阎杰-铬掺杂的锂离子电池正极材料LiVPO_4F的制备以及电化学行为的研究_英文_

阎杰-铬掺杂的锂离子电池正极材料LiVPO_4F的制备以及电化学行为的研究_英文_
阎杰-铬掺杂的锂离子电池正极材料LiVPO_4F的制备以及电化学行为的研究_英文_

收稿日期:2005-10-17。收修改稿日期:2005-12-28。国家重点基础研究发展规划资助项目(No.2002CB211800)。

通讯联系人。E-mail:yanjie@nankai.edu.cn

第一作者:李宇展,女,33岁,博士研究生;研究方向:无机材料与合成。

铬掺杂的锂离子电池正极材料Li VPO4F的制备以及电化学行为的研究

李宇展

任俊霞

高学平

杰*

(南开大学新能源材料化学研究所,天津

300071)

摘要:采用高温固相法2步合成了掺Cr的锂离子电池正极材料LiV1-xCrxPO4F(x=0,0.01,0.03,0.05,0.07),XRD测试表明LiV1-x

CrxPO4F属三斜晶系。通过恒电流充放电,循环伏安和交流阻抗实验表明:掺Cr后LiVPO4F正极材料更有利于锂离子的嵌入和

嵌出,材料的放电容量和循环性能进一步提高,例如,铬掺杂的LiVPO4F样品在室温、0.2C倍率下充放电,循环50周后容量在110mAh?g-1以上。文中还讨论了充放电容量随掺Cr量的关系,nCr含量为0.03的LiV1-xCrxPO4F有着较高的放电平台和良好的循环稳定性。

关键词:锂离子电池;LiVPO4F;铬掺杂;循环伏安(CV)中图分类号:O613.41;O614.51+

文献表示码:A

文章编号:1001-4861(2006)03-0477-06

PreparationofCr-dopedLiVPO4FandElectrochemicalStudiesonLi

Extraction/InsertionPerformancesforLithium-ionBatteries

LIYu-ZhanZHOUZhen

RENJun-Xia

GAOXue-PingYANJie*

(InstituteofNewEnergyMaterialChemistry,NankaiUniversity,Tianjin30007)

Abstract:AseriesofCr-dopedLiVPO4Fcathodematerialsweresynthesizedbyconventionalsolid-statereactionsofthestoichiometricmixtureofVPO4,CrPO4andLiF,andthesamplesshowedthesametriclinicstructureastheundopedLiVPO4F.TheCr-dopedLiVPO4FsampleswereinvestigatedontheLiextraction/insertionperformancesthroughgalvanostaticcharge/discharge,cyclicvoltammetry(CV),andelectrochemicalimpedancespectrum(EIS).TheCr-dopedLiVPO4Fsystemsshowedimprovedcapacityandcyclabilityinthevoltagerangeof3.0 ̄4.6Vatdifferentrates,forexample,themeasureddischargecapacityoftheCr-dopedLiVPO4Fsamplewasstillheldover

110mAh?g-1after50cyclesat0.2Crateatroomtemperature.TheoptimaldopingcontentofCrwasthatx=0.03

intheLiV1-xCrxPO4Fsamplestoachievehighdischargecapacityandgoodcyclicstability.Theelectrodereactionreversibilitywasenhanced,andthechargetransferresistancewasdecreasedthroughtheCr-doping.TheimprovedelectrochemicalperformancesoftheCr-dopedLiVPO4FcathodematerialsareattributedtothestructuralstabilityderivedfromtheincorporationofCr3+ions.

Keywords:lithium-ionbatteries;LiVPO4F;Cr-doping;cyclicvoltammetry(CV)

0Introduction

Sincethebirthintheearly1990′s,lithiumionbatterieshavebeenwidelyusedinportabledevices

suchascellularphones,notebook-typecomputersetc.duetohighenergydensity,goodcyclicperformanceandexcellentcapacityretention.However,theever-growingdemandforlithiumionbatterieshasbeen

第3期2006年3月

Vol.22No.3Mar.,2006

无机化学学报

CHINESEJOURNALOFINORGANICCHEMISTRY

第22卷无机化学学报

spawningmoreandmoreexplorationsofnovellithiuminsertionmaterialsbothforcathodesandanodes[1 ̄4].Inlithium-ionrechargeablebatteries,LiCoO2andspinelLiMn2O4arecurrentlyusedascathodematerials,butalternativecathodematerialshavebeenpursuedtore-placethem.Agoodcathodematerialshouldhavelargecapacitythatcanberetainedforupto1000cy-cles,goodstabilitythatcanwithstandfastrechargeanddischargeandsomeotherpossibleextremecondi-tions,highaffordablilityforconsumerelectronicsandlargescalestorage,andlowtoxicity.

Inrecentyears,novelcompoundsbasedontran-sitionmetalpolyanionshavebeenproposedasanewclassofcathodematerialsforlithiumionbatteries[5 ̄8].Atpresentthereisgreatinterestinsynthesizingnewphosphateorfluorophosphateswithopenstructuresbecauseoftheirpotentialapplications[9].Certainlithiumfluorophosphatesturnouttobefascinatingfromacrys-tal-chemicalpointofviewbecauseoftheparticularbe-havioroftheLi+ioninthepresenceofPO43-group.TheLiextraction/insertionpropertiesofLiVPO4Fwerein-tensivelystudiedinBarker′sgroup[10 ̄12].LiVPO4Fisisostructuralwiththenaturallyoccurringmineraltavorite,LiFePO4?OH,crystallizedwithatriclinicstructure(spacegroupP1).ThereversibleLiextrac-tion/insertionreactionforLi1-xVPO4F,basedontheV3+/V4+redoxcoupleoperatesatabout4.2VvsLi+/Li[11,12].However,thecapacityofLiVPO4Fdecreasesquicklyduringcharge/dischargecycles,probablyduetothephaseinstability,sobeforethepracticalapplication,long-termcyclicabilitymustbeimproved.WehaverecentlyfoundthattheB-dopingcouldimprovethecyclicabilityofLiVPO4Fcathodematerial.Inthiswork,Cr-dopedLiVPO4Fcathodematerialwassynthe-sized,andtheCr-dopingeffectwasinvestigatedontheelectrochemicalperformancesoftheLiVPO4Fcathodematerial.TheCr-dopingwasalsofoundtoincreasethedischargecapacityandenhancethecyclicabilityofLiVPO4Fcathodematerial.

1Experimental

1.1SynthesisofLiV1-xCrxPO4F(0.00≤x≤0.07)UndopedandCr-dopedLiVPO4Fcathodemateri-alsweresynthesizedbysolidstatereactionathightemperature.Firstly,astoichiometricmixtureofV2O5,NH4H2PO4andcarbonwasthoroughlymixed,andthenpressedintopelletsandheatedat300℃inatubefurnacewithaflowingargongasfor4h.Afterslowlycooleddowntoroomtemperature,thepelletsweregroundfor20min,pressedintopelletsagain,heatedto750℃,andheldatthistemperaturefor6h.Thepelletswerecooledtoroomtemperature,andgroundin-tofineVPO4powderforfurtheruse.Similarly,CrPO4wassynthesizedat900℃for8hinair.Secondly,astoichiometricmixtureofVPO4,CrPO4andLiFwasthoroughlymixed,pressedintopellets,andsinteredat750℃for15mininatubefurnacewithaflowingar-gongas.Finally,theLiV1-xCrxPO4Fproductwascooledtoroomtemperaturerapidlyandgroundintofinepowder.TheundopedLiVPO4Fsamplewasalsopre-paredforcomparisonthroughthesameprocedureex-cepttheadditionofCrPO4.

1.2Materialcharacterization

UndopedandCr-dopedLiVPO4Fwerecharacter-izedwith2θbetween3°to50°byX-raydiffraction(XRD)usingaD/MaxШdiffractometerwithCuKαradiation,atthescanrateof8°?min-1,andvoltageofthe40kV,currentof100mA.

1.3Electrochemicaltests

Teflon-typetestcellswereassembledforalltheelectrochemicaltestswithundopedandCr-dopedLiVPO4Fsamplesasactivematerialsinthecathodes,respectively.Amixtureof77wt%activematerials,18wt%carbonblackand5wt%colloidalpolytetrafluo-roethylene(PTFE)binderwaspressedintoacircularpelletelectrodewithadiameterof8mm.Thepelletwasthendriedat100℃for24h.ThetestcellswereassembledwiththeaboveelectrodeascathodeandLimetalasanodeinadrygloveboxfilledwithargongas.Theelectrolytewas1mol?L-1LiPF6dissolvedinamixtureofethylenecarbonate(EC)anddimethylcarbonate(DMC)withthevolumeratioof1∶1.

Charge/dischargecyclingtestswereperformedusingacommercialbatterytester.Thetestcellsweregalvanostaticallychargedanddischargedinthevolt-agerangeof3.0 ̄4.6V.Cyclicvoltammogram(CV)

478

??

第3期

李宇展等:铬掺杂的锂离子电池正极材料LiVPO4F的制备以及电化学行为的研究

wasmeasuredatascanrateof0.1mV?s-1usingCHI

600Aelectrochemicalanalyzer.Electrochemicalim-pendencespectrum(EIS)measurementswereper-formedusingaSolartron1260frequencyresponsean-alyzercombinedwithaPAR283potentiostat.EISmeasurementscoveredthefrequencyrangeof10kHzto10mHzwithanacvoltageof5mV.TheCVandEISexperimentswereperformedinthethree-electrodesystemusingmetallicfoilsasbothcounterandrefer-enceelectrode.

Resultsanddiscussion

2.1

XRDresults

TheXRDpattersofLiV1-xCrxPO4F(x=0.01,0.03,0.05,0.07)areshowninFig.1,andalltheXRDpat-ternsaresimilartothatofundopedLiVPO4F.Thediffractionpeaksofallthesamplesareattributedtoapuresinglephaseindexedwithtriclinicstructure,andnootherphasesweredetectedinXRDanalyses,indi-catingthatCrwasdopedcompletelyintothecrystallatticeofLiVPO4F.SincetheradiusofV3+is0.074nm,andtheradiusofCr3+is0.064nm.TheCr3+ionsmaybemostlylocatedatthepositionofV3+inthecrystallattice.Accordingly,theCrdopingdoesnot

changethebasic

LiVPO4Fcrystalstructure.

2.2

Galvanostaticcharge/dischargetests

Fig.2showsthecharge/dischargeprofilesfortheLiV1-xCrxPO4Fcathodematerialsat0.2Crate.Inthisstudy,thecharge/dischargeprofilesof50cyclesarepresentedinsteadofonlythefirstone,sincelithiumioncellsgenerallyhavedifferentstartingvoltagedur-

ingthefirstcycles.FromFig.2,itisclearthattheinitialdischargecapacityofLiVPO4Fisabout116.5

mAh?g-1,butthedischargecapacitydropsquicklytoabout83.1mAh?g-1after50cycles,sothecapacitylossisabout28.6%after50cycles.ThisresultisingoodagreementwiththatofBakeretal.[9,10].However,intheCr-dopedLiV1-xCrxPO4Fsystem,thecapacitylosswas24.1%,4.0%,0.9%,3.5%forthesamplewithxof0.01,0.03,0.05and0.07,respectively.Therefore,thetriclinicstructurebecomesmoretoleranttorepeatedcharge/dischargecyclesduetotheCrdoping.Theini-tialdischargecapacityofLiV0.99Cr0.01PO4Fisabout122.8mAh?g-1,butthedischargecapacitydecreasesquicklyduringthesubsequentcharge/dischargecycles,i.e.,after50cycles,thedischargecapacityisonly93.1mAh?g-1.TheinitialcapacitiesofLiV0.97Cr0.03PO4F,LiV0.95B0.05PO4FandLiV0.93B0.07PO4Fare120.9,111.0and

110.5mAh?g-1,respectively,andthedischargecapac-

itiesare116.0,110.0and106.6mAh?g-1,respectively

after50cycles.Therefore,theoptimalCrdopingcon-tentisthatx=0.03inordertoachievehighdischargecapacityandgoodcyclicstabilityintheLiVPO4Fsys-tem.

Fig.3showsthefirstcharge/dischargecurvesofLiV0.97Cr0.03PO4Fsample.Thesampleexhibitedaflatplateauaround4.3Vduringchargeand4.2Vduringdischarge.TheLiV0.97Cr0.03PO4Fsampleexhibitedahigherchargecapacityabout132.9mAh?g-1anddis-chargecapacityabout120.9mAh?g-1atthecurrent

Fig.2

DischargecapacityvscyclicnumberforvariousLiV1-xCrxPO4F(x=0 ̄0.07)atroomtemperatureand0.2Cinthevoltagerangeof3.0 ̄4.6V(vsLi+/Li)

Fig.1XRDpattersforundopedandCr-dopedLiVPO4F

(LiV1-xCrxPO4F)withxof0.01,0.03,0.05and0.07

479??

第22卷

无机化学学报densityof0.2Crate.Furthermore,thesamplealso

showedhighercoulombicefficiency

91%.

Galvanostatic

charge/dischargetestswerealso

conductedatdifferentratesforLiCr0.03V0.97PO4Fsampleatroomtemperatureinordertoexaminewhetherthereisakineticlimitationoflithium-iontransferinthesolidstate,andtheresultsareshowninFig.4.InFig.4thedischargecapacitydecreasesatallratewiththeincreaseofcyclenumber,butnotsharply.After50cycles,thedischargecapacitydropsto116.0mAh?g-1

at0.2Crate,101.4mAh?g-1at0.5C,and97.5mAh

?g-1at1C,respectively.Namely,thecapacitydecreas-escontinuouslyatarateof0.08%percycleat0.2C,0.14%percycleat0.5C,and0.13%percycleat1C.

Thecyclictestswereperformedat25℃and55℃fortheLiV0.97Cr0.03PO4Fsamplebetween3.0Vand4.6Vat0.5Crate.TheLiV0.97Cr0.03PO4Fsampleex-hibitedthedischargecapacityof129.2mAh?g-1at55

℃forthefirstcycle,whichisadramaticimprovement

over109.3mAh?g-1at25℃.Thedischargecapacities

at55℃wereallmuchhigherthanthoseat25℃forallthecyclesinFig.5.Thegeneralimprovementintheperformancemaybeattributedtotheincreaseddiffusionoflithiumionsatelevatedtemperatures.

2.3

CVmeasurements

CVcurvesforLiVPO4FandLiV0.97Cr0.03PO4Fsam-plesareshowninFig.6.Thecurvesindicatethepo-tentialinwhichthelithiumextraction/insertionandthephasetransition(ifthereis)occur.Intheundopedsystem,theextractionandinsertionprocessoccursat4.39Vand4.10V,respectively.However,intheCr-dopedsystem,Liionextractionpotentialdecreasesto4.36V,andtheLiioninsertionpotentialincreasesto4.12V,indicatingthattheoverpotentialforboththeextractionandinsertionprocessisreduced.InCVmeasurements,itisknownthatthepotentialdiffer-

Fig.3Firstcharge/dischargecurvesofLiV0.97Cr0.03PO4Fsamplesat25℃at0.2Cratesinthevoltagerangeof3.0 ̄4.6V(vsLi+/Li)

Fig.4CyclingperformanceofLiV0.97Cr0.03PO4Fsamplesat25℃atdifferentrateinthevoltagerangeof3.0 ̄4.6V(vsLi+/Li)

Fig.5CyclicperformancesofLiV0.97Cr0.03PO4Fsampleat25℃and55℃inthevoltagerangeof3.0 ̄4.6V(vsLi+/Li)at0.5Crate

Fig.6CVcurvesatscanrateof0.1mV?s-1inthe

voltagerangeof3.0 ̄4.6VforundopedLiVPO4FandLiV0.97Cr0.03PO4Fsamples

480??

第3期

encebetweenanodicpeakandcathodicpeakisanimportantparametertoevaluatethereversibilityofanelectrochemicalreaction.ThepotentialdifferenceofCr-dopedsystemisabout0.24V,whereasthatoftheundopedsystemisabout0.29V,showingtheen-hancementofelectrodereactionreversibilityduetotheCr-doping.2.4EISanalysis

TheelectrochemicalimpedancespectraofLiVPO4FandLiV0.97Cr0.03PO4Felectrodesmaterialsweremeasuredatdifferentchargingstates.ThetypicalNyquistplotsofEISarepresentedinFig.7andFig.8forLiVPO4FandLiV0.97Cr0.03PO4F,respectively.Asemicirclewasobservedtocenterontherealaxisatthehighfrequencyrange.Inthelowfrequencyrange,astraightlinewithanangleof45°totherealaxiscorrespondstotheWarburgimpedance.Thehigh-fre-quencysemicircleisrelatedtothecharge-transferre-sistance(Rct)andthedouble-layercapacitance.Thelow-frequencytailsresultedfromthediffusionoflithi-umionsinthebulkactivemass.SimilarEISpatternswereobservedforLiVPO4FandLiV0.97Cr0.03PO4Fsys-tems.InthecaseofLiVPO4F,thediameterofthesemicircleseemedtohavesignificantdependenceonthepotentialduringcharging,signifyingthatthefilmformationprocessisdependentonthelithiumioncontent.Ontheotherhand,thechargetransferresis-tance,Rct,showsagreaterdependenceonthelithiuminsertionandextractionlevels.Inthehighlychargedstates,thesamplewasfoundtogivelowerRctvalues.Comparingthediameterofthesemicircleoftheabove

twosystem,it

canbefoundthatLiV0.97Cr0.03PO4F

showedlowerRctvaluethanLiVPO4F,indicatingthattheCr-dopingmaycausesomedefectsintheLiVPO4Fsystem,andincreasetheelectronicconductivityandimprovetheLi+kineticbehavior.

TheLiionextraction/insertionprocessesaswellasV3+/V4+andV4+/V5+redoxreactionsmayleadtogreatchangestocrystalstructureandcausethephaseinstabilityofLiVPO4Fsystem.SincetheradiusofV3+is0.074nm,andtheradiusofCr3+is0.064nm,theexistenceofCrionswouldcounteractthevolumeshrinking/swellingduringtheLi+reversibleextraction/insertion,andthenincreasethestabilityofLiVPO4Fphaseinthelong-termcharge/dischargecycles.There-fore,thecyclicperformancesoftheLiVPO4FsystemareapparentlyimprovedthroughthedopingofasmallamountCr.

3Conclusion

TheUndopedandCr-dopedLiVPO4Fcathodematerialshavebeensynthesizedbyhightemperaturesolid-statereactions.X-raydiffractionresultsshowthatthesamplesarepuresingletriclinicphases.TheCr-dopedLiVPO4Fcathodematerialshavehigherdis-chargecapacityandbettercharge/dischargecyclicstability.ThelossinthedischargecapacityfortheLiV1-xCrxPO4Fsample(x=0.01,0.03,0.05and0.07)at0.2Crateandroomtemperatureisintherangeof0.9 ̄24.1%,muchlowerthan28.6%oftheundopedsample.TheoptimaldopingcontentofCristhatx=0.03toachievehighdischargecapacityandgoodcyclicstability.IntheCr-dopedsystem,theelectrode

Fig.7NyquistplotsfortheEISofLiVPO4Fatdifferentopencircuitpotentials

Fig.8NyquistplotsfortheEISofLiV0.97Cr0.03PO4Fatdifferentopencircuitpotentials

李宇展等:铬掺杂的锂离子电池正极材料LiVPO4F的制备以及电化学行为的研究

481??

第22卷无机化学学报

reactionreversibilitywasenhancedandthechargetransferresistancewasdecreasedduetotheCr-dop-ing.TheCr-dopingeffectscanbeattributedtothefactthattheCrionswithsmallersizewouldcounteractthevolumeshrinking/swellingduringtheLi+reversibleex-traction/insertion,andthenincreasethephasestabili-ty,resultingintheimprovementofthecyclicability.TheCr-dopingmaypromotetheapplicationofLiVPO4FtocommercialLiionbatteries.

References:

[1]WinterM,BesenhardJO,SpahrME,etal.Adv.Mater.,1998,10:725 ̄763

[2]ZhouZ,ZhaoJJ,GaoXP,etal.Chem.Mater.,2005,17:992 ̄1000

[3]GaoXP,BaoJL,PanGL,etal.J.Phys.Chem.B,2004,

108:5547 ̄5551

[4]PuWH,HeXM,RenJG,etal.Electrochim.Acta,2005,50:4140 ̄4145

[5]SaidiMY,BarkerJ,HuangH,etal.J.PowerSources,2003,119 ̄121:266 ̄272

[6]HuangH,YinSH,KerrT.Adv.Mater.,2004,14:1525 ̄1528

[7]DupreN,GaubicherJ,MercierTL.SolidStateIonics,2001,140:209 ̄221

[8]RichardsonTJ.J.PowerSources,2003,119 ̄121:262 ̄265[9]DutreilhM,ChevalierC,El-GhozziM,etal.J.SolidStateChem.,1999,142:1 ̄10

[10]BarkerJ,SaidiMY,SwoyerJL.J.Electrochem.Soc.,2003,150:1394 ̄1398

[11]BarkerJ,SaidiMY,SwoyerJL.J.Electrochem.Soc.,2004,151:A1670 ̄A167

[12]BarkerJ,GoverRKB,BurnsP,etal.Electrochem.SolidStateLett.,2005,8:A285 ̄A287

482

??

锂电池正极材料及其设备制作方法与制作流程

本技术公开了一种锂电池正极材料,它是由下述重量份的原料组成的:氢氧化锂100110、硫酸锰2030、氧化亚钴46、导电粘合液23、氧化锌79、羧甲基纤维素钠0.10.2、硫酸亚锡0.080.1,本技术制备出的正极材料具有颗粒均匀、比容量高、循环性能好、易于工业化生产等优点,采用三乙胺处理石墨粉,然后与松香共混,不仅具有更好的导电性,而且黏度高,可以有效的提高成品电极材料的稳定性。 权利要求书 1.一种锂电池正极材料,其特征在于,它是由下述重量份的原料组成的: 氢氧化锂100-110、硫酸锰20-30、氧化亚钴4-6、导电粘合液2-3、氧化锌7-9、羧甲基纤维素钠0.1-0.2、硫酸亚锡0.08-0.1。 2.根据权利要求1所述的一种锂电池正极材料,其特征在于,所述的导电粘合液的是由下述重量份的原料组成的: 石墨粉20-30、三乙胺1-2、乙炔炭黑6-9、松香1-2、三羟甲基丙烷0.1-0.2; 制备方法包括以下步骤: (1)取石墨粉,加入到其重量10-18倍的96-98%的硫酸溶液中,升高温度为35-40℃,超声10-20分钟,过滤,将沉淀水洗,常温干燥,与三乙胺混合,加入到混合料重量13-15倍的去离子水中,在50-60℃下保温搅拌1-2小时,得胺化石墨粉溶液; (2)取松香,加热软化,加入到其重量3-4倍的无水乙醇中,加入乙炔炭黑,搅拌均匀,与上述胺化石墨粉溶液混合,搅拌均匀,加入三羟甲基丙烷,在70-75℃下保温搅拌2-3小时,即得所述导电粘合液。

3.一种如权利要求1所述的锂电池正极材料的制备方法,其特征在于,包括以下步骤: (1)取氢氧化锂、硫酸锰、氧化亚钴混合,加入到混合料重量30-40倍的去离子水中,搅拌均匀,得前驱体溶液; (2)取氧化锌、羧甲基纤维素钠混合,加入到混合料重量10-14倍的去离子水中,搅拌均匀,得氧化锌分散液; (3)取上述前驱体溶液、氧化锌分散液混合,搅拌均匀,滴加氨水,调节pH为9-10,在50-60℃下保温搅拌30-40分钟,加入上述导电粘合液,升高温度为70-75℃,保温搅拌10-20分钟,得导电溶胶; (4)取硫酸亚锡,加入到上述导电溶胶中,搅拌均匀,蒸馏除去乙醇,刮涂到集流体中,在110-130℃下干燥1-2小时,压制成型,即得所述锂电池正极材料。 技术说明书 一种锂电池正极材料及其制备方法 技术领域 本技术属于电池领域,具体涉及一种锂电池正极材料及其制备方法。 背景技术 锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3:1-4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本

四种主要的锂电池正极材料

四种主要的锂电池正极材料 LiCoO2 锂离子从LiCoO2中可逆脱嵌量最多为0.5单元.Li1-xCoO2在x=0.5附近发生可逆相变,从三方对称性转变为单斜对称性。该转变是由于锂离子在离散的晶体位置发生有序化而产生的,并伴随晶体常数的细微变化。但是,也有人在x=0.5附近没有观察到这种可逆相变。当x>0.5时,Li1-x CoO2在有机溶剂中不稳定,会发生释氧反应;同时CoO2不稳定,容量发生衰减,并伴随钴的损失。该损失是由于钴从其所在的平面迁移到锂所在的平面,导致结构不稳定,使钴离子通过锂离子所在的平面迁移到电解质中。因此x的范围为0≤x≤0.5,理论容量为156mA·h/g。在此范围内电压表现为4V左右的平台。当LiCoO2进行过充电时,会生成新的结构 当校子处于纳米范围时,经过多次循环将产生阳离子无序,部分O3相转变为立方尖晶石相结构,导致容量衰减。粒子小时,由于锂离子的扩散路径短,形成的SEI膜较粒子大的稳定,因此循环性能好。例如,70nm的粒子好于300nm 的粒子。粒子大小对自放电也具有明显影响。例如粒子小,自放电速率快。粒径分布窄,粒子的球形性越好,电化学性能越佳。最佳粒子大小取决于电池的要求。 尽管LiCoO 与其它正极材料相比,循环性能比较优越,但是仍会发生衰减, 2 对于长寿命需求的空间探索而言,还有待于进一步提高循环性能。同时。研究过经过长时期的循环后,从层状结构转变为立方尖晶石结构,特别程发现,LiCoO 2 是位于表面的粒子;另外,降低氧化钴锂的成本,提高在较高温度(<65℃)下的循环性能和增加可逆容量也是目前研究的方向之一。采用的方法主要有掺杂和包覆。 作为锂离子电池正极材料的锂钴氧化物能够大电流放电,并且放电电压高,放电平稳,循环寿命长。.因此成为最早用于商品化的锉离子蓄电池的正极材料,亦是目前广泛应用于小型便携式电子设备(移动电话、笔记本电脑、小型摄像机等)的正极材料。LiCoO2具有a-NaFeO2型二维层状结构,适宜于锂离子在层间的嵌人和脱出,理论容量为274 mA·h/g。在实际应用中,该材料电化学性能优异,热稳定性好,且初次循环不可逆容量小。实际可逆容量约为120~150 mA·h/g,即可逆嵌人/脱出晶格的锂离子摩尔百分数接近55 %。 在过充电条件下,由于锂含量的减少和金属离子氧化水平的升高,降低了材料的稳定性。另外由于Co原料的稀有,使得LiCoO2的成本较高。 LiCoO2生产工艺相对较为简单,其传统的合成方法主要有高温固相合成法和低温固相合成法。 高沮固相合成法通常以Li2CO3和CoCO3为原料,按Li/Co的摩尔比为1:1配制,在700~900℃下,空气氛围中灼烧而成。也有采用复合成型反应生成LiCoO2前驱物,然后在350~450℃下进行预热处理,再在空气中于700~850℃下加热合成,所得产品的放电容量可达150 mA·h/g。唐致远等以计量比的钴化合物、锂化合物为合成原料在有机溶剂乙醇或丙酮的作用下研磨混合均匀,先在450℃的温度下处理6h.,待冷却后取出研磨,然后再在6~10 MPa压力下压成块状,最后在900℃的温度下合成12~36 h而制得。日本的川内晶介等用Co3O4和Li2 CO3做原料,按化学计量配合在650℃灼烧10h制的温定的活性物质。章福平等按计量将分析纯LiNO3和Co(NO3)2·6H2O混匀,加适量酒石酸,用氨水调

锂电池及正极材料生产项目可行性实施报告

锂电池及正极材料生产项目可行性研究报告 目录

一、概述 1.1. 项目名称及建设地点 1.2. 项目概况 1.3. 公司概况 1.4. 经济效益和社会效益分析 1.5. 建设目标 二、技术可行性分析 2.1.项目的技术路线、工艺的合理性和成熟性,关键技术的先 进性和效果 ?1.项目的生产路线 ?2.技术的创造性和先进性 3.技术创新性 4.工艺与原材料的适应性及其经济合理性 5.连续化、自动化及环保情况 6.成果的创造性、先进性 2.2.产品技术性能水平与国外同类产品的比较 2.3.项目承担单位在实施本项目中的优势 ?1.政策优势;2.技术优势;3.市场优势;4.性能优势 三、项目成熟程度 3.1. 产品质量的稳定性,以及在价格、性能情况 ?1.技术质量指标 3.2.核心技术的知识产权情况 四、市场需求情况和风险分析

4.1.国市场需求规模和产品的发展前景、在国市场的竞争优势 和市场占有率 ?1.国市场需求规模 ?2.产品经济周期及目前所处生命期的阶段 ?3.小型锂离子电池市场对锂电池的需求趋势 ?4.车用动力电池市场对锂电池的需求趋势 五、项目建设规划 六、原材料、原材料供应、动力消耗及三废治理 七、项目工艺、设备与经济效益分析 八、节能环保 九、风险分析及对策 ?1.项目风险2.风险对策 十、结论 一、概述 1.1 项目名称及建设地点

(1)项目名称:锂电池及正极材料生产项目 (2)建设地点:某经济开发区 1.2 项目概况 1.2.1项目法人代表: 1.2.2 建设目标: 本项目建设的主要目标是:建成年产1000吨锂电池正极材料及50000组锂电池生产线,通过产学研相结合的方式,形成较强的研发团队,为公司进入锂离子电池市场打下基础。 1.2.3 产品及拟建规模 类型产品名称建设规 模 原料型锂电池正极材料 1000吨功率型高功率电池;新型动力电池 50000组 1.2.4 主要建设容及投资 项目注册资本1500万元,计划总投资2亿元,投资构成如下:(1)土地:100亩*8万/亩=800万; (2)厂房:20000平米*800元/平米=1600万元 办公楼:3000平米*1500/平米=450万元 宿舍楼:2000平米*1300/平米=260万元 配套和完善相应的公用辅助:300万元 (3)设备(正极材料生产线和锂电池生产线)共0.987亿元;

各种锂离子电池正极材料分析

锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平 台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD; MP3/MP4、笔记本电脑。 1)结构缺陷 对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。 在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断 裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏 钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只 有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新 疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储 量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国 钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接 近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相 对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成 固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量 148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80

锂电池几种正极材料的优缺点

锂电池几种正极材料的优缺点 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 锂离子电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

锂电池正极材料--生产磷酸铁锂的上市公司一览

锂电池正极材料--生产磷酸铁锂的上市公司一览 本文来自:财富赢家https://www.360docs.net/doc/3c567643.html, 作者:冬季风点击1055次 原文:https://www.360docs.net/doc/3c567643.html,/viewthread.php?tid=145421 上市公司, 正极, 锂电池, 磷酸, 生产 磷酸铁锂是一种新型锂离子电池电极材料。目前全球已经有很多厂家开始了工业化生产,国外美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。其特点是放电容量大,价格低廉,无毒性,不造成环境污染。世界各国正竞相实现产业化生产。 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂离子电池的正极材料是近几年才出现的事,国内开发出大容量磷酸铁锂电池是2005年7月。其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,寿命长等优点,是新一代锂离子电池的理想正极材料。 [1]、杉杉股份 (600884): 湖南杉杉新材料有限公司,控股75%。主要生产锂离子电池正极材料,是中国国内发展最快、规模最大的锂离子电池正极材料制造商。拥有年产5000吨锂电正极材料的生产规模,钴酸锂年生产能力为4000吨,锰酸锂500吨。目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。2007年钴酸锂占国内市场份额的40%以上,稳稳占据全国第一、世界第三的锂离子电池正极材料生产商地位。长沙杉杉动力电池有限公司,控股82%。主要生产锂离子动力电池。目前有钢壳液态锂离子电池、聚合物锂离子电池等几十种动力电池产品。产品材料体系有锰酸锂系列、磷酸亚铁锂系列、三元体系电池。 [2]、中国宝安 (000009): 在锂电池正负极材料上拥有绝对的行业话语权。主要通过2家控股子公司进行。控股55%的贝特瑞公司是国内唯一的锂电池碳负极材料标准制定者;也是国内唯一的锂电池磷酸铁锂正极材料标准制定者,贝特瑞公司,控股55%。是锂电池碳负极材料和磷酸铁锂正极材料的龙头。锂电池碳负极材料国内第一,市占率80%,全球第二;磷酸铁锂正极材料国内第一,目前全球第三。贝特瑞09年碳负极材料产能是6000吨/年,磷酸铁锂正极材料产能是1500吨/年。天骄公司,控股75%。主营的三元正极材料,08年销量居国内第一,市场占有率30-40%。08年三元正极材料产量805吨,销量665吨;09年保守产能是1400吨,负极材料钛酸锂180吨,正极材料磷酸铁锂09年6月达产,年产能是150吨。 [3]、金瑞科技 (600390): 正极材料是锂离子电池中成本最高的部分。钴酸锂(LiCoO2)是目前唯一已经大规模产业化并广泛应用于商品锂离子电池的正极材料。公司子公司长远锂科(公司占16%,大股东占84%)是专业生产钴酸锂的高新技术企业。05年钴酸锂年产量达1500吨,其中采用具有自主知识产权的湿法新技术生产的球状钴酸锂为1000吨。08年金瑞科技开展了磷酸亚铁锂制备技术和镍钴锰酸锂三元材料的研究。新型锂离子正极材料镍钴锰酸锂其比容量比钴酸锂高出30%以上。

锂离子电池正极相关材

锂离子电池具有工作电压高、无记忆效应、环境友好等优点,已经成为21世纪绿色电池的首选。锂离子电池的关键材料之一是正极材料,目前商品化锂离子电池的正极材料主要是LiCoO2,但存在成本高、实际比容量偏低、抗过充电性能差、安全性能不佳等问题,严重阻碍了锂离子电池的进一步发展,限制了它在更广领域的应用,迫切需要研究者开发出成本低、性能优良、安全性高的锂离子电池正极材料以满足电动汽车等新兴行业的需求。 锂离子电池是绿色环保电池,是二次电池中的佼佼者。与镍镉电池(Cd.Ni)和镍氢电池(Ni.H)相比,锂离子电池具有工作电压高、比能量大、充放电寿命长、自放电率低等显著优点,且没有Cd-Ni电池中镉的环境污染问题。锂离子电池的上述特点,使其可以向小型化方向发展,因而适合于小型便携式电器电源,如移动电话、笔记本电脑、照相机等。这些电器与人们的商务活动和日常生活紧密相连,使用的群体广,新旧换代快。锂离子电池还可以用于电动工具和电动车电源替代Cd.Ni电池和铅酸电池,一方面Cd-Ni电池和铅酸电池的原材料上涨,成本提高,发展受限,我国出口退税政策调整;另一方面欧盟在2005和2006年相继出台了两项与化学品相关的RollS和REACH法令,前者限制了铅、镉等6种化学元素的使用,后者则规定上万种化学药品要重新注册。所以这为锂离子电池行业发展带来了新的机遇【l】。此外,锂离子电池也是航空航天和军事等领域要求空间上移动使用的新一代清洁安全能源,以及作为家庭和交通照明、备用电源、储能电站等时间上移动使用的储能调峰电源。因此锂离子电池有非常广阔的应用范围。 1.2锂离子电池发展简况 锂离子电池的发展可以追迥到锂二次电池,锂二次电池的研究最早始于20世纪60--70年代的石油危机,当时主要集中在以金属锂及其合金为负极的锂二次电池体系,但锂在充放电过程中由于电极表面的凹凸不平,导致表面电位分布不均匀,造成了锂的不均匀沉积。这种不均匀沉积导致锂在一些部位沉积过快,产生锂枝晶,当锂枝晶发展到一定程度时,一方面会发生折断,造成锂的不可逆损失;另一方面锂枝晶的产生会刺穿电池的隔膜,将正极与负极连接起来,引起短路,产生大电流进而生成大量的热,引起电池着火甚至爆炸,从而引发严重的安全问题,因此这种电池未能实现商品化【2】。锂二次电池的突破性发展源于Armand 的“摇椅电池(Rocking chair batteries)”的构想,即采用低插锂电势的嵌锂化合物代替会属锂为负极,与高插锂电势的嵌锂化合物组成二次锂离子电池。Scrosati等【3】以LiWO2或Li6FeO3为负极,以TiS2、WO3、NbS2或V2O5为正极组装成二次电池。1987年,Aubom等【4】装配了以MoO2或WO2为负极,LiCoO2为正极的“摇椅式”电池。与金属锂为负极的二次锂电池相比,这些电池的安全性能和循坏性能大大提高。但由于MoO2和WO2等负极材料的嵌锂电位较高(07~2.0 V vs Li+/Li),因此未能得到实际应用。1990年日本Sony能源技术公司首先推出实用型锂离子电池。该电池既克服了二次锂电池循环寿命短、安全性差的缺点,又较好地保持了二次锂电池高电压、高比能量的优点。由此,二次锂离子电池在全世界范围内掀起了研究开发热潮,并取得了巨大的进展净。 锂离子电池的关键材料之一是正极材料,所以锂离子电池对正极材料的要求也很高。从上世纪70年代开发锂电池起,经过30多年的研究,多种嵌锂化合物可作为锂离子电池的正极材

各种锂离子电池正极材料分析

各种锂离子电池正极材料分析 锂离子电池现使用的正极材料有如下几种: 1、钴酸锂 钴酸锂也是目前应用最为广泛的正极材料,钴产生3.9V(vs. Li)的电势平台,对钴酸锂而言,对应于其理论容量,高达274mAh/g,实际容量可达155mAh/g,具有很高的能量密度。主要应用于便携电池领域:如手机,PDA;移动DVD;MP3/MP4、笔记本电脑。 1)结构缺陷对钴酸锂(LixCoO2,00.55 时,材料的容量发生严重的退化,其层状结构倾向于塌陷,使得实际可利用的容量不超过155mAh/g,为了能够更多的利用LiCoO2 中的锂离子,人们采用掺杂、包覆等办法对其改性。目前,有多种元素应用于LiCoO2 掺杂,但只有Mn 和Al 表现出较好的效果。在Li 过分脱出时(E>4.2V 时),LiCoO2 发生严重的过充现象,化学键发生断裂而释出O2,导致体系的不稳定,甚至有使电池爆炸的危险。 2)资源缺乏钴在我国属于稀缺资源,我国钴矿矿床规模较小,矿区储量大于2 万吨的只有甘肃金川和青海德尔尼两处,矿区储量大于1 万吨的有河北、四川、海南、新疆4 省。截至2006 年底,我国探明钴储量47.1 万吨。由于连年开采,我国钴储量逐年减少。我国钴产量应该在4900 吨左右。2002 年我国钴消费量为4845 吨,比2001 年增加了22%。从2002 年起,电池行业已超过硬质合金行业,成为我国钴消费的第一大行业。由于目前我国未发现大规模有开采价值的钴矿,我国锂电池正极材料用钴酸锂的生产基本上是从国外进口价格昂贵钴原料。 2、镍酸锂 Ni4+/Ni3+电对能产生3.75V 的电势平台。它能可逆的嵌脱0.7Li,具有接近200mAh/g 的循环容量,但在实际中,很难得到这个结果。首先在高温下,由于Li 的挥发,很难合成化学计量比LiNiO2,高温时六方相的LiNiO2 很容易向立方相的LiNiO2 转变,这种锂镍置换的立方相的没有电化学活性,而且这个反应的逆过程很慢并且不完全。此外在充放电过程中,LiNiO2 还会发生一系列的结构变化,而导致嵌锂容量的损失。实际上镍酸锂无太大实用价值。 3、镍钴二元材料和多元复合材料 LiCoO2 价格昂贵,LiNiO2 合成困难,如果能够结合二者的优点,用价格相对低廉的Ni 替代部分Co,合成具有LiCoO2 一样优良电化学性能地电极材料,那么将具有广阔的应用前景。由于半径相近,Ni 和Co 几乎可以以任何比例形成固溶体。近几年来,多元混合掺杂的层状氧化物得到了大量的研究,不同金属原子比例的镍钴锰多元材料得到了研究,但是颗粒形貌和粒度分布不得到有效的控制,只有在足够高的电势下(大于 4.5V)才能获得180mAh/g 的容量,此外没有从根本上改变钴系材料的特点。 4、尖晶石锰酸锂 尖晶石锰酸锂能够产生4.0 V 的电压平台,与钴酸锂相当,理论容量148mAh/g,实际容量120mAh/g 左右,比现在所用的钴酸锂稍低。早在上世纪80 年代Goodenough 就发现锂离子能够在尖晶石结构的锰酸锂中电化学可逆的嵌脱,从而得到了众多研究者的关注。与钴酸锂和镍酸锂相比,锰酸锂原料来源广泛,价格非常便宜(只有Co 的10%),而且没有毒性,对环境友好。曾一度被认为是替代LiCoO2 的首选锂离子电池正极材料。尖

中国锂电池正极材料行业研究-行业壁垒、竞争状况、技术及发展环境

中国锂电池正极材料行业研究 -行业壁垒、竞争状况、技术及发展环境 行业进入壁垒 1、行业规范壁垒 为加强锂电池行业管理、引导产业转型升级、推动锂电池产业健康发展,工信部于2015年8月制定《锂离子电池行业规范条件》,严格控制新建单纯扩大产能、技术水平低的锂电池行业项目。根据前述规范条件,对于生产企业要求,“具有高新技术企业资质或省级以上独立研发机构、技术中心;主要产品具有技术发明专利;正极材料年产能不低于2,000吨;企业应采用工艺先进、节能环保、安全稳定、自动化程度高的生产工艺和设备,应具有电池正负极材料铁、锌、铜等金属有害杂质检测能力。 2、合作客户壁垒 三元正极材料是三元锂电池的关键核心材料,锂电池生产厂商均对供应商实行严格的认证机制,需要对供应商的技术能力、物流能力、质量管理、财务稳定性、环保能力等方面进行认证,检验期长且严格,通常送样到量产耗时数年时间。 目前,国内锂电池行业愈发集中,锂电池厂商对长期合作的正极材料供应商粘性较强,不会轻易更换。 3、工艺技术壁垒

锂电池正极材料的生产工艺技术复杂、过程控制严格,研发难度大、周期长,国内各大厂商均已形成了自己的工艺技术,如原材料的选择、各类材料的比例、辅助材料的应用以及生产工艺的设置均需要多年的技术与经验积累。近年来,三元正极材料不断往高能量密度、长寿命、高安全性方向发展,能量密度越高、技术工艺壁垒越高。在当前产品快速更新换代的情况下,新进入者短期内无法突破关键技术,难以形成竞争力。 4、生产规模及资金壁垒 正极材料行业具有一定规模壁垒,生产规模较大的企业在原材料采购和生产运营方面具有规模优势。另一方面,锂电池行业的市场集中度较高,主流锂电池企业对于正极材料供应商的供货数量、质量、时效等方面有较高要求,小型正极材料企业进入锂电池企业合格供应商体系的难度较大。 高镍三元正极材料对于生产环境及生产设备的要求较高,新建产线需要大额资金投入;三元正极材料生产成本中原材料采购成本占比较高,日常经营需要大量流动资金支持。因此,行业新入企业面临一定的资金壁垒。

锂电池负极材料生产现状

锂电池负极材料生产现状 锂电池的原材料方面问题,一直都是锂厂家们非常关心的一个问题。锂电池生产厂家和大家谈谈关于锂电池的负极材料问题,有兴趣了解这方面问题的朋友可以看一下这篇文章,如果我们拿负极材料和正极材料来比的话,负极材料占锂电池成本比重变会显得较低,并且目前负极材料国内已经实现产业化,其主要的生产厂家有深圳贝特瑞、上海杉杉、长沙海容等,这些都是大型的个业,基本能够满足国内市场的需求。 深圳贝特瑞公司可能很多人对它都有所了解了,它是中国宝安(000009)控股55%的子公司,并且是国内锂电碳负极材料标准制定者。其碳负极材料产能是6000吨/年,价格为6万元/吨左右,市场占有率高达80%,居全球第二。客户包括松下、日立、三星、TCL、比亚迪等130多家厂商。2008年,贝特瑞收购了天津铁诚公司,使其碳负极材料成本下降30%. 不过锂电池生产厂家们了解到贝特瑞宣传资料显示,具有磷酸铁锂正极材料1500吨/年的产能。而据其销售部门透露,目前贝特瑞的磷酸铁锂正极材料实际产能为800吨/年,产量只有40多吨/年,主要给大型电池厂商实验供货,如天津力神、江苏双登等。其产品价格比天津斯特兰贵,达到18万-20万元/吨。据了解,其毛利率在60%以上。 据华普锂电池生产厂家了解到的加一个问题是中国宝安控股75%的天骄公司也从事正极材料的生产。该公司主营钴镍锰酸锂三元正极材料,目前产量为800吨/年左右,销量650吨左右,2009年计划产能1400吨/年,增长来自于通讯电子类、笔记本等下产品中对传统高成本的钴酸锂的替代。 杉杉股份公司可以说是贝特瑞的个巨大的竞争对手。我们都知道杉杉股份是在1999年开始涉足电池负极材料时采用CMS(中间相炭微球)技术,之后为降低成本转用人工石墨和天然石墨,此后,因为电池循环放电次数不高,又回到了CMS的技术上。目前,杉杉股份的CMS价格每吨在10万元以上,年产能为1200吨。

锂离子电池几种有机正极材料介绍

锂离子电池几种有机正极材料介绍 随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前无机正极材料使用广泛,但不乏各种缺陷。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文主要介绍了几类作为锂离子正极材料的有机化合物,对比分析了这些化合物的电化学性能、电化学反应机理。 导电有机高分子正极材料 早期的有机正极材料研究较多的是导电高分子材料,单一态的导电高分子正极材料存在许多缺陷,不能满足实际应用的需求,人们开始了基于导电高分子的各种复合材料的研究。研究人员将V2O5掺杂在聚吡咯中制备PPy/ V2O5复合材料,充放电后PPy/ V2O5复合材料发生阴离子的掺杂/脱掺杂以及Li+的嵌入/脱嵌入反应,正极材料内部元素的百分含量和材料内部的外观形貌会发生变化循环稳定性能不佳。 图1 PPy/ V2O5复合材料电化学性能及充放电后表面形貌图该类导电聚合物用作锂电池正极材料是通过阴离子的掺杂/脱掺杂实现电化学过程。通常存在以下缺点:反应体系中要求电解液的体积大,导致电池的能量密度难以提高,导电性能不高;电化学反应速度慢,需要掺杂大量的导电剂;有机聚合物在电解液中仍然存在缓慢溶解的问题;长期循环稳定性能不高;理论容量不高。存在很大的改进空间。

有机硫化物正极材料 科研人员又将目光转向了以S-S键的断裂和键合进行放能和储能的有机硫化物。他们发现增加硫链长度可以增加比容量,但是由于硫本身的绝缘性,且电极反应产生的中间产物Li2SX易于溶解在电解液和沉积在锂负极表面,严重影响了电池的充放电功率和循环性能。所以,他们又将S-S键引入有机物分子中,形成各种线形、梯形或者网状多交联的硫化聚合物,代表性的化合物如表1所示。 表1 典型有机硫化合物正极材料 有机硫化合物正极材料虽然在一定程度上提高了电池电化学活性和循环稳定性能,但有机硫化合物普遍存在以下问题:容量衰减快,易发生降解;在电解液中的溶解问题难以克服,循环稳定性能仍然不高;放电时生成的硫离子向负极转移的问题;导电性差,室温下电化学反应速度缓慢;有机硫化合物正极活性材料的循环性能离实际应用仍有差距,难以满足实际应用的需要。 含氧共轭有机物正极材料 有机共轭含氧化合物电极材料具有高比容量、结构多样性和反应动力学快等优点,已成为锂离子电池正极材料的研究热点。以蒽醌及其聚合物、含共轭结构的酸酐等为代表的羰基化合物作为一种新兴的正极材料逐渐受到关注,其电化学反应机制是:放电时每个羰基上的氧原子得一个电子,同时嵌入锂离子生成烯醇锂盐;充电时锂离子脱出,羰基还原,通过羰基和烯醇结构之间的转换实现锂离子可逆地嵌入和脱出。 科研人员研究了一种新型有机醌类化合物1,4,5,8-四羟基-9,10-蒽醌(THAQ,图2)及其氧化产物(O-THAQ)的电化学性能,其首次充放电容量和循环性能都较高。

锂电池的几种主要正极材料对比分析

锂电池的几种主要正极材料对比分析 锂电池的性能主要取决于所用电池内部材料的结构和性能。介绍一下 锂电池主要正极钴酸锂,镍酸锂,锰酸锂,磷酸铁锂和钒的氧化物等。 锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括正极材料、负极材料、电解液、隔膜和导电材 料等。其中正、负极材料的选择和质量直接决定锂电池的性能与价格。因此廉价、高性能的正、负极材料的研宄一直是锂电池行业发展的重 点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的 开发已经成为制约锂电池性能进一步提高、价格进一步降低的重要因 0 在目前的商业化生产的锂电池中,正极材料的成本大约占整个 电池成本的40^左右,正极材料价格的降低直接决定着锂电池价格 的降低。对锂动力电池尤其如此。比如一块手机用的小型锂电池大约 只需要5克左右的正极材料,而驱动一辆电动汽车用的锂动力电池可 能需要高达500千克的正极材料。 衡量锂电池正极材料的好坏,大致可以从以下几个方面进行评估: 正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;

(之)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使 电池有高的容量; 0在锂离子嵌入7脱嵌过程中,正极材料的结构应尽可能不发 生变化或小发生变化,以保证电池良好的循环性能; 正极的氧化还原电位在锂离子的嵌入7脱嵌过程中变化应尽 可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和 放电; (石)正极材料应有较高的电导率,能使电池大电流地充电和放 (^)正极不与电解质等发生化学反应; ⑴锂离子在电极材料中应有较大的扩散系数,便于电池快速 充电和放电; (^)价格便宜,对环境无污染。 锂电池正极材料一般都是锂的氧化物。研宄得比较多的有钴酸锂,镍酸锂,锰酸锂,磷酸铁锂和钒的氧化物等。导电聚合物正极材 料也引起了人们的极大兴趣。 1、钴酸锂 在目前商业化的锂电池中基本上选用层状结构的钴酸锂作为正极材料。其理论容量为274111…1/8,实际容量为140111^1/8左右,也 有报道实际容量己达155—该正极材料的主要优点为:工作电 压较高(平均工作电压为3.7^〉、充放电电压平稳,适合大电流充放 电,比能量高、循环性能好,电导率髙,生产工艺简单、容易制备等。

几种锂电池正极材料的比较

几种锂电池正极材料的比较 锂电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。比如一块手机用的小型锂离子电池大约只需要5克左右的正极材料,而驱动一辆公共汽车用的锂离子动力电池可能需要高达500千克的正极材料。 衡量锂电池正极材料的好坏,大致可以从以下几个方面进行评估: (1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压; (2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量; (3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;

(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显着变化,以保证电池平稳地充电和放电; (5)正极材料应有较高的电导率,能使电池大电流地充电和放电; (6)正极不与电解质等发生化学反应; (7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电; (8)价格便宜,对环境无污染。 锂电池正极材料一般都是锂的氧化物。研究得比较多的有LiCoO2,LiNiO2,LiMn2O4,LiFePO4和钒的氧化物等。导电聚合物正极材料也引起了人们的极大兴趣。 1、LiCoO2 在目前商业化的锂离子电池中基本上选用层状结构的LiCoO2作为正极材料。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。 2、LiNiO2

锂电池电极材料综述(精)

锂电池正极材料综述 1、引言 锂离子电池的性能主要取决于所用电池内部材料的结构和性能。这些电池内部材料包括负极材料、电解质、隔膜和正极材料等。其中正、负极材料的选择和质量直接决定锂离子电池的性能与价格。因此廉价、高性能的正、负极材料的研究一直是锂离子电池行业发展的重点。负极材料一般选用碳材料,目前的发展比较成熟。而正极材料的开发已经成为制约锂离子电池性能进一步提高、价格进一步降低的重要因素。在目前的商业化生产的锂离子电池中,正极材料的成本大约占整个电池成本的40%左右,正极材料价格的降低直接决定着锂离子电池价格的降低。对锂离子动力电池尤其如此。 衡量锂离子电池正极材料的好坏,大致可以从以下几个方面进行评估:(1)正极材料应有较高的氧化还原电位,从而使电池有较高的输出电压;(2)锂离子能够在正极材料中大量的可逆地嵌入和脱嵌,以使电池有高的容量;(3)在锂离子嵌入/脱嵌过程中,正极材料的结构应尽可能不发生变化或小发生变化,以保证电池良好的循环性能;(4)正极的氧化还原电位在锂离子的嵌入/脱嵌过程中变化应尽可能小,使电池的电压不会发生显著变化,以保证电池平稳地充电和放电;(5)正极材料应有较高的电导率,能使电池大电流地充电和放电;(6)正极不与电解质等发生化学反应;(7)锂离子在电极材料中应有较大的扩散系数,便于电池快速充电和放电;(8)价格便宜,对环境无污染。 目前已批量应用于锂电池的正极材料主要有钴酸锂、镍酸锂、锰酸锂、钴镍锰酸锂(三元材料)以及磷酸铁锂。 2、正极材料介绍 2.1 LiCoO2 钴酸锂:研究始于1980 年,20 世纪90 年代开始进入市场。它属于α-NaFeO2型层状岩盐结构,结构比较稳定,是一种非常成熟的正极材料产品,目前占据锂电池正极材料市场的主导地位。其理论容量为274mAh/g,实际容量为140mAh/g左右,也有报道实际容量已达155mAh/g。该正极材料的主要优点为:工作电压较高(平均工作电压为3.7V)、充放电电压平稳,适合大电流充放电,比能量高、循环性能好,电导率高,生产工艺简单、容易制备等。主要缺点为:价格昂贵,抗过充电性较差,循环性能有待进一步提高。而且钴有放射性,不利于环保,因此发展受到限制。 2.2 LiNiO2

锂电池正极材料的老化机理

锂电池正极材料的老化机理 M.Wohlfahrt-Mehrens*C.V ogler,J.Garche 摘要:储备式和车载动力用电池都需要很好的循环性能和使用寿命。在过去的几年里,从价廉易得、高性能方面考虑,具有针状结构的锂锰氧化物(LiMn2O4)和具有层状结构的锂镍钴混合氧化物(LiNiCoO2)习惯上作为替代锂钴氧化物(LiCoO2)做高容量大功率电池的负极材料从而得到了广泛的研究。在本文中作者总结了一些两种负极材料在循环和不同条件存储时的容量损失的基本机理。锂钴镍混合氧化物表现出极好的放电态耐存储性和低电解液金属溶出性。循环稳定性主要受影响于脱锂态结构的改变,并且热不稳定起因于充电时高温下的氧扩散。少量的铝镁参杂物会使锂镍钴的层状结构变得稳定并且能改善循环稳定性。讨论了尖晶石状锂锰氧化物各种容量衰减机理,尤其是高温下的衰减机理。容量衰减很大程度上是由于循环和存储时电池结构发生变化引起的,而且由导电盐LiPF6的分解产物和电解液中的水杂质催化产生的副反应也是容量衰减的原因。 关键词:锂镍钴氧化物;尖晶石型锂锰氧化物;使用寿命;容量衰减;老化机理 1、简介 锂电池由于其很高的能量密度和功率密度成为车载动力用电池的最具吸引力的候选电源。这方面的应用要求很高的循环寿命和使用寿命,因此,电池的估计和预期寿命和容量衰减的机理和预防越来越受到人们的关注。能在实际条件下测量电池使用寿命的总体测试是必须的,这些方法必须专门为每个元件设计和每种化学组成量身定做。去年发表了一些关于锂离子电池老化的研究。 以下一些锂离子电池的内部因素可能影响电池的寿命: ●活性物质的退化 ●一些像导电剂、粘结剂和集流版之类的电极涂料的老化变质 ●电解质的成膜和分解 这些因素不是单独发生的,所以不能彼此分割开来讨论问题,他们有赖于不同的化学组成和元件设计,而且所获得的数据又因为电池厂家的不同而不同。本文着眼于描述一些基本的基于文献资料提及的阳极活性物质的容量衰减机理,并且强调了锂镍钴氧化物和尖晶石型锰酸锂的不同之处,他们都是眼下最合适的车载动力用电源的阴极材料。 2、实验结果 锂镍钴混合氧化物可以由人工合成,由镍钴化合物和镁或铝化合物在高温下与锂化合物混合烧结而成。溶液沉淀法制备参有尖晶石试样的前驱体,高温处理前驱体获得参杂的LiMn2O4,更详细资料在其他地方可以找到。 对金属锂的氧化态和钴镍锰分散情况进行了ICP分析,得到粉末状电极的X射线剖面图,仪器位西门子D5000衍射仪(Cu 为射线源,石墨二级单色器)。 2.1.正极容量损失的一般机理 大致说来,正极材料的容量衰减归结于三个基本原理: ●循环过程中的结构变化 ●化学分解/溶解分散反应 ●表面性质改变 相比于负极碳材料,正极活性物质的衰退取决于荷电状态(SOC)和循环状况。正极氧化物中锂离子的嵌入反应: LiMeO2→Li x MeO2+(1-x)Li++(1-x)e-

相关文档
最新文档