小波变换基本原理

小波变换基本原理
小波变换基本原理

第五章 小波变换基本原理

问题

①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史

③小波变换与短时傅里叶变换比较

a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法

多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现

⑤小波的历史地位仍不如FT ,并不是万能的

5.1 连续小波变换

一.CWT 与时频分析 1.概念:?

+∞

--ψ=

dt a

b

t t S a

b a CWT )(

*)(1),( 2.小波变换与STFT 用于时频分析的区别

小波 构造?

1910 Harr 小波

80年代初兴起 Meyer —小波解析形式

80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现

90年代初 Daubechies 正交小波变换

90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题

1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原

2.母小波)(t ψ必须满足容许性条件 ∞<ψ=?

+∞

-ψdw w

w C 2

)(

①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式

??+∞∞-+∞

∞-ψ

-ψ=

dadb a

b t b a CWT a C t S )(),(11

)(2

3.CWT 高度冗余(与CSTFT 相似)

4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1

)(2

,22,,n t t a b t a

t n b a m m

n m b a m

m

-ψ=ψ?-ψ=

??==--ψ

dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞

---ψ=?=

5.小波变换具有时移不变性

)

,()()

,()(00b b a C W T b t S b a C W T t S -?-?

6.用小波重构信号 ∑∑

∑∑+∞-∞=+∞

-∞

=+∞-∞=+∞

-∞

=ψψ=

m n m n n

m n

m n

m n m t d

t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{}

n m ,?ψ

如何构建正交小波?

5.2 分段逼近

P

1. =)(t φ

逼近函数)2(2)(

n t n t -→-φφ

)2(2)()()(S ,1,0n t C t S n t C t n

n n

n -≈?-≈∑∑φφ 尺度2

1=

a ?一般式:∑-=-≈n

m m n

m m a n t C

t S 2)2(2

)(,2

尺度φ

)(,0,τS a m 逼近收敛于

→∞→ 0,,0→∞→→逼近a m

2.两尺度函数间关系 )12()2()(-+=t t t φφφ

①张成空间满足10V V ? ②两尺度空间差异在哪? 3.表征细节的小波变换的引入

很显然采样率越高,s T 越小, 逼近误差越小,采样率∞→无误差

发现

2

)

()()12(2

)

()()2(t t t t t t ?φφ?φφ-=

-+=

?

∑-≈?n

n n t C S )2(2)t (,1φ 12,2+=m m n

??

????-

-+-∑∑+m m m m m t C m t C )122()22(212,12,1φφ

??

????

---+-+-=∑∑+m m m m m t m t C m t m t C 2)()(2)()(21

2,12,1?φ?φ ∑

-?-+-?+→++n

n n m

n n n t C C n t C C n m )(2

)(2

1

2,12,11

2,12,1?φ

001W V V ⊕=? 4.推广

?

⊕⊕⊕⊕⊕=⊕⊕=⊕=?----0

12011011W W W W V W W V W V V m m

0121W W W V V ⊕⊕⊕=--∞- ↑⊕⊕⊕=---m W W W V m m m m ,123

,lim ,1012=↓↓⊕⊕⊕⊕⊕==↑↑∞---∞

→∞V m W W W W V V m m m 逼近精度逼近精度

?

??

?-)2(22n t m m ?包含信息量决定 →形成最简单的MRA

尺 度

2V

二.分段逼近与小波变换(哈尔小波) 1.信号的尺度逼近与小波表示 尺度逼近 ∑→-n

m n

m m t S n t C

)()2(2

,2

φ 小波表示 ∑∑+∞-∞=+∞

-∞

=-=m n m m

n

m n t d

t S )2(2)(2

,? Harr 小波

2.Harr 小波特性

①同一尺度平移正交性:?+∞

-'-='--)()(*)(n n dt n t n t δ??

②尺度,平移均正交 ?

+∞

-''''+''='-->=

)(,,)2(*)2(2

)(),(δδ????

????

???-?形成正交基)2(22n t m m ??∞

+∞

--=dt n t t S d m

m n m )2(*)(22,?影即为小波系数

信号在正交基函数上投 分段逼近的推广—MRA 一.多分辨率分析含义

①由内空间 ????+-110m m m V V V 组成

②若0V 空间尺度函数)(t ?平移正交:?+∞

∞-=-)()(*)(n n t t δφφ

则)(t ?为0V 空间尺度函数,任一函数S(t)可用表示)(t φ

③成立当且仅当1)2()(+∈∈m m V t S V t S ④{}00

=m m

m V V 交集为

⑤平方可积空间即为并集逼近m V )(lim 2R L V m m =∞

→ 问题:Harr 小波构成最简单MRA

?同尺度m 也满足

?

+∞

-''-=)()(*)(,,n n dt t t n m n m δ?? 作变量替换即可证明

?∑∞

+∞

--=-=dt

n t t S C n t C t S n n

n )(*)()

()(φφ

如何构造选其它具体的MRA 体系 二.正交小波函数的系统构造 1.两尺度方程引入 ①低通滤波器与尺度关系

Harr 小波满足 ???

???-+=-+=)12(21)2(212)12()2()(t t t t t φφφφφ

∑-=??

??

??=n

n t n h t

h 卷积关系满足)()(2)2(212

1

00φφ

②频域反映

令 )2(2)2

()()()()(00w t

w t w H n h φφφφ????

)()(00w w H h φφ?*?

)()()2()()(2)2(200w w H w w w H w φφφφ==?即

③含义

a. LPF n h H 为)(,1)0(00=

b .根据MRA ,∏∞

==Φ=Φ1

00)0()2()2()2()(k k w

H w w H w φ

c.1)0(=Φ 2.QMF 的引入

①)(t φ的尺度正交关系的频域反映

?

+∞

-=-)()(*)(n n t t δφφ

??--)()(w e n t j n w

φ

φ 频域也正交

?

∑+∞

-=n

jnw n dw e w w )()(*)(21

δφφπ

两边对n 求和 ?

∑+∞

-=?

n

inw dw e w w 1)(*)(21φφπ

利用泊松求和公式

∑∑+=-n

n

jnw

n w F e

n f )2()(π

(令)(2)(,1)(w w F n f πδ==则) 有 ∑∑+=-n

n

jnw

n w e

)2(2πδπ

∑∑-=?

n

n

jnw

n w e

)2(21πδπ

?∑+∞

-=-?n

dw n w w w 1)2()(*)(πδφφ

∑?

+∞

-=-n

dw n w w 1)2()(2

πδφ

即:∑∑=+?=-k

n

k w n w 1)2(1)2(2

2

πφπφ

② QMF 正交镜像滤波器组的导出 利用两尺度关系

∑=++k k w

H k w 1)2()2(2

0ππφ

对k 分奇偶讨论

1))12(2())12(2()22()22(2

020=+++++++?∑∑n

n n w

n w H n w n w H πφππφπ

1))12(2()2()22()

2

(2

2

2

2

0=+++++∑∑n

n

n w

w H n w w

H πφππφ 1)2

()2(2

02

0=++?πw

H w H

1)2(*)()(*)()()(00002

02

0=+++=++?πππw H w H w H w H w H w H ③含义

a.镜像为)()(,1)(1)0(0000w H w H H H ππ+=?=

b.功率互补条件—半带条件 )(*)()(00w H w H w P =

1

π

2

0)

(w H

3.正交小波滤波器满足的条件 ①频域关系

根据0)(),(=-k x x φ?可推出

0)(*)()(*)(1010=+++ππw H w H w H w H 上式的解为 )(*)(01π+-=-w H e w H jw ②时域关系 令 ∑-=??n

jnw e n h w H w H n h w H n h )()()()()

()(0011根据

)(*)1()1()()

(*)1()

1()(*)()1()(*)(001001

0000πππ+?--=+?--+?--?-?---w H e n h n h w H e

n h w H n h w H n h jw n jw

n n

③易证 QMF w H 也为)(1

④小波滤波器同样满足两尺度关系

∏∑∞==Φ=-=20111)

2

()2()2()2()()

2()(2)(k k k

w

H w H w w H w k t k h t ?φ?

4.尺度与小波滤波器频域关系的矩阵表示

??????=??????++??????++1001)()()()()(*)()()

(11

001010ππππw H w H w H w H W H w H w H w H 5.{

}{}解释的与MRA t t n m n m )()(,,φ? {}{}m n

m m

n

m V t W t →→)()(,,φ

? 正交补 112+-⊕⊕⊕=?m m m W W W L

?∑∑∞

+∞

-+∞

-∞=+∞

-∞===

dt

t t S d t d

t S n m n m m n m n n

m )(*)()

()(,,,,??

例:求Harr 小波的频域尺度函数和小波函数

??

??

??-=????

??=2121

212

1

10h h 解: 2)2()2()2()(11

210w w Sin e w Cos e w H w k k w j k w j k ?

===Φ∏∏∞

=∞=-+- ∑??=-==---n

w

j jw

jnw

w Sin e j e e n h w H )2

()1(21)()(211 4)4()()2

()2()(21w w S i n w w w H w =

?=Φ=?? 其频域幅值图如Fig 5–13所示

可发现其缺陷在于波纹太大 (原因—时域紧支撑) 例:理想LPF 也构成正交小波

?????

=其它

021)(0πw w H

解:[]()

)

1()

1(2)()(00n n Sin w H IFT n h --==ππ 小波函数Sinc Sinc →?)( 三.有关小波函数的一些概念 1.小波消失矩 (vanishing moment ) 满足 阶消失矩具有则称N t N k dt t t k m k )(1

,1,0,0)()(1??-===?+∞

∞-

①母小波)(t ?平滑度由消失矩决定,消失矩越大,则)(w ?频域衰减越快

)(t ?越平滑

②消失矩越大,小波振荡程度越高 2.小波正则度(regularity ) ①定义:小波)(t ?的连续可导次数

②正则度为n 的小波)(t ?具有(n +1)阶消失矩(必要条件) 四.问题讨论

1.根据MRA 理论

①小波和尺度函数均可由无穷频域次乘积得出,最终由)(0n h 决定 ②不关心其解析表达式

2.MRA 理论 离散小波的数值实现

5.4 小波变换与数字滤波器组

一.时间离散小波变换的实现途径 1.不能直接对定义式离散化实现

)2(2),()(),(2

,,n t t S t t S d m m

n m n m -==?? 令 )(采样周期→=T kT l 当m 较小时,n t m -2不为整数

2.第一代小波变换:根据MRA 理论,由数字滤波器组实现

3.第二代小波变换:Swelden 算法 由预测和更新滤波器进行交替提升实现 二.Mallat 算法 1.两个近似假设

①∑∑∑-=+

=n

n m k n

kn n

k n m n m t d

t C t S t S 1

,000)()()()(?φ似由某一尺度空间函数近

②n m C ,由采样数据直接近似 ?

+∞

--=dt n t t S C m m n m )2(*)(2

2

m m w jn

m jnw w e n t w e n t w t m

----??-??-??2)2()2()

()()()(2φφφφφφ

滤波器组

(Mallat 算法) (根据尺度函数和小波函数)

)2(2

)2(22

2

2

w e n t m w

jn m m

m m

-??--

-?-?φφ

?∞+∞---?=?dw e w w S C w n

j m m

n

m m 22

,)2(*)(221φπ

当分辨率m 足够高时 0)2(*→-w m φ

n

t m m m nw

j m

n m m m

t S n S dw

e w S C --=---∞

+∞

--==?

≈??

22

2

2

2

,)(2

)2(2

)(212

π

故可直接用样本数据取代 2.Mallat 算法 ①分解算法 a.推导

???

+∞--∞

+∞-∞

+∞

-----=-==-dt

n t t S dt

n t t S dt t t S C m m m m n m n m )2

22(*)(2)2(*)(2

)()(1

12

1*

,1,1φφφ

两尺度关系 ?

∑∞

+∞

--+-?i

m m dt i n t i h t S ))2(2(*)(2)(2

02

1

φ

∑∑∑?++∞

+∞

->=

i

i

n m i n m i

m m C i h t t S i h dt

i n t t S i h 2,02,02

0)(2)(),()(2))2(2(*2)()(φφ

∑-+='i i m C n i h i

n i ,0)2(22

同理

-=-i m n m C n i h d ,1,1)2(2

②重构算法

a.推导(由两尺度关系,正交关系,及奇偶讨论可导出)

???

??-+-=∑∑--i i i m i m n m d i n h C i n h C ,11,10,)2()2(2

b.滤波器组实现(上采样+滤波)

5.5

小波变换的应用

一.小波地位

小波曾火热一时,但小波不是万能的,在某些应用场合特别适用 小波无法求解微分方程纯数字和物理地位不如FT 二.信号检测方面应用 发动机声音中的撞击声检测

傅里叶分析:时间平均作用模糊了信号局部特性 Gabor 变换 :仍需长窗去包含振荡波形 小波变换 : 小波基可任意窄 三.降噪应用 1.适用场合

经典滤波:要求信号与噪声频率足够窄且不重合 高斯类噪声和脉冲噪声 → 宽带噪声 → 小波去噪 2.滤波效果

①经典滤波:丢失波形尖锐处信息

②小波降噪:基本保留波形尖锐处信息(与小波基选择有关) 3.滤波手段

①传统方法:Prony 参数建模法

②小波降噪

b.可证明其统计最优性

c.阈值比较(阈值T 可基于信号标准差得出) 硬阈值:比较n m d ,

软阈值:考虑n m d ,符号,及其其它系数相关性 4.小波基选择:小波基应与主体信号量相近

相似度越高,主小波系数越大,噪声系数则越小 NI 信号处理工具箱

分解

重构

小波变换程序

小波滤波器构造和消噪程序(2个) 1.重构 % mallet_wavelet.m % 此函数用于研究Mallet算法及滤波器设计 % 此函数仅用于消噪 a=pi/8; %角度赋初值 b=pi/8; %低通重构FIR滤波器h0(n)冲激响应赋值 h0=cos(a)*cos(b); h1=sin(a)*cos(b); h2=-sin(a)*sin(b); h3=cos(a)*sin(b); low_construct=[h0,h1,h2,h3]; L_fre=4; %滤波器长度 low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器 if(mod(i_high,2)==0); coefficient=-1; else coefficient=1; end high_construct(1,i_high)=low_decompose(1,i_high)*coefficient; end high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度 n=1:L_signal; %信号赋值 f=10; t=0.001; y=10*cos(2*pi*50*n*t).*exp(-20*n*t); figure(1); plot(y); title('原信号'); check1=sum(high_decompose); %h0(n)性质校验 check2=sum(low_decompose); check3=norm(high_decompose); check4=norm(low_decompose); l_fre=conv(y,low_decompose); %卷积 l_fre_down=dyaddown(l_fre); %抽取,得低频细节 h_fre=conv(y,high_decompose); h_fre_down=dyaddown(h_fre); %信号高频细节 figure(2);

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 1.2 傅立叶变换与小波变换的比较 小波分析是傅立叶分析思想方法的发展与延拓。它自产生以来,就一直与傅立叶分析

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

小波分解案列(程序)

简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。 虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。 小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。 对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。 通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可

以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。 实例 % By lyqmath % DLUT School of Mathematical Sciences 2008 % BLOG:https://www.360docs.net/doc/30294036.html,/lyqmath clc; clear all; close all; load leleccum; % 载入信号数据 s = leleccum; Len = length(s); [ca1, cd1] = dwt(s, 'db1'); % 采用db1小波基分解 a1 = upcoef('a', ca1, 'db1', 1, Len); % 从系数得到近似信号 d1 = upcoef('d', cd1, 'db1', 1, Len); % 从系数得到细节信号 s1 = a1+d1; % 重构信号 figure; subplot(2, 2, 1); plot(s); title('初始电源信号'); subplot(2, 2, 2); plot(ca1); title('一层小波分解的低频信息'); subplot(2, 2, 3); plot(cd1); title('一层小波分解的高频信息'); subplot(2, 2, 4); plot(s1, 'r-'); title('一层小波分解的重构信号'); 结果 总结 小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波变换算法应用

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f是平方可积分函数,即)( f ,则该 t (2R ) L

连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生 成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则 )(a t ψ越宽,该函数的时间分辨率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中 的带通函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。 三、小波变换需求分析

小波变换的理解

由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受. 2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波变换的本质

为了应付老板的的一个任务而收集了几篇相关文章! 我是搞电力系统故障波形分析的,正上研二,导师定的方向是用小波变换进行信号的消噪及波形奇异点检测.出于研究方向的需要从去年年底开始接触小波.毕竟是工科出身,学起小波来觉得难度很大.不夸张地说常有学不下去的感觉.硬着头皮看了一段时间,终于觉得有点眉目,现将我从信号奇异性方面的理解写出来,请各位同仁批评指正,并希望能对刚接触小波的朋友有点帮助! 1学习小波变换所需的基础知识 由于小波变换的知识涵盖了调和分析,实变函数论,泛函分析及矩阵论,所以没有一定的数学基础很难学好小波变换.但是对于我们工科学生来说,重要的是能利用这门知识来分析所遇到的问题.所以个人认为并不需要去详细学习调和分析,实变函数论,泛函分析及矩阵论等数学知识.最重要是的理解小波变换的思想!从这个意义上说付立叶变换这一关必需得过!因为小波变换的基础知识在付立叶变换中均有提及,我觉得这也就是很多小波变换的书都将付立叶分析作为其重要内容的原因.所以我认为学习小波应从<数字信号处理>中的付立叶分析开始.当然也可从<信号与系统>这本书开始.然后再看杨福生老师的小波变换书.个人觉得他的书最能为工科学生所接受.2信号的分解 付立叶级数将周期信号分解为了一个个倍频分量的叠加,基函数是正交的,也就是通常所说的标准正交基.通过分解我们就能将特定的频率成分提取出来而实现特定的各种需要,如滤波,消噪等.付立叶变

换则将倍频谱转换为了连续谱,其意义差不多.小波变换也是一种信号分解思想:只不过它是将信号分解为一个个频带信号的叠加.其中的低频部分作为信号的近似,高频部分作为信号的细节.所谓的细节部分就是一组组小波分量的叠加,也就是常说的小波级数. 3小波变换的时频分析思想 付立叶变换将信号从时域变换到了频域,从整体上看待信号所包含的频率成分.对于某个局部时间点或时间段上信号的频谱分析就无能为力了,对于我们从事信号的奇异性检测的人来说,付立叶变换就失去了意义(包括加窗付立叶变换).因为我们要找的是信号的奇异点(时域方面)和奇异点处所包含的频带(频域方面)也就是说需要一种时频分析方法.当然能有纯时域的分析方法更好!(据说数学形态学能达到这种效果).小波变换之所以可以检测信号的奇异点,正在于它的"小".因为用小的波去近似奇异信号要比正弦波要好的多. 4小波变换的实质 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的.它要求的就是一个个小波分量的系数也就是"权".其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地"量"信号,也就是去比较信号与小波的相似程度.信号局部与小波越相似,则小波变换的值越大,否则越小!当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据.如此这般循环,最后得出的就是信号的小波分解(小波级数).当然这只是一种粗略的解释.

小波变换

小波变换理论及应用 ABSTRACT:小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。 第一章小波变换理论 这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。 1.1.从傅里叶变换到小波变换 一、傅里叶变换 在信号处理中重要方法之一是傅里叶变换(Fourier Transform),它架起了时间域和频率域之间的桥梁。图1.1给出了傅里叶分析的示意图。 图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω): ?∞∞-- =dt e t x X t jω ω) ( ) ( (1) X(ω)的傅里叶反变换x(t): ?∞∞- =ω ω π ωd e X t x t j ) ( 2 1 ) ( (2) 对很多信号来说,傅里叶分析非常有用。因为它能给出信号中包含的各种频率成分。但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。这些特性是信号的重要部分。因此傅里叶变换不适于分析处理这类信号。

二、短时傅里叶变换 为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。图1.2给出了短时傅里叶变换的示意图。 图1.2短时傅里叶变换 盖博变换把一个时间信号变换为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率范围的一定信息。这些信息的精度依赖于时间窗的大小。盖博变换的缺点是对所有的频率成分,所取的时间窗的大小都相同。然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 三、小波变换 小波变换提出了变化的时间窗。当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗。图1.3给出了时间域信号、傅 里叶变换、短时傅里叶变换和小波变换对比的示意图。 时间域频率域 短时傅里叶变换小波变换 图1.3 小波变换示意图 1.2.连续小波变换 什么是小波?小波是一个衰减的波形,它在有限的区域里存在(不为零), 且其均值为零。小波变换采用改变时间-频率窗口形状的方法,很好的解决了时

连续小波变换程序

实验一:连续小波变换 实验目的: 通过编程更好地理解连续小波变换,从而对连续小波变换增加了理性和感性的认识,并能提高编程能力!通过连续小波变换了解信号中的频率分量。 实验原理: 一维连续小波变换公式: ()1*2(,)f t b W a b a f t dt a ψ+∞ - -∞ -??= ??? ? 当小波函数()t ψ为实函数时 (,)f W a b ()12(,)f t b W a b a f t dt a ψ+∞ --∞ -??== ??? ? 在给定尺度下,对待分析信号()f t 和小波函数()t ψ按照s t nT =,s b nT =进行采样,其中s T 为采样间隔,则小波变换可近似如下: ()12 ()(,)s f s s n n k T W a b T a f nT a ψ- ?? -= ??? ∑ =()1 2 n n k T a f n a ψ- -??? ???∑ 对给定的a 值,依次求出不同a 值下的一组小波系数,由于数据采样间隔?t 为0.03 (常量),所以可以把这个系数忽略,并通过公式下面对小波变换矩阵进行归一化处 理。 (,)(,)min *255max min m n wfab m n I -= - 、

实验结果:

程序附录: (1)墨西哥小波函数 function Y=mexh0(x) if abs(x)<=5 Y=((pi^(-1/4))*(2/sqrt(3)))*(1-x*x)*exp(-(x*x)/2); else Y=0; end; (2)实验程序 load('data.mat'); n=length(dat); amax=70; % 尺度a的长度 a=zeros(1,amax); wfab=zeros(amax,n); %小波系数矩阵 mexhab=zeros(1,n); % ,某尺度下小波系数 for s=1:amax %s 表示尺度 for k=1:n mexhab(k)=mexh0(k/s); end for t=1:n % t 表示位移 wfab(s,t)=(sum(mexhab.*dat))/sqrt(s); %将积分用求和代替 mexhab=[mexh0(-1*t/s),mexhab(1:n-1)]; %mexhab 修改第一项并右移 end end wfab_abs=abs(wfab); for index=1:amax max_coef=max(wfab_abs(index,:)); min_coef=min(wfab_abs(index,:)); ext=max_coef-min_coef; wfab_abs(index,:)=255*(wfab_abs(index,:)-min_coef)/ext; end figure(1); plot(dat); title('原始数据图'); xlabel('时间') ylabel('幅度') figure(2); image(wfab_abs); colormap(pink(255)); title('连续小波变换系数图'); xlabel('时间') ylabel('尺度')

相关文档
最新文档