吉林大学传热学基础第2章 导热基本原理

吉林大学传热学基础第2章 导热基本原理
吉林大学传热学基础第2章 导热基本原理

计算传热学中国石油大学(华东)第四章大作业

取步长δx=0.02。已知x=0,Φ=0;x=1,Φ=1.令k=ρu/Γ计算结果图表: 程序及数据结果: 追赶法: #include #include #include #define N 49 void tdma(float a[],float b[],float c[],float f[],float x[]); void main(void) { int i; float x[49]; float k; printf("请输入k值:\n",k); scanf("%f",&k); static float a[N],b[N],c[N],f[N]; a[0]=0; a[48]=2+0.02*k; b[0]=4; b[48]=4; c[0]=2-0.02*k; c[48]=0; f[0]=0; f[48]=2-0.02*k; for(i=1;i

a[i]=2+0.02*k; b[i]=4; c[i]=2-0.02*k; f[i]=0; } tdma(a,b,c,f,x); for(i=0;i=0;i--) x[i]=P[i]*x[i+1]+Q[i]; return; } 结果: (1)k=-5 请输入k值: -5 x[0]=0.095880 x[1]=0.182628 x[2]=0.261114 x[3]=0.332126 x[4]=0.396375 x[5]=0.454504 x[6]=0.507098 x[7]=0.554683 x[8]=0.597736 x[9]=0.636688 x[10]=0.671931 x[11]=0.703818 x[12]=0.732667 x[13]=0.758770

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分 23278.87769.9 T T T === 22d T T=0dx - 有 i+1i 12 2+T 0i i T T T x ---=? 将2点,3点带入 32122 2+T 0T T T x --=? 即321 209T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4 321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 431 22293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -=

544431011363 T T T T T ----= 即 34599 02828T T T -+= 对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()22 20.64806911x x x x dT e e q e e dx e e λ -====- +=-=++ (2)由A 的一阶截差公式 21 0.247730.743113 x T T dT q dx λ =-=-= =?= (3)由B 的一阶截差公式 0 0.21640 0.649213 x dT q dx λ =-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-?? ==?= ? ?? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图

第二章 传热习题答案

【2-1】一食品冷藏室由内层为19 mm 厚的松木,中层为软木层,外层为51 mm 厚的混凝土所组成。内壁面温度为-17.8 ℃,混凝土外壁面温度为29.4 ℃。松木、软木和混凝土的平均热导率分别为, 3, W/(m ·K),要求该冷藏室的热损失为15W/m 2。求所需软木的厚度及松木和软木接触面处的温度。 解:三层平壁的导热。 1)所需软木的厚度2b 由 ∑=-=3141i i i b T T q λ 得 151 .0019.00433.0762.0051.08.174.29152+++=b 解得: m b 128.02= 2)松木和软木接触面处的温度3T 由 151 .0019 .08.17153+==T q 解得:9.153-=T ℃ 解题要点:多层平壁热传导的应用。 【2-2】为减少热损失,在外径为150 mm 的饱和蒸汽管道外加有保温层。已知保温材料的热导率λ=+ 198 T(式中T 为℃),蒸汽管外壁温度为180 ℃,要求保温层外壁温度不超过50 ℃,每米管道由于热损失而造成蒸汽冷凝的量控制在1×10-4 kg/(m ·s)以下,问保温层厚度应为多少(计算时可假定蒸汽在180 ℃下冷凝)。 解:保温层平均热导率为: )./(126.02 501801098.1103.04K m W =+??+=-λ 由于本题已知的是蒸汽管道外壁面温度,即保温层内壁面温度,故为一层导热。

由 )()(21 221r r Ln T T L Q -=λπ 得: )()(21 221r r Ln T T L Q -=πλ (1) 式中:m W L Wr L Q /9.2011 103.20191013 4=???==- 将其及其它已知数据代入式(1)得: )075 .0()50180(126.029.2012r Ln -??=π 解得:m r 125.02= mm m 5005.0075.0125.0==-=∴δ壁厚 解题要点:单层圆筒壁热传导的应用。 【2-8】烤炉内在烤一块面包。已知炉壁温度为175 ℃,面包表面的黑度为,表面温度为100 ℃,表面积为 5 m 2,炉壁表面积远远大于面包表面积。求烤炉向这块面包辐射 传递的热量。 解:两物体构成封闭空间,且21S S <<,由下式计算辐射传热量: W T T S Q 0.65)448373(0645.085.01067.5) (448424111012-=-????=-=-εσ 负号表示炉壁向面包传递热量。 解题要点:辐射传热的应用,两个灰体构成的封闭空间。 【2-10】在逆流换热器中,用初温为20 ℃的水将1.25 kg/s 的液体[比热容为 kJ/(kg ·K)、密度为850 kg/m 3 ]由80 ℃冷却到30 ℃。换热器的列管直径为Φ25 mm ×2.5 mm,水走管内。水侧和液体侧的对流传热系数分别为850 W/(m 2·K )和1 700W/(m 2·K ),污垢热阻可忽略。若水的出口温度不能高于50 ℃,求水的流量和换热器的传热面积。

数值传热学部分习题答案

习题4-2 一维稳态导热问题的控制方程: 022=+??S x T λ 依据本题给定条件,对节点2 节点3采用第三类边界条件具有二阶精度的差分格式,最后得到各节点的离散方程: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 75432=+-T T 求解结果: 852=T ,403=T 对整个控制容积作能量平衡,有: 02150)4020(15)(3=?--?=?+-=?+x S T T h x S q f f B 即:计算区域总体守恒要求满足 习题4-5 在4-2习题中,如果25 .03)(10f T T h -?=,则各节点离散方程如下: 节点1: 1001=T 节点2: 1505105321-=+-T T T 节点3: 25.03325.032)20(4015])20(21[-?+=-?++-T T T T 对于节点3中的相关项作局部线性化处理,然后迭代计算; 求解结果: 818.822=T ,635.353=T (迭代精度为10-4) 迭代计算的Matlab 程序如下: x=30; x1=20; while abs(x1-x)>0.0001 a=[1 0 0;5 -10 5;0 -1 1+2*(x-20)^(0.25)]; b=[100;-150; 15+40*(x-20)^(0.25)]; t=a^(-1)*b; x1=x; x=t(3,1);

end tcal=t 习题4-12的Matlab程序 %代数方程形式A i T i=C i T i+1+B i T i-1+D i mdim=10;%计算的节点数 x=linspace(1,3,mdim);%生成A、C、B、T数据的基数; A=cos(x);%TDMA的主对角元素 B=sin(x);%TDMA的下对角线元素 C=cos(x)+exp(x); %TDMA的上对角线元素 T=exp(x).*cos(x); %温度数据 %由A、B、C构成TDMA coematrix=eye(mdim,mdim); for n=1:mdim coematrix(n,n)=A(1,n); if n>=2 coematrix(n,n-1)=-1*B(1,n); end if n

传热学讲义设计—第二章

第二章 稳态导热 本章重点:具备利用导热微分方程式建立不同边界条件下稳态导热问题的数学模型的能力 第一节 通过平壁的导热 1-1 第一类边界条件 研究的问题: (1)几何条件:设有一单层平壁,厚度为δ,其宽度、高度远大于其厚度(宽度、高度是厚度的10倍以上)。这时可认为沿高度与宽度两个方向的温度变化率很小,温度只沿厚度方向发生变化。(属一维导热问题) (2)物理条件:无内热源,材料的导热系数λ为常数。 (3) 边界条件:假设平壁两侧表面分别保持均匀稳定的温度 1w t 和2w t ,21w w t t >。(为第一类边界条件,同时说明过程是稳态的) 求:平壁的温度分布及通过平壁的热流密度值。 方法1 导热微分方程: 采用直角坐标系,这是一个常物性、无内热源、一维稳态导热问题(温度只在 x 方向变化)。 导热微分方程式为:022=dx t d (2-1) 边界条件为:10w x t t == , 2w x t t ==δ (2-2) 对式(2-1)连续积分两次,得其通解: 21c x c t += (2-3) 这里1c 、2c 为常数,由边界条件确定 ,解得:?? ???=-= 11221w w w t c t t c δ (2-4) 最后得单层平壁内的温度分布为: x t t t t w w w δ 2 11-- = (2-5) 由于δ 、1w t 、2w t 均为定值。所以温度分布成线性关系,即温度分布曲线的斜率是常数(温度梯度), const t t dx dt w w =-=δ 1 2 (2-6)

热流密度为:)(21w w t t dx dt q -=-=δ λ λ 2/m W (2-7) 若表面积为 A, 在此条件下 , 通过平壁的导热热流量则为 : t A qA ?==Φδ λ W (2-8) 考虑导热系数随温度变化的情况: 对于导热系数随温度线形变化,即)1(0bt +=λλ,此时导热微分方程为:0=?? ? ??dx dt dx d λ 解这个方程,最后得: ?? ? ???++-+?? ? ?? +=+)(211212121121 122w w w w w w t t b x t t bt t bt t δ 或 x t t t t b b t b t w w w w w δ 12211)(2112 2-??????+++??? ??+=??? ??+ 说明:壁内温度不再是直线规律,而是按曲线变化。 对上式求导得:??? ?????+??? ??-=)1/(222bt dx dt b dx t d 因为 01>+bt ,02 >?? ? ??dx dt 所以 0>b ? 02 2dx t d ? 曲线是向上凹的。 通过平壁的导热热流密度为: () ?? ????++-=+-=-=2121211)1(00w w w w t t b t t dx dt bt dx dt q λδλλ 式中,()m w w t t b λλλλ=+=?? ????++22112 1 021 则 )(2 1 w w m t t q -= δ λ 从上式可以看出,如果以平壁的平均温度2 2 1w w m t t t +=来计算导热系数,则平壁的热流密 度仍可用导热系数为常数时的热流密度计算式:

数值传热学陶文铨第四章作业(完整资料).doc

【最新整理,下载后即可编辑】 2T 3T 4T 4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分123278.8 7769.9T T T === 22 d T T=0dx - 有 i+1i 1 2 2+T 0i i T T T x ---=? 将2点,3点带入 321222+T 0T T T x --=? 即3 21 209T T -+= 432322+T 0T T T x --=?432132 2+T 0T T T x --=? 即4321 209 T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 431 3 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++ 所以 434111. 1. 36311 T T T =++ 即 43122293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ???? --?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239 028T T -= 544431011363 T T T T T ----= 即 34599 02828T T T -+=

对3点采用中心差分有 432 32 2+T 013T T T --=?? ??? 即 23499 01919 T T T -+= 对于点5 由x=1 1dT dx =,得 541 6 T T -= (1)精确解求左端点的热流密度 由 ()2 1 x x e T e e e -= -+ 所以有 ()2200 20.64806911x x x x dT e e q e e dx e e λ -====-+=-=++ (2)由A 的一阶截差公式 21 0.247730.743113x T T dT q dx λ=-=-= =?= (3)由B 的一阶截差公式 0.21640 0.649213 x dT q dx λ=-=-= = (4)由区域离散方法B 中的一阶截差公式: 210.108460.6504()B B T T dT dx x δ-??==?= ??? 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡 法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图 3 由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为 22d T +S=0dx λ x=0, T 0=75℃ x=0.1 dT =h(T-T )dx f λ- 1点 ,2点采用中心差分有

传热学第二章答案

第二章 3.导热系数为常数的无内热源的平壁稳态导热过程,试问,若平壁两侧给定边界条件Tw1和Tw2,为什么这一导热过程的温度分布与平壁的材料无关?相同的平壁厚度,不同的平壁材料,仍给定第一类边界条件,热流密度是否相同? (1)温度分布为 12 1w w w t t t t x δ -=- (设12w w t t >) 其与平壁的材料无关的根本原因在 coust λ=(即常物性假设) ,否则t 与平壁的材料有关 (2)由 dt q dx λ =- 知,q 与平壁的材料即物性有关 6.同上题,若已知边界条件为第三类,即已知Tf1,h1,Tf2,h2.试倒通过空心球壁热量的计算公式和球壁的传热热阻。 9.某教室有一层厚度为240mm 的砖层和一厚度为20mm 的灰泥构层。现安装空调设备,并在内表面加贴一层硬泡某塑料,是导入室内的热量比原来少了80%。已知砖的导热系数λ=0.7W/(m*k),灰泥为λ=0.58W/(m*k),硬泡某塑料的导热系数为λ=0.06W/(m*k),试求出硬泡某塑料厚度。 已 知 : 12240,20mm mm δδ==, 120.7/(),0.58/()W m k W m k λλ=?=? 3210.06/(),0.2W m k q q λ=?= 求:3δ 解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变, 且12w w t t > 由题意知:12 112 12 w w t t q δδλλ-= + 12 23 12123 w w t t q δδδλλλ-= ++ 再由: 210.2q q =,有 12 12 3 12 1212 123 0.2 w w w w t t t t δδδδδλλλλλ--=+++ 22 131 3 1 2 tw 1 q tw 2 1 1 λ1 2 λ2 tw 1 tw 2 q 1 1λ1 2λ 2 3λ 3

最新传热学杨世铭第四版第二章答案

传热学杨世铭第四版第二章答案

第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为:n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。 2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何 获得该点的 热密度矢量? 答:k q j q i q q z y x ?+?+?=,其中k j i ,,分别为三个方向的单位矢量量。 3 试说明得出导热微分方程所依据的基本定律。 答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。 4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件:)()(02τλτf x t w =??->时 ③ 第三类边界条件:)()(f w w t t h x t -=??-λ 5 试说明串联热阻叠加原则的内容及其使用条件。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。 7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。 6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。 8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗? 答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。 9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。

数值传热学第五章作业

5-2 解:根据课本p158式(5—1a )得一维稳态无源项的对流-扩散方程如下所示: 2 2x x u ??Γ =??φ φρ (取常物性) 边界条件如下: L L x x φφφφ====,; ,00 由(5—2)得方程的精确解为: 1 1)/(00--=--?Pe L x Pe L e e φφφφ Γ=/uL Pe ρ 将L 分成15等份,有:?=P Pe 15 对于中心差分、一阶迎风、混合格式和QUICK 格式分别分析如下: 1) (CD)中心差分 节点离散方程: 2 )5.01()5.01(1 1-?+?++-=i i i P P φφφ 10,2 =i 2) 一阶迎风 节点离散方程: ? -?++++=P P i i i 2)1(1 1φφφ 10,2 =i 3) 混合格式 当1=?P 时,节点离散方程:2 )5.01()5.01(1 1-?+?++-= i i i P P φφφ ,10,2 =i 当10,5=?P 时,节点离散方程: 1-=i i φφ , 10,2 =i 4) QUICK 格式,节点离散方程: ??? ???--++++++= +-?? -??+?)336(8122121 1111i i i i i i P P P P P φφφφφφ, 2=i ?? ????---++++++= +--? ? -??+?)35(8122121 12111i i i i i i i P P P P P φφφφφφφ, 2≠i

用matlab 编程如下:(本程序在x/L=0-1范围内取16个节点进行离散计算,假设y(1)= 0φ=0,y(16)=L φ=1,程序中Pa 为?P ,x 为题中所提的x/L 。由于本程序假设 y(1)=0φ=0,y(16)=L φ=1,所以 y y y y y y L =--=--=--0 10 )1()16()1(00φφφφ) Pa=input('请输入Pa=') x=0:1/15:1 Pe=15*Pa; y=(exp(Pe*x)-1)/(exp(Pe)-1) plot(x,y,'-*k') %精确解 hold on y(1)=0,y(16)=1; for i=2:15 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; end plot(x,y(1:16),'-or') %中心差分 hold on for i=2:15 y(i)=((1+Pa)*y(i-1)+y(i+1))/(2+Pa); end plot(x,y(1:16),'-.>g') %一阶迎风 hold on for i=2:15 if Pa==1 y(i)=((1+0.5*Pa)*y(i-1)+(1-0.5*Pa)*y(i+1))/2; else y(i)=y(i-1) end end plot(x,y(1:16),'-+y') %混合格式 hold on for i=2:15 if i==2 y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(6*y(i)-3*y(i-1)-3*y(i+1))/8 else y(i)=y(i+1)/(2+Pa)+(1+Pa)*y(i-1)/(2+Pa)+(Pa/(2+Pa))*(5*y(i)-y(i-1)-y(i-2)-3*y(i+1))/8 end end plot(x, y(1:16),'-

传热学第二章答案

第二章 思考题 1 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。 答:傅立叶定律的一般形式为: n x t gradt q ??-=λλ=-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流 密度矢量。 2 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量? 答:k q j q i q q z y x ?+?+?=,其中k j i ,,分别为三个方向的单位矢量量。 3 试说明得出导热微分方程所依据的基本定律。 答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。 4 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。 答:① 第一类边界条件:)(01ττf t w =>时, ② 第二类边界条件: )()( 02τλτf x t w =??->时 ③ 第三类边界条件: )()( f w w t t h x t -=??-λ 5 试说明串联热阻叠加原则的内容及其使用条件。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。使用条件是对于各个传热环节的传热面积必须相等。 7.通过圆筒壁的导热量仅与内、外半径之比有关而与半径的绝对值无关,而通过球壳的导热量计算式却与半径的绝对值有关,怎样理解? 答:因为通过圆筒壁的导热热阻仅和圆筒壁的内外半径比值有关,而通过球壳的导热热阻却和球壳的绝对直径有关,所以绝对半径不同时,导热量不一样。 6 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理? 答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。 8 扩展表面中的导热问题可以按一维问题来处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题来处理,你同意这种观点吗? 答:只要满足等截面的直肋,就可按一维问题来处理。不同意,因为当扩展表面的截面不均时,不同截面上的热流密度不均匀,不可看作一维问题。 9 肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为,随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热数流量反而会下降。试分析这一观点的正确性。 答:错误,因为当肋片高度达到一定值时,通过该处截面的热流密度为零。通过肋片的热流已达到最大值,不会因为高度的增加而发生变化。 10 在式(2-57)所给出的分析解中,不出现导热物体的导热系数,请你提供理论依据。 答:由于式(2-57)所描述的问题为稳态导热,且物体的导热系数沿x 方向和y 方向的数值相等并为常数。 11 有人对二维矩形物体中的稳态无内热源常物性的导热问题进行了数值计算。矩形的一个边绝热,其余三个边均与温度为f t 的流体发生对流换热。你能预测他所得的温度场的解吗? 答:能,因为在一边绝热其余三边为相同边界条件时,矩形物体内部的温度分布应为关于绝热边的中心线对称分布。 习题

传热学_杨茉_部分习题与解答

第一章: 1-1 对于附图所示的两种水平夹层,试分析冷、热表面 间热量交换的方式有何不同?如果要通过实验来测定夹层中流体的导热系数,应采用哪一种布置? 解:(a )中热量交换的方式主要有热传导和热辐射。 (b )热量交换的方式主要有热传导,自然对流和热辐射。 所以如果要通过实验来测定夹层中流体的导热系数,应采用( a )布置。 1-2 一炉子的炉墙厚13cm ,总面积为20m 2 ,平均导热系数为 1.04w/m 〃k ,内外壁温分别是520 ℃及50 ℃。试计算通过炉墙的热损失。如果所燃用的煤的发热量是 2.09 ×10 4 kJ/kg ,问每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-3 在一次测定空气横向流过单根圆管的对流换热实验中,得到下列数据:管壁平均温度t w = 69 ℃,空气温度t f = 20 ℃,管子外径d= 14mm ,加热段长80mm ,输入加热段的功率8.5w ,如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式

1-4宇宙空间可近似的看作0K 的真空空间。一航天器在太空中飞行,其外表面平均温度为250K ,表面发射率为0.7 ,试计算航天器单位表面上的换热量? 解:航天器单位表面上的换热量 1-5附图所示的空腔由两个平行黑体表面组成,孔腔内抽成真空,且空腔的厚度远小于其高度与宽度。其余已知条件如图。表面 2 是厚δ= 0.1m 的平板的一侧面,其另一侧表面 3 被高温流体加热,平板的平均导热系数λ=17.5w/m ? K ,试问在稳态工况下表面3 的t w3 温度为多少? 解: 表面1 到表面2 的辐射换热量= 表面2 到表面3 的导热量 第二章:

热物理过程的数值模拟-计算传热学1

热物理过程的数值模拟Numerical Simulation of Thermophysics Process 讲稿 主讲:李隆键

第一章概论 1.1流动与传热过程的予测方法及特点 流动、传热、燃烧问题是热工类各专业和机械类动力机械专业所研究和解决的主要问题之一,燃烧问题实际上是有化学反应的流动与传热问题,推而广之,在所有热物理过程中,几乎都涉及到流动、传热问题。 预测的重要性: ①在规定设计参数的相应的结构下,热物理过程是否满足要求,达到预定的指 标?要预测; ②优化设计,不同方案的比较,要预测; ③减少设计、生产、再设计和再生产的费用; ④减少设计更改; ⑤减少试验和测量次数。 问题的核心:速度场、温度场(传热量)、浓度场等。 一、热物理问题的予测方法:理论分析法、实验测定、数值模拟 1、理论分析 以数学分析为基础,求解描述热物理过程的定解问题,获得函数形式的解,表示求解区域内物理量连续分布的场(速度场、温度场、浓度场……)。 控制方程+单值条件(数学模型)→理论解(分析解,解析解) 根据解的准确程度,又可再分为: (1)精确分析解(严格解) 特点:函数形式的解;它在求解区域精确地满足定解问题。 具体解法:直接积分法、分离变量法、积分变换法、热源法、映射法。 (2)近似分析解法 特点:函数形式的解,在求解区域上近似地满足定解问题(但在总量上满足相应的守恒原理,动量守恒、动量守恒、能量守恒、质量守恒)。 具体解法:积分法(从积分方程出发) 变分近似解法 摄动法(从微分方程出发) 2、实验测定 (1)纯实验法 (2)相似理论实验法:同类相似,减少变量数目→减少工作量,得到规律性结

数值传热学陶文铨第四章作业

4-1 解:采用区域离散方法A 时;网格划分如右图。内点采用中心差分123278.8 77 69.9 T T T === 22d T T=0dx - 有 i+1i 122+T 0i i T T T x ---=? 将2点,3点带入 321222+T 0T T T x --=? 即321209 T T -+= 432322+T 0T T T x --=?4321322+T 0T T T x --=? 即4321209T T T -+-= 边界点4 (1)一阶截差 由x=1 1dT dx =,得 4313 T T -= (2)二阶截差 11B M M q x x x T T S δδλλ -=++V 所以 434111. 1.36311 T T T =++ 即 43122293 T T -= 采用区域离散方法B 22d T T=0dx - 由控制容积法 0w e dT dT T x dT dT ????--?= ? ????? 所以代入2点4点有 322121011336 T T T T T ----= 即 239028 T T -= 544431011363T T T T T ----= 即 34599 02828 T T T -+=

对3点采用中心差分有 432 322+T 013T T T --=?? ??? 即 2349901919 T T T -+= 对于点5 由x=1 1dT dx =,得 5416 T T -= (1)精确解求左端点的热流密度 由 ()21 x x e T e e e -=-+ 所以有 ()2200 20.64806911x x x x dT e e q e e dx e e λ-====- +=-=++ (2)由A 的一阶截差公式 (3)由B 的一阶截差公式 (4)由区域离散方法B 中的一阶截差公式: 通过对上述计算结果进行比较可得:区域离散B 有控制容积平衡法建立的离散方程与区域离散方程A 中具有二阶精度的格式精确度相当! 4-3 解:将平板沿厚度方向3等分,如图 由题可知该导热过程可看作无限大平板的一维稳态有源导热问题,则控制方程为 x=0, T 0=75℃ x=0.1 dT =h(T-T )dx f λ- 1点 ,2点采用中心差分有 21022+T 0T T S x λ -+=? (1) 3 2122+T 0T T S x λ-+=? (2) 右端点采用一阶截差的离散

传热学思考题参考答案(陶文铨第四版)

传热学思考题参考答案 第一章: 1、用铝制水壶烧开水时,尽管炉火很旺,但水壶仍安然无恙。而一旦壶内的水烧干后水壶很快就被烧坏。试从传热学的观点分析这一现象。 答:当壶内有水时,可以对壶底进行很好的冷却(水对壶底的对流换热系数大),壶底的热量被很快传走而不至于温度升得很高;当没有水时,和壶底发生对流换热的是气体,因为气体发生对流换热的表面换热系数小,壶底的热量不能很快被传走,故此壶底升温很快,容易被烧坏。 2、什么是串联热阻叠加原则,它在什么前提下成立?以固体中的导热为例,试讨论有哪些情况可能使热量传递方向上不同截面的热流量不相等。 答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各 串联环节热阻的和。例如:三块无限大平板叠加构成的平壁。例如通过圆筒壁,对于各个传热环节的传 热面积不相等,可能造成热量传递方向上不同截面的热流量不相等。 第二章: 1、扩展表面中的导热问题可以按一维问题处理的条件是什么?有人认为,只要扩展表面细长,就可按一维问题处理,你同意这种观点吗? 答:条件:(1)材料的导热系数,表面传热系数以及沿肋高方向的横截面积均各自为常数(2)肋片温度在垂直纸面方向(即长度方向)不发生变化,因此可取一个截面(即单位长度)来分析(3)表面上的换热热阻远远大于肋片中的导热热阻,因而在任一截面上肋片温度可认为是均匀的(4)肋片顶端可视为绝热。并不是扩展表面细长就可以按一维问题处理,必须满足上述四个假设才可视为一维问题。 2、肋片高度增加引起两种效果:肋效率下降及散热表面积增加。因而有人认为随着肋片高度的增加会出现一个临界高度,超过这个高度后,肋片导热热流量会下降,试分析该观点的正确性。 答:的确肋片高度增加会导致肋效率下降及散热表面积增加,但是总的导热量是增加的,只是增加的部分的效率有所减低,所以我们要选择经济的肋片高度。 第三章: 1、由导热微分方程可知,非稳态导热只与热扩散率有关,而与导热系数无关。你认为对吗?答:错,方程的边界条件有可能与λ有关,只有当方程为拉普拉斯方程和边界条件为第一边界条件时才与λ无关。 2、对二维非稳态导热问题,能否将表面的对流换热量转换成控制方程中的内热源产生的热量? 答:不能,二维问题存在边界微元和内边界微元,内边界微元不一定与边界换热,所以不存在源项。 第四章: 1、在第一类边界条件下,稳态无内热源导热物体的温度分布与物体的导热系数是否有关?为什么? 答:无关,因为方程为拉普拉斯方程,边界为第一边界条件均与λ无关。 2、非稳态导热采用显式格式计算时会出现不稳定性,试述不稳定性的物理含义。如何防止这种不稳定性? 答:物理意义:显示格式计算温度时对时间步长和空间步长有一定的限制,否则会出现不合

数值传热学第二章作业

数值传热学第二章作业 2—1: POWER=input('POWER=?'); L1=input('L1=?'); M1=input('M1=?'); XL=input('XL=?'); YL=input('YL=?'); for i=2:L1 XF(i)=XL*((i-2)/(L1-2))^POWER; end for j=2:M1 YF(j)=YL*((j-2)/(M1-2))^POWER; end X(1)=0; for i=2:L1-1 X(i)=(XF(i)+XF(i+1))/2; end X(L1)=XF(L1); Y(1)=0; for j=2:M1-1 Y(j)=(YF(j)+YF(j+1))/2; end Y(M1)=YF(M1); for j=2:M1-1 plot(X(1),Y(j),'b.'); plot(X(1),Y(2), 'b.'); plot(X(L1),Y(j),'b.'); hold on end for i=2:L1-1 for j=1:M1 plot(X(i),Y(j),'b.'); hold on end end for i=2:L1 m=[XF(i),XF(i)]; n=[0,M1]; plot(m,n,'b-.'); hold on end for j=2:M1 m=[YF(j),YF(j)];

n=[0,L1]; plot(n,m,'b-.'); hold on end xlabel('x'); ylabel('y'); title('POWER= ') 运行结果如下:

2—3: 解:由2 2 2 1()u 2u u u x x y η ???== =???得: 原方程的守恒形式为: 2 2 2()2u u x y η ??=?? 对方程两端在t ?时间间隔内对其控制容积积分,把可积的部分积出后得: 22()t t s n e w t u u dtdy +?-? ? = 2t t e w t n s u u dtdx y y η+?????????-?? ? ????????? ? ? 选定2 u 随y 而变化的型线,这里取为阶梯式,即在控制容积内沿y 方向不变,则 2222 ()=y ()t t t t s n e w e w t t u u dtdy u u dt +?+?-?-? ? ? 选定2 u 随t 而变化的规律,这里采用阶梯式显式,则 2 2 ()t t e w t y u u dt +??-? = ()()22t t e w u u t y ??-?????? 选定 u y ??随x 而变化的型线,这里取为阶梯式,即在控制容积内沿x 方向不变,则 22t t t t e w t t n s n s u u u u dtdx x dt y y y y ηη+?+?????????????????-=?-???? ? ? ? ?????????? ???????? ? ? 选定 u y ??随t 而变化的规律,这里采用阶梯显式,则 2t t t n s u u x dt y y η+??????????-?? ? ???? ?????? = 2t t n s u u t x y y η?? ??????-???? ? ??????????? 进一步选取u 随x,y 分段线性变化,则 22 2 2 E P e u u u += , 22 2 w 2 W P u u u +=

数值传热学习题集

简答题集锦 1.流动与传热数值模拟的基本任务是什么? (把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。) 2.数值模拟过程如何实现,主要步骤是那些? (建模、网格划分、坐标系、数学方程、求解、后处理) a.建立反映工程问题或物理过程本质的数学模型; b.选择与计算区域的边界相适应的坐标系; c.建立网格; d.建立离散方程; e.求解代数方程组; f.后处理,显示计算结果

3.建立离散方程有哪些主要方法?比较说明各种方法的优缺点?(有限差分、有限体积、有限元、有限分析等)

4什么叫控制方程?常见的控制方程有哪几个?各用在什么场合? 5试写出控制方程的通用形式,并说明通用形式中各项的意义?(写明通式,以及各个方程中通式的表达形式)

6推导x 方向的动量控制方程中的源项u S 的表达式。由此证明当密度和黏度为常数时,u S 变为0。 X 方向N-S 方程: Mx S x w z u z x v y u y divu x u x x p Dt Du +??+ ????+ ??+ ????+ +????+??- =)][()]( [)2(μ μλμ ρ )()())()())())()()()()()][()]( [)2(gradu div divu x z w y v x u x gradu div S divu x z w y v x u x S S divu x z w y v x u x gradu div S x w z x v y x u x z u z y u y x u x S x w z u z x v y u y divu x u x Mx u Mx Mx Mx μλμ μλμλμμμμμμμμμ μλμ +??+??+??+????=++?? +??+??+????=+?? +??+??+????+=+????+????+????+????+????+????= +??+ ????+ ??+ ????++????((()()( 因为0 =??+ ??+ ??z w y v x u ρρρ 推 得: =??+??+??z w y v x u 所以:Su= 0)()=?? +??+??+????divu x z w y v x u x λμ ( 7区域离散为分几种,说明各自的特点。 (内节点法、外节点法) 先节点后界面

相关文档
最新文档