设计性物理实验 数字万用表的组装与调式

设计性物理实验  数字万用表的组装与调式
设计性物理实验  数字万用表的组装与调式

数字万用表的组装与调式

通过本次实习进一步掌握数字万用表的组成与工作原理,了解万用表的功能。数字万用表的特点及数字万用表和指针表的区别,对数字万用表的电路一定的认识。电表的改装和电路图的优化。学会测量元器件的参数并且掌握判别元器件的好坏。掌握常见故障的处理方案与维修的基本技巧,掌握元器件和电路印刷版焊接技术。加强对误差分析和数据处理能力。通过本次实习加强理论联系实际的能力,提高学生的动手能力。

【实验目的】

设计并组装一台三位半数字万用表。

【实验仪器】

1.DM-Ⅰ数字万用表设计性实验仪一台

2.三位半数字万用表一台

3.导线若干

【实验原理】

DT9205A型数字万用表电路图

无论何种数字表电路它通常由A/D转换电路,时钟电路,驱动电路,显示电路等组成。。从原理上讲,它所组成的仅仅是一个能测量小于199.9mV的直流电压表,对于实验来说,要测的物理量不只是电压,还有电流、电阻等。

要测量电流或电阻,就必须通过某种“I-V”、“R-V”转换电路将其它的非电压信号转换为直流电压信号,才能用数字直流电压表头测量。另外,对于交流电压和交流电流还要先将其变换为直流然后再用数字直流电压表头测量。

1.数字万用表的特性

与指针式万用表相比较,数字万用表有如下优良特性:

⑴高准确度和高分辨力

三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。

分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。

⑵电压表具有高的输入阻抗

电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。

三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。而指针式万用表

电压挡输入阻抗的典型值是20~100k Ω/V 。

⑶ 测量速率快

数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D 转换的速率。三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。

⑷ 自动判别极性

指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。而数字万

用表能自动判别并显示被测量的极性,使用起来格外方便。

⑸ 全部测量实现数字式直读

指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。而数字万用表则没有这些问题,换挡时小数点自动显示,所有测量挡都可以直接读数,不用换算、倍乘。

⑹ 自动调零

由于采用了自动调零电路,数字万用表校准好以后使用时无需调校,比指针式万用表方便许多。 ⑺ 抗过载能力强

数字万用表具备比较完善的保护电路,具有较强的抗过压过流的能力。 当然,数字万用表也有一些弱点,如:

⑴ 测量时不像指针式仪表那样能清楚直观地观察到指针偏转的过程,在观察充放电等过程时不够方便。不过有些新型数字表增加了液晶显示条,能模拟指针偏转,弥补这一不足。

⑵ 数字万用表的量程转换开关通常与电路板是一体的,触点容量小,耐压不很高,有的机械强度不够高,寿命不够长,导致用旧以后换挡不可靠。

⑶ 一般数字万用表的V/Ω挡公用一个表笔插孔,而A 挡单独用一个插孔。使用时应注意根据被测量调换插孔,否则可能造成测量错误或仪表损坏。

2.直流电压测量电路

在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。如图2所示,

U 0为数字电压表头的量程(如200mV ),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。

0~U

图(2)分压电路原理 图(3)多量程分压器原理 由于r >> r 2,所以分压比为

2

1200r r r

U U i += 扩展后的量程为 02

2

10U r r r U i +=

多量程分压器原理电路见图(3),5挡量程的分压比分别为1、0.1、0.01、0.001和0.0001,对应的量程分别为200m V 、2V 、20V 、200V 和2000V 。

采用图3的分压电路虽然可以扩展电压表的量程,但在小量程挡明显降低了电压表的输入阻抗,这在实际使用中是所不希望的。所以,实际数字万用表的直流电压挡电路为图(4)所示,它能在不降低输入阻抗的情况下,达到同样的分压效果。

例如:其中200V 挡的分压比为

001.0M

10k

105432154==+++++R R R R R R R

其余各挡的分压比可同样算出,请同学们自己计算。

图(4) 实用分压器电路

实际设计时是根据各挡的分压比和总电阻来确定各分压电阻的。如先确定

R 总=R 1+R 2+R 3+R 4+R 5=10M

再计算2000V 挡的电阻

R 5=0.0001R 总=1k

再逐挡计算R 4、R 3、R 2、R 1(详见数据处理部分)。

尽管上述最高量程挡的理论量程是2000V ,但通常的数字万用表出于耐压和安全考虑, 规定最高电压量限为1000V 。

换量程时,多刀量程转换开关可以根据挡位自动调整小数点的显示,使用者可方便地直读出测量结果。

2. 直流电流测量电路

测量电流的原理是:根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。如图5,由于r>>R ,取样电阻R 上的电压降为

U i =RI i 即被测电流 I i =U i /R

若数字表头的电压量程为U 0,欲使电流挡量程为I 0,则该挡的取样电阻(也称分流电阻)为 R =U 0/I 0

如U 0=200mV ,则I 0=200mA 挡的分流电阻为R =1Ω。

图(5) 电流测量原理 图(6) 多量程分流器电路 多量程分流器原理电路见图(6)。

图(6)中的分流器在实际使用中有一个缺点,就是当换挡开关接触不良时,被测电路的电压可能使数字表头过载,所以,实际数字万用表的直流电流挡电路为图7所示。

图(7)中各挡分流电阻的阻值是这样计算的: 先计算最大电流挡的分流电阻R 5

)(1.022

.0505Ω===m I U R

再计算下一挡的R 4

)(9.01.02.02

.05404Ω=-=-=R I U R m

依次可计算出R 3、R 2和R 1,请同学们自己练习。

图(7) 实用分流器电路

图中的FUSE 是2A 保险丝管,电流过大时会快速熔断,起过流保护得作用。两只反向连接且与分流电阻并联的二极管D 1、D 2为塑封硅整流二极管,它们起双向限幅过压保护作用。正常测量时,输入电压小于硅二极管的正向导通压降,二极管截止,对测量毫无影响。一旦输入电压大于0.7V ,二极管立即导通,两端电压被限制住(小于0.7V ),保护仪表不被损坏。

用2A 挡测量时,若发现电流大于1A 时,应不使测量时间超过20秒,以避免大电流引起的较高温升影响测量精度,甚至损坏仪表。

3. 交流电压、电流测量电路

数字万用表中交流电压、电流测量电路是在直流电

U i

I i

压、电流测量电路的基础上,在分压器或分流器之后加入了一级交流-直流(AC-DC )变换器,图(8)为其原理简图。

该AC-DC 变换器主要由集成运算放大器、整流二极管、RC 滤波器等组成,还包含一个能调整输出电压高低的电位器,用来对交流电压挡进行校准之用。调整该电位器可使数字表头的显示值等于被测交流电压的有效值。

同直流电压挡类似,出于对耐压、安全方面的考虑,交流电压最高挡的量限通常限定为750V (有效值)。

数字万用表交流电压、电流挡适用的频率范围通常为40~400Hz (如DT830A 、M3900等型号),有些型号的交流挡测量频率可达1000Hz (如M3800、PF72等)。

7.电阻测量电路

数字万用表中的电阻挡采用的是比例测量法,其原理电路见图9。

由稳压管ZD 提供测量基准电压,流过标准电阻R 0和被测电阻R x 的电流基本相等(数字表头的输入阻抗很高,其取用的电流可忽略不计)。

所以A/D 转换器的参考电压U REF 和输入电压U IN 有如下关系:

X

0IN REF

R R U U =

即 0REF

IN

X

R U U R = 根据所用A/D 转换器的特性可知,数字表显示的是U IN 与

U REF 的比值,当U IN =U REF 时显示“1000”,U IN =0.5U REF 时 显示“500”,以此类推。所以,当R x =R 0

时,表头将显示 “1000”,当R x =0.5R 0时显示“500”,这称为比例读数特性。

因此,我们只要选取不同的标准电阻并适当地对小数点进行定位,就能得到不同的电阻测量挡。 如对200Ω挡,取R 01=100Ω,小数点定在十位上。当R x =100Ω时,表头就会显示出100.0(Ω)。当R x 变化时,显示值相应变化,可以从0.1Ω测到199.9Ω。

又如对2k Ω挡,取R 02=1k Ω,小数点定在千位上。当R x 变化时,显示值相应变化,可以从0.001k Ω测到1.999k Ω。

(其余各挡道理相同,同学们可自行推演。) 数字万用表多量程电阻挡电路见图10。

图(9)电阻测量原理

交流电 直流电

图(8)AC-DC 变换器原理简图

由上分析可知,

R 1=R 01=100Ω

R 2=R 02-R 01=1000-100=900Ω R 3=R 03-R 02=10k -1k =9k ……

图10中由正温度系数(PTC )热敏电阻R t 与晶体管T 组成了过压保护电路,以防误用电阻挡去测高电压时损坏集成电路。当误测高电压时,晶体管T 发射极将击穿从而限制了输入电压的升高。同时R t 随着电流的增加而发热,其阻值迅速增大,从而限制了电流的增加,使T 的击穿电流不超过允许范围。即T 只是处于软击穿状态,不会损坏,一旦解除误操作,R t 和T 都能恢复正常。 【内容与步骤】

1.设计制作多量程直流数字电压表

(1)组装直流数字电压表:使用电路单元:三位半数字表头,直流电压校准,直流电压电流,分压器1。参考电压V REF 输入端接直流电压校准电位器。

(2)校准电压表头:用一只成品数字万用表(称为标准表)置于直流电压20V 量程进行监测,调节直流电压电流单元电路中电位器,使之输出一150--200mV 左右的校准电压,然后将标准表表笔(输入)与组装表表笔并联,均置于直流电压200mV 挡,测量直流电压电流单元输出电压,(按图〈11〉接线),调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV )。

(3)绘制组装表的电压校准曲线:调节直流电压电流单元电路中电位器,使之分别输出20mV 、40mV 、60mV 、80mV 、100mV 、120mV 、140mV 、160mV 、180mV 的直流电压。将标准数字万用表表笔与组装表表笔(输入)并联,标准表、组装表均置于直流电压200mV 挡,同时测量直流电压电流单元输出电压,列表记录之。并绘出组装表的电压校准曲线(关于绘制电表校准曲线请同学参考《大学物理实验》讲义第一册42页的有关介绍)。

(4) 用自制电压表测直流电压(选做) a.测量5号电池的端电压(标称值1.5V ) b.测量6F22电池的端电压(标称值9V )

图(10)电阻测量电路

图(11)

c.测量DM-I 实验仪上的待测直流电压:调节“直流电压电流”单元的电位器,可以改变直流电压“V ”的大小和极性。将电流“I ”两端连通,构成电流回路,电路中的LED 可能会发光,可以观 测电压“V ”对发光状态的影响

d.测量光电池的端电压:将电压表连接于光电池的两端,改变光照的强度,观察电压的变化情况

2 .设计制作多量程交流数字电压表

(1)组装多量程交流数字电压表:

使用电路单元:三位半数字表头,直流电压校准交流电压校准(AC-DC 变换器),分压器1, 量程转换与测量输入。在上述200mV 直流数字电压表头的基础上,增加交流-直流(AC-DC )变换器,制成交流数字电压表⑴并校准

按图(13)接线,在200mV 直流数字电压表头(已校准)前面接入AC-DC 变换器,然后进行交流电压校准。

(2)交流电压校准:用标准表置于交流电压20V 量程进行监测,接通交流电压电流单元电路,使之输出一1V 左右的交流电压。然后将标准表表笔与组装表表笔并联,均置于交流电压2V 挡,测 量交流电压电流单元输出电压,调整“交流电压校准”旋钮使表头读数与标准表读数一致(允许误差±50mV )。

(3)绘制组装表交流2V 档的电压校准曲线: 接通交流电压电流单元电路,使之分别输出0.2V 、0.4V 、0.6V 、0.8V 、1.0V 、1.2V 、1.4V 、1.6V 、1.8V 的交流电压。将标准数字万用表表笔与组装表表笔(输入)并联,标准表、组装表均置于交流电压2V 挡,同时测量交流电压电流单元输出电压,列表记录之。并绘出组装表交流2V 档的电压校准曲线。

(4)用自制交流电压表测电压(选做) a.测量待测“交流电压电流”单元中的V ,此电压为内部电源变压器的次级电压。

b.测量灯泡电压:将待测交流电流I 连通(短路),

小灯泡可能会发亮。调整限流电位器,灯泡亮度会随之变化。测

图(12)多量程直流数字电压表 的

小数点控制电路

2V

200V

注:动片1在内部已接驱动电路

量灯泡两端的电压,观察其与灯泡亮度之间的关

系。

【注意事项】

4.实验时应当“先接线,再通电;先断电,再拆线”,通电前应确认接线无误,避免短路。

5.即使加有保护电路,也应注意不要用电流挡或电阻挡测量电压,以免造成不必要的损失。

6.当数字表头最高位显示“1”(或“-1”)而其余位都不亮时,表明输入信号过大,即超量程。此时应尽快换大量程挡或减小(断开)输入信号,避免长时间超量程。

7.自锁紧插头插入时不必太用力就可接触良好,拔出时应手捏插头旋转一下就可轻易拔出,避免硬拔硬拽导线,拽断线芯。

【数据处理】

多量程数字直流电压表

【误差讨论】

由于接线柱与导线接触不良好

电表数字的跳动

旋钮长期使用的松动

【小总】

经过这一周的实习我充分了解到数字万用表的原理和功能。有了对万用表的调式经验,并掌握测量元器件的参数并且掌握判别元器件的好坏,掌握常见故障的处理方案与维修的基本技巧。误差的处理和分析进一步得到了巩固。在这期间我认真学习到了分压器和分流器的工作原理及其电路图的工作特点。通过这一周神秘的数字万用表对我来说不在神秘不识,它也不过是那么的简单。以前的物理实验都按照实验教程来做的,而这次是自己设计实验的一切,给我充分学习和动手能力。让我充分了解到做好准备工作的重要性,科学规划实验步骤和实验方案。

MAS830L_数字万用表装配实验报告

MAS830L 数字万用表装配实验报告 实验日期: 5月5 实验名称:MAS830L 数字万用表装配 一:实验目的 1、 通过MAS830L 数字万用表装配实验,进一步加深对数字万用表电路原理的认识,能熟练的测量 各种物理量。 2、 了解ICL7106的各个引脚和他的数模转换功能。 3、 了解液晶显示的原理和使用方法。 4、 初步学会通过电路图焊接电路板。掌握一些简单的电路焊接工艺。 5、 了解各种测试仪器的用法并样品进行测试和矫正 二:实验器材 1、 MAS830L 型31/2位数字万用表的各种零配件和相关的材料说明。见MAS830L 元件清单(一)和 MAS830L 元件清单(二)。 2、 焊接电路板所需的烙铁和锡以及松香。 3、 一个标准的数字万用表、螺丝刀、镊子、刀片等。 三:实验原理 1、ICL7106原理介绍 ICL7106是目前广泛应用的一种3?位A/D 转换器,能构成3?位液晶显示的数字电压表。 一、ICL7106的工作原理 1. ICL7106的性能特点 (1)采用+7V ~+15V 单电源供电,可选9V 叠层电池,有助于实现仪表的小型化。低功耗(约16mW ),一节9V 叠层电池能连续工作200小时或间断使用半年左右。 (2)输入阻抗高(1010Ω)。内设时钟电路、+2.8V 基准电压源、异或门输出电路,能直接驱动3?位LCD 显示器。 (3)属于双积分式A/D 转换器,A/D 转换准确度达±0.05%,转换速率通常选2次/秒~5次/秒。具有自动调零、自动判定极性等功能。通过对芯片的功能检查,可迅速判定其质量好坏。 年级:14机电1 班组: 姓名: 朱宇凯 学号: 144030308

数字万用表的组装与调试实验报告doc

数字万用表的组装与调试实验报告 篇一:万用表组装_设计性实验报告 北京交通大学大学物理实验 设计性实验 实验题目 学院 班级学号姓名首次实验时间年月日 指导教师签字 目录 一.实验任务 ................................................ ................................................... .. (4) 1.分析研究万用表电路,设计并组装一个简单的万用表。 (4) 二.实验要求 ................................................ ................................................... .. (4) 1.分析常用万用表电路,说明各挡的功能和设计原理 ................................................

4 2.设计组装并校验具有下列四挡功能的万用表 ................................................ ............ 4 3.给出将X100电阻挡改造为X10电阻挡的电 路 ................................................ .. (4) 三.实验主要器材 ................................................ ................................................... ........................... 4 四.实验方案 ................................................ ................................................... .. (5) 1.测定给定的微安表头的量程I0和Rg。 .............................................. ....................... 5 2.按照如图所示电路进行分流,制作出1mA直流电流表。 ...................................... 5 3.按照如图所示全桥整流电路图制作直流电源。 .............................................. . (5)

浅谈大学物理实验教学设计

浅谈大学物理实验教学设计 【摘要】大学物理实验是高等院校理工科学生必修的一门重要基础课。在提高学生的科学素质、培养学生的创新精神和实践能力中具有特殊的作用。实施新型实验教学方式已成为大学物理实验教学改革和实践的热点。本文对大学物理实验教学模式进行研究对该实验教学模式中的“完善实验教学设计”进行了详细分析。 【关键词】大学物理实验;创新能力;教学模式 物理学是一门实验科学,是物理学的基础。凡是物理学的概念、规律及公式都是以客观实验为基础的,即物理理论绝不能脱离物理实验的验证。大学物理实验作为大学生进校后的第一门科学实验课程,不仅应让学生受到严格的、系统的实验技能训练掌握科学实验的基本原理、方法和技巧,更主要的是要培养学生严谨的科学思维能力和创新精神,培养学生理论联系实际、分析和解决实际问题的能力,特别是与科学技术发展相适应的综合能力。因而实验教学应该面对时代的发展、科技进步的新趋势和新挑战不断有所改变和创新。只有这样才能适应社会对人才知识和科学素质越来越高的要求[1]。为了搞好大学物理实验教学,教师必须重视和研究实验教学。首先,要进行完善的实验教学设计,确定明确的实验目标;其次,要提供开放的实验环境和及时的辅导,让学生不断自主地进行实验探索并获得成就感;再次,要充分利用现代教育媒体和信息技术手段,提高实验教学效率加强教师与学生的互动,激发学生对实验的探索兴趣和重视[2-3]。本文对如何完善实验教学设计结合我院大学物理实验的教学模式进行研究和探讨。 大学物理实验教学是消化理论知识验证知识的过程它有助于锻炼和提高学生的实验方法和技能。随着科学技术的不断进步和发展物理实验将在学生的知识、能力和素质的培养方面发挥越来越重要的作用。 1 以素质教育为目的,建立物理实验课程新体系 课程体系重新设置的重点是:加强基础,重视应用,培养能力,提高素质,把“知识、能力、素质”三要素贯穿整个实验教学改革过程。实验课程体系的设计必须让学生系统掌握物理实验的基本知识、基本方法和基本技能,打好基础;同时还必须与现代科学技术接轨,现代科技成果与经典课程内容相互渗透,是在对实验课程体系改革时应充分给以关注的问题。 2 授课对象起点分析 《大学物理实验》课程是针对全体工科专业开设,开设时间在大学第二、三学期。学生为地方高考青年学生,已经具备了比较扎实的科学文化基础。经过大学第一学期物理课程的学习,学生掌握了大学物理的一般规律和一般物理实验的基本原理,对常见物理现象具有感性认识和一般的理性理解。本科学生总体知识水平较好,但动手能力一般,实操经验不强,对《大学物理实验》课程的学习大

大学物理实验设计性实验方案

普通物理实验设计性实验方案 实验题目:简单显微镜的设计 班级:物理学2011级(2)班 学号:2011433175 姓名:唐洁 指导教师:陈广萍 凯里学院物理与电子工程学院2013 年3月

简单显微镜的设计 要求: 1. 了解显微镜的基本光学系统及放大原理,以及视觉放大率等概念; 2. 学会按一定的原理自行组装仪器的技能及调节光路的方法; 3. 学会测量显微镜的视觉放大率; 4. 简单显微镜的放大率为31.8; 5. 物镜与目镜之间的距离为24cm ,即光学间隔为1 6.6cm 。 序 言 显微镜是最常用的助视光学仪器,且常被组合在其他光学仪器中。因此,了解并 掌握它的构造原理和调整方法,了解并掌握其放大率的概念和测量方法,不仅有助于加 深理解透镜的成像规律,也有助于正确使用其他光学仪器。 一、实验原理 (一)、光学仪器的视觉放大率 显微镜被用于观测微小的物体,望远镜被用于观测远处的目标,它们的作用都是 将被观测的物体对人眼的张角(视角)加以放大。显然,同一物体对人眼所张的视角与 物体离人眼的距离有关。在一般照明条件下,正常人的眼睛能分辨在明视距离处相距为 0.05~0.07mm 的两点。此时,这两点对人眼所张的视角约为/1,称为最小分辨角。当 微小物体(或远处物体)对人眼所张视角小于此最小分辨角时,人眼将无法分辨,因而 需借助光学仪器(如放大镜、显微镜、望远镜等)来增大物体对人眼所张的视角。这是 助视光学仪器的基本工作原理,它们的放大能力可用视觉放大率Γ表示,其定义为 w w tan tan / =Γ (1) 式中,w 为明视距离处物体对眼睛所张的视角,/w 为通过光学仪器观察时在明视距离 处的成像对眼睛所张的视角。 (二)、显微镜及其视觉放大率 最简单的显微镜是由两个凸透镜构成的。其中,物镜的焦距很短,目镜的焦距较 长。它的光路如图所示,图中的o L 为物镜(焦点在o F 和/o F ),其焦距为o f ;e L 为目镜, 其焦距为e f 。将长度为1y 的被观测物AB 放在o L 的焦距外且接近焦点o F 处,物体通过 物镜成一放大的倒立实像//B A (其长度为2y )。此实像在目镜的焦点以内,经过目镜放

数字万用表设计性实验

普通物理实验C 课程论文 题目数字万用表设计实验学院物理科学与技术学院 电子信息工程学院 专业物理学师范 年级2010级1班 学号222010315210011 姓名彭书涛 指导教师陶敏龙老师 论文成绩 答辩成绩 2011年12 月06 日

数字万用表设计性实验与分析以及实验改进体系 彭书涛 西南大学物理科学与技术学院,重庆 400715 摘要:本论文探讨数字万用表设计实验的思路和实验方法以及改进数字万用表灵敏度的改进方法,从实验入手解决试验中的操作和实验做法的问题,后接着就实验从误差分析入手解决并进行改进方案的讨论。 关键词:数字万用表;设计实验;改进方案; 一、实验内容: 1)制作量程200mA的微安表(表头); 2)设计制作多量程直流电压表; 3)设计制作多量程直流电流表; 二、实验仪器: WS-I数字万用表设计性实验仪三位半数字万用表 三、实验原理 1.数字万用表的组成 数字万用表的组成见图1。 数字万用表其核心是一个三位半数字表头,它由数字表专用A/D转换译码驱

动集成电路和外围元件、LED数码管构成。该表头有7个输入端,包括2个测量 电压输入端(IN+、IN-)、2个基准电压输入端(V REF +、V REF - )和3个小数点驱动 输入端。 图1 数字万用表的组成 2.直流数字电压表头 “三位半数字表头”电路单元的功能:将输入的两个模拟电压转换成数字,并将两数字进行比较,将结果在显示屏上显示出来。利用这个功能,将其中的一个电压输入作为公认的基准,另一个作为待测量电压,这样就和所有量具或仪器的测量原理一样,能够对电压进行测量了。见图2。

设计性物理实验-黑盒子实验

西北工业大学 设计性基础物理实验报告班级:11051401 姓名:日期:2016.05.06 黑盒子实验 一、实验目的 1、学习使用示波器对黑盒子中电学元件进行判别及估算; 2、培养设计检测步骤和综合分析推理的能力。 二、实验仪器(名称、型号及参数) TDS1001B波形输出器示波器电阻箱电容箱导线黑盒子 三、实验原理 黑盒子里的元件可能是干电池、定值电阻、电容器、半导体二极管、电感器等,各元件链接在接线端,元件之间可能是并联、串联。使用如下电路图: 信号发生器输出正弦波信号电压输入;R0取适当值;CH1测量取样电阻箱两端电压;CH2检测信号发生器输出电压;虚线框内的i\j表示黑盒子面板上的接线柱,实验观测中i端对应信号发生器输出正端。 假设信号发生器输出正弦波信号幅度为A0、频率为f,各元件检测判断过程如下: 1.电阻元件 示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A不变。 2.电容 示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A也变化,且f和A同变

化。 3.电感 示波器CH1通道显示U R为正弦波,幅度A< A0,若f变化A也变化,且f和A变化不同步。 4.二极管 示波器CH1通道显示U R为半波,并可由脉冲向上还是向下判断二极管的正负极。 5.电池 先用示波器判断有无电池,此时示波器为直流。 四、实验内容与方法 黑盒子1 黑盒子1有四个接线柱,每两个接线柱之间最多连接一个元件,盒内三个元件可能是电池、电阻、电容、电感或半导体二极管。 按一定顺序连接各个接线柱,用示波器测量信号发生器和取样电阻箱两端电压,记录示波器波形;调节信号发生器频率,观察记录A的变化。 黑盒子2 黑盒子2内含有三个电磁学元件,组成三角形连接方式。接线柱1、2之间为X,接线柱2、3之间为Y,接线柱1、3直接为Z。 按照与黑盒子1相同的方法确定各个接线柱之间的电磁学元件,之后测量三个电磁学元件的数值。 将黑盒子内电阻与取样电阻串联可以测得黑盒子内电阻的数值;将黑盒子内电容与取样电容并联可以测得电感、电容的数值。 五、实验数据记录与处理(列表记录数据并写出主要处理过程) 黑盒子1 将测量接线柱1、2,调节示波器测量方式为直流,此时无现象,说明黑盒子内无电池。 调解示波器测量方式为交流,测量接线柱两端:(显示均为正弦波) 1、2 CH2显示在1.68V左右,CH1显示在1.12V左右,高频低频下状态相同。 1、3

设计性物理实验 数字万用表的组装与调式

. 数字万用表的组装与调式 通过本次实习进一步掌握数字万用表的组成与工作原理,了解万用表的功能。数字万用表的特点及数字万用表和指针表的区别,对数字万用表的电路一定的认识。电表的改装和电路图的优化。学会测量元器件的参数并且掌握判别元器件的好坏。掌握常见故障的处理方案与维修的基本技巧,掌握元器件和电路印刷版焊接技术。加强对误差分析和数据处理能力。通过本次实习加强理论联系实际的能力,提高学生的动手能力。 【实验目的】 设计并组装一台三位半数字万用表。 【实验仪器】 1.DM-Ⅰ数字万用表设计性实验仪一台 2.三位半数字万用表一台 3.导线若干 【实验原理】 DT9205A型数字万用表电路图

无论何种数字表电路它通常由A/D转换电路,时钟电路,驱动电路,显示电路等组成。。从原理上讲,它所组成的仅仅是一个能测量小于199.9mV的直流电压表,对于实验来说,要测的物理量不只是电压,还有电流、电阻等。 要测量电流或电阻,就必须通过某种“I-V”、“R-V”转换电路将其它的非电压信号转换为直流电压信号,才能用数字直流电压表头测量。另外,对于交流电压和交流电流还要先将其变换为直流然后再用数字直流电压表头测量。 1.数字万用表的特性 与指针式万用表相比较,数字万用表有如下优良特性: ⑴高准确度和高分辨力

三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。 分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。 ⑵电压表具有高的输入阻抗 电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。 三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。 ⑶测量速率快 数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。 ⑷自动判别极性 指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。 ⑸全部测量实现数字式直读 指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。而数字万用表则没有这些问题,换挡时小数点自动显示,所有测量挡都可以直接读数,不用换算、倍乘。 ⑹自动调零 由于采用了自动调零电路,数字万用表校准好以后使用时无需调校,比指针式万用表方便许多。 ⑺抗过载能力强 数字万用表具备比较完善的保护电路,具有较强的抗过压过流的能力。 当然,数字万用表也有一些弱点,如: ⑴测量时不像指针式仪表那样能清楚直观地观察到指针偏转的过程,在观察充放电等过程时不够方便。不过有些新型数字表增加了液晶显示条,能模拟指针偏转,弥补这一不足。 ⑵数字万用表的量程转换开关通常与电路板是一体的,触点容量小,耐压不很高,有的机械强度不够高,寿命不够长,导致用旧以后换挡不可靠。 ⑶一般数字万用表的V/Ω挡公用一个表笔插孔,而A挡单独用一个插孔。使用时应注意根据被测量调换插孔,否则可能造成测量错误或仪表损坏。

大学物理设计性实验设计性实验报告

大学物理实验设计性实 验 --电位差计测金属丝电 阻率 姓名:马野 班级:土木0944 学号: 0905411418 指导教师:曹艳玲 实验地点:大学物理实验教学中心

【实验目的】 1. 了解电位差计的结构,正确使用电位差计; 2掌握电位差的工作原理—补偿原理。 3能用电位差计校准电表和电阻率的测定。 4学习简单电路的设计方法,培养独立工作的能力。 【实验原理】 利用电位差计,通过补偿原理,来测定未知电阻和已知电阻两端的 电压,利用分压原理,算出未知电阻的阻值,利用螺旋测微器和刻度尺测出电阻丝的长度和横截面积的直径,通过电阻率公式即可计算出电阻率。 补偿原理 在图1的电路中,设E 0是电动势可调的标准电源,Ex 是待测电池的电动势(或待测电压Ux ),它们的正负极相对并接,在回路串联上一只检流计G ,用来检测回路中有无电流通过。设E 0的内阻为r 0;Ex 的内阻为 rx 。根据欧姆定律,回路的总电流为: 电位差原理 如果我们调节E 0使E 0和Ex 相等,由(1)式可知,此时I =0,回路无电流通过,即检流计指针不发生偏转。此时称电路的电位达到补偿。在电位补 R R r r E E I g x x +++-= 00 图1 补偿原理 x

偿的情况下,若已知E 0的大小,就可确定Ex 的大小。这种测定电动势或电压的方法就叫做补偿法。 显然,用补偿法测定Ex ,必须要求E 0可调,而且E 0的最大值E 0max >Ex ,此外E 0还要在整个测量过程中保持稳定,又能准确读数。在电位差计中,E 0是用一个稳定性好的电池(E )加上精密电阻接成的分压器来代替的,如图2所示。 图2中,由电源E 、限流电阻R 1以及均匀电阻丝RAD 构成的回路叫做工作回路。由它提供稳定的工作电流I 0,并在电阻RAD 上产生均匀的电压降。改变B 、C 之间的距离,可以从中引出大小连续变化的电压来,起到了与E 0相似的作用。为了能够准确读出该电压的读数,使用一个标准电池进行校准。换接开关K 倒向“1”端,接入标准电池E S ,由E S 、限流电阻R 2、检流计G 和RBC 构成的回路称为校准回路。把B 、C 固定在适当的位置(如图中的位置),设RBC =R S ,调节R 1(即调节I 0),总可以使校准回路的电流为零,即R S 上的电压降与E S 之间的电位差为零,达到补偿。 图2 电位差计原理图 x

最新大学物理自主设计性实验

大学物理自主设计性 实验

大学物理自主设计性实验(FB716-Ⅱ型物理设计性(传感 器)实验装置) 实 验 指 导 书 杭州精科仪器有限公司

目录 第一、产品简介 (02) 第二、实验项目内容 (04) 实验一、应变片性能—单臂电桥 (04) 实验二、应变片:单臂、半桥、全桥比较 (06) 实验三、移相器实验 (08) 实验四、相敏检波器实验 (10) 实验五、应变片—交流全桥实验 (12) 实验六、交流全桥的应用—振幅测量 (14) 实验七、交流全桥的应用—电子秤 (14) 实验八、霍尔式传感的直流激励静态位移特性 (16)

实验九、霍尔式传感的应用——电子秤 (17) 实验十、霍尔片传感的交流激励静态位移特性 (17) 实验十一、霍尔式传感的应用研究—振幅测量 (18) 实验十二、差动变压器(互感式)的性能 (19) 实验十三、差动变压器(互感式)零点残余电压的补偿 (20) 实验十四、差动变压器(互感式)的标定 (21) 实验十五、差动变压器(互感式)的应用研究—振幅测量 (22) 实验十六、差动变压器(互感式)的应用—电子秤 (23) 实验十七、差动螺管式(自感式)传感器的静态位移性能 (24) 实验十八、差动螺管式(自感式)传感器的动态位移性能 (25) 实验十九、磁电式传感器的性能 (26)

实验二十、压电传感器的动态响应实验 (27) 实验二十一、压电传感器引线电容对电压放大器、电荷放大器的影响 (28) 实验二十二、差动面积式电容传感器的静态及动态特性 (29) 实验二十三、扩散硅压阻式压力传感实验 (30) 实验二十四、气敏传感器(MQ3)实验 (32) 实验二十五、湿敏电阻(RH)实验 (34) 实验二十六、热释电人体接近实验 (34) 实验二十七、光电传感器测转速实验 (36) 第三、结构安装图片和说明 (37) 第一、产品简介

DT830B数字万用表组装实验报告

课程综合实训报告 题目:DT830B数字万用表组装实验报告 年级: 09级 专业:应用电子技术 学号: 0901001320 学生姓名:肖榕 指导教师:吴燕红龚金伟 2010年12月28日 目录 一、实训目的 (2) 二、项目要求 (3) 三、组装过程 (3) (一)、DT-830B数字万用表 (3) 1.制作目的 (3)

2.制作要求 (4) 3.DT830B数字万用表的特点和工作原理 (4) 4.DT830B数字万用表的安装工艺 (5) (1)、印制板的装配 (5) (2)、液晶屏组件安装 (5) (3)、组装转换开关 (6) (4)、总装 (7) (5)、调试 (8) 四、心得体会 (9) DT830B数字万用表组装实验报告 0901001320 肖榕 一、实训目的 实训是通过具有一定功能和应用价值的一个具体产品的设计与制作,或者一个实际项目的开发与应用,使学生受到工程设计、制造工艺、调试检测和撰写技术报告的系统训练,启迪我们的创新思维,培养我们分析问题和解决问题的综合能力。实验实训环节是非常重要的,他是理论联系实际的主要形式,是实施“教学做合一”教学理念的重要手段,也是激发我们创新意识的有效载体,更是训练、培养学生技术应用能力和实际操作技能的根本途径。 通过实训: ·使我们巩固、加深和学习光电子技术的基础理论、基本知识和技能技能。 ·使我们能正确地选择和使用常用电工仪表、电子仪器及有关实验设计。 ·使我们掌握基本电量及电子元件的测试技术、实验方法和数据的分析处理。

·使我们能应用已学的理论知识设计简单的应用电路,合理选择元器件构成实用的电子小系统。 ·使我们受到基本的实验技能、系统的工程实践和撰写技术报告的初步训练。 ·培养我们严肃认真、实事求是、独立思考、踏实细致的科学作风,树立创新精神,养成良好的工作习惯。 二、项目要求: 1. 分析并读懂无线音乐门铃电路图。 2. 对照电原理图看懂接线电路图。 3. 认识电路图上的符号,并与实物相照。 4. 根据技术指标测试各元器件的主数。 5. 认真细心地安装焊接。 6. 按照技术要求进行调试。 三、组装过程 (一)、DT-830B数字万用表

数字万用表设计性实验 (3)

实验报告评分: 94 11 系07 级姓名高辰阳日期2008.9.23 No. PB07009001 (实验预习报告——包括实验目的和原理——及原始数据,见纸质材料) 实验题目:数字万用表设计性实验 实验器材:DM-Ⅰ数字万用表设计性实验仪,数字万用表 实验步骤:1、设计制作多量程直流数字电压表 (1)组装直流数字电压表:使用电路单元:三位半数字表头,直流电压校准,直流电压电流,分压器1。参考电压VREF输入端接直流电压校准电位器。 (2)校准电压表头:用一只成品数字万用表(称为标准表)置于直流电压20V量程进行监测,调节直流电压电流单元电路中电位器,使之输出一150--200mV左右的校准电压,然后将标准表表笔(输入)与组装表表笔并联,均置于直流电压200mV挡,测量直流电压电流单元输出电压,调整“直流电压校准”旋钮使表头读数与标准表读数一致(允许误差±0.5mV)。 (3)绘制组装表的电压校准曲线:调节直流电压电流单元电路中电位器,使之分别输出 20mV、40mV、60mV、80mV、100mV、120mV、140mV、160mV、180mV的直流电压。 将标准数字万用表表笔与组装表表笔(输入)并联,标准表、组装表均置于直流电压200mV 挡,同时测量直流电压电流单元输出电压,列表记录之。并绘出组装表的电压校准曲线 2.设计制作多量程交流数字电压表 (1)组装多量程交流数字电压表: 使用电路单元:三位半数字表头,直流电压校准交流电压校准(AC-DC变换器),分压器1,量程转换与测量输入。在上述200mV直流数字电压表头的基础上,增加交流-直流(AC-DC)变换器,制成交流数字电压表⑴并校准

大学物理综合设计性实验(完整)

综合设计性物理实验指导书黑龙江大学普通物理实验室

目录绪论 实验1 几何光学设计性实验 实验2 LED特性测量 实验3 超声多普勒效应的研究和应用 实验4 热辐射与红外扫描成像实验 实验5 多方案测量食盐密度 实验6 多种方法测量液体表面张力系数 实验7 用Multisim软件仿真电路 实验8 霍尔效应实验误差来源的分析与消除 实验9 自组惠斯通电桥单检流计条件下自身内阻测定实验10 用迈克尔逊干涉仪测透明介质折射率 实验11 光电效应和普朗克常数的测定液体电导率测量实验12 光电池输出特性研究实验 实验13 非接触法测量液体电导率

绪论 一.综合设计性实验的学习过程 完成一个综合设计性实验要经过以下三个过程: 1.选题及拟定实验方案 实验题目一般是由实验室提供,学生也可以自带题目,学生可根据自己的兴趣爱好自由选择题目。选定实验题目之后,学生首先要了解实验目的、任务及要求,查阅有关文献资料(资料来源主要有教材、学术期刊等),查阅途径有:到图书馆借阅、网络查询等。学生根据相关的文献资料,写出该题目的研究综述,拟定实验方案。在这个阶段,学生应在实验原理、测量方法、测量手段等方面要有所创新;检查实验方案中物理思想是否正确、方案是否合理、是否可行、同时要考虑实验室能否提供实验所需的仪器用具、同时还要考虑实验的安全性等,并与指导教师反复讨论,使其完善。实验方案应包括:实验原理、实验示意图、实验所用的仪器材料、实验操作步骤等。 2.实施实验方案、完成实验 学生根据拟定的实验方案,选择测量仪器、确定测量步骤、选择最佳的测量条件,并在实验过程中不断地完善。在这个阶段,学生要认真分析实验过程中出现的问题,积极解决困难,要于教师、同学进行交流与讨论。在这种学习的过程中,学生要学习用实验解决问题的方法,并且学会合作与交流,对实验或科研的一般过程有一个新的认识;其次要充分调动主动学习的积极性,善于思考问题,培养勤于创新的学习习惯,提高综合运用知识的能力。 3.分析实验结果、总结实验报告 实验结束需要分析总结的内容有:(1)对实验结果进行讨论,进行误差分析;(2)讨论总结实验过程中遇到的问题及解决的办法;(3)写出完整的实验报告(4)总结实验成功与失败的原因,经验教训、心得体会。实验结束后的总结非常重要,是对整个实验的一个重新认识过程,在这个过程中可以锻炼学生分析问题、归纳和总结问题的能力,同时也提高了文字表达能力。 在完成综合性、设计性实验的整个过程中处处渗透着学生是学习的主体,学生是积极主动地探究问题,这是一种利于提高学生解决问题的能力,提高学生的综合素质的教学过程。 在综合设计性实验教学过程中学生与教师是在平等的基础上进行探讨、讨论问题,不要产生对教师的依赖。有些问题对教师是已知的,但对学生是未知的,这时教师应积极诱导学生找到解决问题的方法、鼓励学生克服困难,并在引导的过程中帮助学生建立科学的思维方式和研究问题的方法。有些问题对教师也是一个未知的问题,这时教师应与学生共同思考共同解决问题。 二.实验报告书写要求 实验报告应包括:1实验目的;2实验仪器及用具;3实验原理;4实验步骤;5测量原始数据;6数据处理过程及实验结果;7分析、总结实验结果,讨论总结实验过程中遇到的问题及解决的办法,总结实验成功与失败的原因,经验教训、心得体会。 三.实验成绩评定办法 教师根据学生查阅文献、实验方案设计、实际操作、实验记录、实验报告总结等方面综合评定学生的成绩。 (1)查询资料、拟定实验方案:占成绩的20%。在这方面主要考察学生独立查找资料,并根据实验原理设计一个合理、可行的实验方案。 (2)实施实验方案、完成实验内容:占成绩的30%。考察学生独立动手能力,综合运用知识解决实际问题的能力。 (3)分析结果、总结报告:占成绩的20%。主要考察学生对数据处理方面的知识运用情况,分析问题的能力,语言表达能力。 (4)科学探究、创新意识方面:占成绩的20%。考察学生是否具有创新意识,善于发现问题并能解决问题。 (5)实验态度、合作精神:占成绩的10%。考察学生是否积极主动地做实验,是否具有科学、

马实验1数字万用表的应用实验报告

实验一数字万用表的应用 一、实验目的 1 理解数字万用表的工作原理; 2 熟悉并掌握数字万用表的主要功能和使用操作方法。 二、实验内容 1 用数字万用表检测元器件——电阻测量、电容测量、二极管检测、三极管检测; 2用数字万用表测量电压和电流——直流电压及电流的测量、交流电压及电流的测量。 三、实验仪器及器材 1 低频信号发生器1台 2 数字万用表1块 3 功率放大电路实验板1块 4 实验箱1台 5 4700Pf、IN4007、9018 各1个 四、实验要求 1 要求学生自己查阅有关数字万用表的功能和相关工作原理,了解数字万用表技术指标; 2 要求学生能适当了解一些科研过程,培养发现问题、分析问题和解决问题的能力; 3 要求学生独立操作每一步骤; 4 熟练掌握万用表的使用方法。 五、万用表功能介绍(以UT39E型为例) 1概述 UT39E型数字万用表是一种功能齐全、性能稳定、结构新颖、安全可靠、高精度的手持式四位半液晶显示小型数字万用表。它可以测量交、直流电压和交、直流电流,频率,电阻、电容、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有28档。 本万用表最大显示值为±19999,可自动显示“0”和极性,过载时显示“1”,负极性显示“-”,电池电压过低时,显示“”标志,短路检查用蜂鸣器。 2技术特性 A直流电压: 量程为200mV、2V、20V、200V和1000V五档,200mV档的准确度为±(读数的0.05%+3个字),2V、20V和200V档的准确度为±(读数的0.1%+3个字), 1000V档的准确度为±(读数的0.15%+5个字); 输入阻抗,所有直流档为10MΩ。 B交流电压 量程为2V、20V、200V和750V四档,2V、20V和200V档的准确度为±(读数的0.5%+10个字), 750V档的准确度为±(读数的0.8%+15个字); 输入阻抗,所有量程约为2MΩ; 频率范围为40Hz~400Hz; 显示:正弦波有效值(平均值响应)。 C 直流电流 量程为2mA、200mA和20A三档,2mA档的准确度为±(读数的0.5%+5个字),200mA 档的准确度为±(读数的0.8%+5个字), 20A档的准确度为±(读数的2%+10个字)。 D 交流电流 量程为2mA、200mA和20A三档,2mA档的准确度为±(读数的0.8%+10个字),200mA

大学物理实验设计性实验方案.123333333doc

大学物理实验设计性实验方案 实验题目:音叉声波的干涉 班级:物理学2011级(2)班 学号:2011433196 姓名:赵得芳 指导教师:粟琼 凯里学院物理与电子工程学院 2013 年5月

前言 用橡胶锤敲击音叉,声波将向空间的各个方向传播形成声场。由于音叉产生的声波在空间中将会发生干涉现象,因此在音叉的周围将会出现声音强弱的分布区域,并且将会呈现出一定的规律。音叉分为两股它的两股以同样的频率做开合运动。每一股都将带动它的内外两侧气体形成疏密波,因而音叉振动时可以认为每股两侧各有一个声源而且这两个声源是反相的。 按照声学的分析方法,应该区分近场区和远场区,对近场区音叉的每一股的内外两个侧面可以近似视为活塞式声源组成的声柱; 而对远场区,任何声源都可以近似视为球源由于近场区声源性质十分复杂本文以下将只讨论远场区。 一、实验目的 1.了解音叉声场的产生原理。 2.探究音叉声场的规律。 二、实验原理 音叉的叉股只能抽象为通常的面波源或特殊的平面波源和点波源,因此纵波干涉的规律是不可能直接应用于音叉干涉情况的! 那么音叉周围存在的声波干涉,也就应该能够通过这些波源振动发出声波的叠加来加以解释。 1.只考虑内侧面s 1,s 2 振动时声波的叠加情况。

图 1 当内侧面s1、s2振动发声时,远场区的综合波完全可以等效为一个由特殊点波源振动发出的波,如图1所示,其波动方程为: x s=A s(r,θ)cos[ω(t-r/v)+φ] 其中,A s(r,0),A s(r,π) 最小,A S(r, π/2)、A S(r,3π/2)最大。 2.只考虑外侧面S/1,S/2振动发声时声波的叠加情况。

设计性实验报告格式

大学物理设计性实验报告 实验项目名称:万用表设计与组装实验仪 姓名:李双阳学号:131409138 专业:数学与应用数学班级:1314091 指导教师:_王朝勇王新练 上课时间:2010 年12 月 6 日

一、实验设计方案 实验名称:万能表的设计与组装试验仪 实验时间:2010年12月6日 小组合作: 是 小组成员:孙超群 1. 实验目的:掌握数字万用表的工作原理、组成和特性。 2. 掌握数字万用表的校准和使用。 3. 掌握多量程数字万用表分压、分流电路计算和连接;学会设计制作、使用多量程数字万用表 2、实验地点及仪器、设备和材料: 万用表设计与组装实验仪、标准数字万用表。 3、实验思路(实验原理、数据处理方法及实验步骤等): 1. 直流电压测量电路 在数字电压表头前面加一级分压电路(分压电阻),可以扩展直流电压测量的量程。 数字万用表的直流电压档分压电路如图一所示,它能在不降低输入阻抗的情况下,达到准确的分压效果。 例如:其中200 V 档的分压比为: 001.010*********==+++++M K R R R R R R R 其余各档的分压比分别为: 档位 200mV 2V 20V 200V 2000V 分压比 1 0.1 0.01 0.001 0.0001 图一 实用分压器电路 实际设计时是根据各档的分压比和总电阻来确定各分压电阻的,如先确定 M R R R R R R 1054321=++++=总 再计算200V 档的电阻:K R R R 10001.021==+总,依次可计算出3R 、4R 、5R 等各档的分压电阻值。换量程时,多刀量程转换开关可以根据档位调整小数点的位置,使用者可方便地直读出测量结果。 尽管上述最高量程档的理论量程是2000V ,但通常的数字万用表出于耐压和安全考虑,规定最高电压量限为1000V 或750V 。

实验四虚拟电压表的设计和虚拟数字万用表的使用

. 《虚拟仪器技术》 实验报告 学生姓名 学号 日期

实验四、虚拟电压表的设计和虚拟数字万用表的使用 一、实验原理 1)一般电压表和万用表的工作原理和使用方法。 2)交流电各种电压值表示的概念以及相互转换关系。 3)子VI的创建方法。 二、实验目的 1)掌握虚拟电压表和数字万用表的设计和使用方法 2)进一步掌握LabVIEW的使用,特别是控件属性的操作以及子VI的使用。 三、实验内容及要求 1)利用LabVIEW 设计一简易虚拟电压表。 功能要求:具有普通电压表的基本功能,用户可选择直流测量和交流测量。对于直流电压只需显示电流值大小,对于交流电则需要显示该交流电的峰值、有效值、平均值和直流分量(若存在)。同时能够提供虚拟输入和实际输入两种测量信号,虚拟输入时能够显示信号波形。 其他要求:对虚拟电压表进行初始设置,即每次运行程序时电压表的初始界面一致,具体表现在开关处于关闭状态,波形图窗口清空,其他控件处于使能状态下。实际输入时禁用仿真参数设置控件,仿真输入时测量直流电压值时禁用信号幅度、频率、初始相位、占空比、信号类型等控件。 2)创建自行设计的虚拟电压表子VI。 3)使用NI ELVIS提供的数字万用表(DMM)模块完成电阻、电流和电压的测量,并就其中的电压测量部分与自行设计的虚拟电压表进行比较和分析。 四、实验步骤 1)参考程序流程图如图4.1所示;参考前面板设计如图4.2所示,该前面板除具有实验三函数发生器的参考前面板中所有的输入控件外,还添加了仿真与实际信号的切换按钮,交流/直流测量的切换按钮,开关按键,电源指示灯以及结果显示包括:直流分量,平均值,有效值和峰峰值(可以根据需求自行添加或删减);参考程序框图设计如图4.3所示。本次虚拟电压表的设计与实际使用的模拟/数字电压表是存在很大差别的,为便于实验做了大量简化。实验的主要目的是了解LabVIEW中对子函数的调用及使用方法,LabVIEW中有关属性节点、局部变量的使用和有关用户界面设计的一些基本方法,以及利用DAQ处理采集数据的方法(此部分需要结合实验二中相关内容)。程序框图图4.3看似复杂,其实大量的工作是用于完成空间的属性操作和有关程序初始化设置的问题,真正用于数据处理的模块其实只有三个(具体见实验提示4)。

大学物理实验(最终)

大学物理实验 一、万用表的使用 1、使用万用表欧姆档测电阻时,两只手握住笔的金属部分在与电阻两端接触进行测量时,对结果有无影响?为什么? 有影响,会使测量值偏小 因为人体本身有电阻,两只手握住笔的金属部分在与电阻两端接触相当于并联 2、用万用表测电阻时,通过电阻的电流是由什么电源供给的?万用表的红表笔和黑表笔哪一个电位高? 电源部电路提供(万用表的部电池供给的) 黑笔 3、用万用表欧姆档判别晶体二极管的管脚极性时,若两测量得到阻值都很小或都很大,说明了什么? 两测量得到阻值都很小,说明二极管已被击穿损坏 两测量得到阻值都很大,说明二极管部断路 4、能否用万用表检查一回路中电阻值?为什么? 不能,因为通电电路中测量电阻值会造成万用表的损坏。

【数据处理】(要求写出计算过程) 1.1R = Ω 2.2R = Ω

3.U = V U σ== V = =2 ?仪最小分度值 V U U == V U U U U =±=( ± )V 100%U U U E U = ?= % 二、用模拟法测绘静电场 1、出现下列情况时,所画的等势线和电力线有无变化?(电源电压提高1倍;导电媒质的导电率不变,但厚度不均匀;电极边缘与导电媒质接触不良;导电媒质导电率不均匀) 有,电势线距离变小,电力线彼此密集 无任何变化 无法测出电压,画不出等势线、电力线 等势线、电力线会变形失真 2、将电极之间电压正负接反,所作的等势线和电力线是否有变化? 等势线和电力线形状基本不变,电力线方向相反 3、此实验中,若以纯净水代替自来水,会有怎样的结果? 实验无法做,因为纯净水不导电 4、本实验除了用电压表法外还可以用检流计法(电桥法)来测量电势。试设计测量电路。两种方法各有何优缺点? 电压表法优点:简单 缺点:误差大

大学物理实验设计

大学物理实验设计 验证动生电动势大小的计算公式v BL E = 电动势是物理学中的一个重要的物理量,再有关于电磁学的科学研究和实验中有着重要的作用。组成回路的导体(整体或局部)在恒定磁场中运动,使回路中磁通量发生变化而产生的感应电动势。动生电动势来源于磁场对运动导体中带电粒子的洛伦兹力。由洛伦兹力公式 F=qv×B ,当导体中的带电粒子在恒定磁场B 中以速度v 运动时,F'=ev×B/e,单位正电荷所受洛伦兹力为v×B ,此即引起动生电动势的非静电力。根据电动势的定义,非静电力将电子从负极搬到正极做功为E=BvL,在运动的导体回路中的动生电动势为BvL 。本实验将验证其是否成立。 一、实验目的 1、测量物体加速度的原理,从而计算其速度。 2、学习计算长螺线管中的磁场大小。 3、学会用控制变量法来分析各个物理量之间的关系。 二、实验原理 由我们已学过的知识可知,动生电动势和3个物理量有关,即磁场B ,导体杆长度L 和导体杆速度v 。实验用图如下所示,围绕螺线管的导线通均匀稳定的电流I (图中未画出电源)。螺线管单位长度上的匝数为n ,本实验将螺线管看成是无限长螺线管,则磁场的大小可以用公式I B n 0μ=计算,改变电流的大小即可以求得磁场的大小。保持导体杆的速度大小和长度不变就可以

知道电动势和磁场的关系。同理,保持磁场的大小和导体杆的速 度不变,就可以知道电动势和导体杆长度的关系。 对于导体杆速度大小的测量,本实验先计算出导体杆的加速度,再求出导体杆的速度。将物体和导体杆看成整体,由于电压表的电阻很大,电压表示数即为电动势,故电路可看成断路,即可以忽略导体杆所受的安培力,因此可求出共同加速度为 m M mg ,(其中M 为导体杆质量,m 为重物质量)然后测出导体运动时间t ,就可以知道导体杆的瞬时速度 v ,从而可以分析导体杆动生电动势和导体杆速度的关系。 三、实验仪器 长螺线管,导线,开关,可变直流电源,导体杆(刻有长度标记),直流电压表,导轨(带有光滑定滑轮),重物,细绳。 四、实验内容

大学物理设计性实验报告

组装迈克耳逊干涉仪 一.摘要: 组装迈克耳逊干涉仪中最常见的一种,其发明者是美国物理学家阿尔伯特·亚伯拉罕·迈克耳孙。迈克耳孙干涉仪的原理是一束入射光分为两束后各自被对应的平面镜反射回来,这两束光从而能够发生干涉。干涉中两束光的不同光程可以通过调节干涉臂长度以及改变介质的折射率来实现,从而能够形成不同的干涉图样。 二.关键词: 迈克尔干涉仪干涉条纹激光 三.正文: 1.实验目的: (1) .了解迈克耳逊干涉仪的结构、原理。 (2).学习按一定原理自行组装仪器的技能,通过自行组装迈克耳逊干涉仪学习光路的调整。 (3).学习在组装的迈克耳逊干涉仪上开拓应用的技能。 (4).在组装的迈克耳逊干涉仪上进行压电晶片电致伸缩效应的观测。粗略测出压电晶片的压电系数。 2.实验原理: (1)迈克耳逊干涉仪:迈克耳干涉仪是用分振幅的方法,获得双干涉的仪器。其结构如图所示:

图实验室组装式迈克耳逊干涉仪 M1、M2(在以下各图当中可动反射镜为M2,固定反射镜为M1)为互相垂直的平面反射镜,每个反射镜的背面各有3个用来调节反射镜平面方位的调节螺钉.M2的下方有两个互相垂直的拉簧螺钉,可用来更细微地调节反射镜M2的平面方位。分束板内侧镀有反射膜,反射膜与M1、M2成45度角。补偿板可使两光束在玻璃中经过的光程完全相同。转动粗动手轮和微动手轮可使平面镜M1沿导轨方向前后移动,移动的距离可从标尺、读数窗和微动手轮读出 (2)干涉条纹的产生: 迈克尔逊干涉仪的原理见图1。光源S发出的光束射到分光板G1上,G1的后面镀有半透膜,光束在半透膜上反射和透射,被分成光强接近相等、并相互垂直的两束光。这两束光分别射向两平面镜M1和M2经它们反射后又汇聚于分光板1G,再射到光屏E处,从而得到清晰的干涉条纹。

相关文档
最新文档