声较大。目前,它广泛应用于电报、、低速传真通信和广播等方面。 尽管当前新型无线电通信系统不断涌现,短波这一古老和传统的通信方式仍然受到全世界普遍重视,不仅没有被淘太,还在快速发展。其原因主要有三:一、短波是唯一不受网络枢钮和有源中继体制约的远程通信手段,一旦发生战争或灾害,各种通信网络都可能受到破坏,卫星也可能受到攻击。无论哪种通信方式,其抗毁能力和自主通信能力与短波无可相比; 二、在山区、戈壁、海洋等地区,超短波覆盖不到,主要依靠短波; 三、与卫星通信相比,短波通信不用支付话费,运行成本低。 近年来,短波通信技术在世界围获得了长足进步。这些技术成果理应被中国这样的短波通信大国所用。用现代化的短波设备改造和充实我国各个重要领域的无线通信网,使之更加先进和有效,满足新时代各项工作的需要,无疑是非常有意义的。 一、短波通信的一般原理 1.无线电波传播 无线电广播、无线电通信、卫星、雷达等都依靠无线电波的传播来实现。无

线电波一般指波长由100,000米到0.75毫米的电磁波。根据电磁波传播的特性,又分为超长波、长波、中波、短波、超短波等若干波段,其中:超长波的波长为100,000米~10,000米,频率3~30千赫;长波的波长为10,000米~1,000米,频率30~300千赫;中波的波长为1,000米~100米,频率300千赫~1.6兆赫;短波的波长为100米~10 米,频率为1.6~30兆赫;超短波的波长为10米~1毫米,频率为30~300,000兆赫(注:波长在1米以下的超短波又称为微波)。频率与波长的关系为:频率=光速/波长。 电波在各种媒介质及其分界面上传播的过程中,由于反射、折射、散射及绕射,其传播方向经历各种变化,由于扩散和媒介质的吸收,其场强不断减弱。为使接收点有足够的场强,必须掌握电波传播的途径、特点和规律,才能达到良好的通信效果。 常见的传播方式有: (1)地波(地表面波)传播 沿与空气的分界面传播的电波叫地表面波,简称地波。其传播途径主要取决于地面的电特性。地波在传播过程中,由于能量逐渐被吸收,很快减弱(波长越短,减弱越快),因而传播距离不远。但地波不受气候影响,可靠性高。超长波、长波、中波无线电信号,都是利用地波传播的。短波近距离通信也利用地波传播。 (2)直射波传播 直射波又称为空间波,是由发射点从空间直线传播到接收点的无线电波。直射波传播距离一般限于视距围。在传播过程中,它的强度衰减较慢,超短波和微波通信就是利用直射波传播的。 在地面进行直射波通信,其接收点的场强由两路组成:一路由发射天线直达

关于CBTC系统无线通信抗干扰技术的研究

技术装备 52 MODERN URBAN TRANSIT 6/2009现代城市轨道交通 0引言 列车控制系统在地铁信号的发展过程中,经历了从单向轨道电路到双向无线通信的变革。目前广泛应用于地铁列车控制系统的是基于无线通信的列车控制系统(CBTC)(图1)。而无论基于无线局域网还是专用无线网的通信,都存在同频或邻频干扰的问题。为此,如何引入技术手段,提高CBTC系统的抗干扰能力,保证其可靠、稳定运行十分重要。 1无线局域网 1.1结构 无线局域网(WLAN)是计算机 网络与无线通信技术相结合的产物,它以无线多址信道作为传输媒介,利用电磁波完成数据交互,实现传统有线局域网的功能。WLAN的核心结构如图2所示。 从图2可以看到,WLAN的工作层有介质访问控制层(MAC)和物 理层(PHY),其中物理层分为PLCP(物理层收敛过程)子层和PMD(物理机制相关)子层。PLCP子层通过将MAC层信息映射到PMD子层,使MAC层对物理层的依赖减到最低,而PMD子 层则提供了控制无线介质 的方法和手段。WLAN的物理层采用扩频工作方式,包括FHSS(跳频扩频)、DSSS(直接序列扩频)、HR/DSSS(高速直接序列扩频)和OFDM(正交分复用),无线工作频段为ISM:2.4~2.4875GHz以及U-NII:5.725~5.850 GHz(取决于采用的标准)。在IEEE802.11结构内还包含两个管理实体(MAC层管理实体MLME和PHY 物理层管理实体PLME)和管理信息库(MIB),从而控制MAC层和PHY层的工作状态。 1.2MAC层干扰问题 无线局域网的MAC层的载波监听多路访问/冲突检测方法(CSMA/CD)协议问题,从理论上讲,MAC层的CSMA/CD协议完全能够满足局域网级的多用户信道竞争问题,但是,对应无线环境而 邱鹏:南京恩瑞特实业有限公司轨道交通事业部,助理工程师,南京 211106 关于CBTC系统无线通信 抗干扰技术的研究 邱鹏 李亮 摘 要:研究基于无线传输的CBTC系统车-地通信抗干扰技术,通过 分析无线局域网中的同频干扰,结合重复累积码、感知无线电、一致性测试3项技术,提出1套在CBTC系统设计和系统运营两个阶段抑制同频干扰的完整解决方案。 关键词:车地通信;同频干扰;重复累积码;感知无线电;一致性测试 注:LLC即逻辑链路控制;WEP即有线等效保密 图2WLAN 的核心结构 图1CBTC 系统框图 车载部分 车载ATC定位 数据通信部分 无线传输系统 轨旁网络装置 ATS 轨旁ATC系统 LLC WEPMAC PHY DSSS FH IR OFDMMACMgmt MIB LLC MAC 业务接口 MAC管理业务接口MAC子层 MAC管理层 PHY业务接口 PHY管理业务接口PHY管理层 PLCP子层PMD 子层

相关文档
最新文档