计算方法作业chapter5

计算方法作业chapter5
计算方法作业chapter5

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

习题五

1.利用9节点定步长复化梯形、辛普森求积公式,取6位以上小数计算以下积分: (2).12

ln(1)1x dx x

++?

解:由题意取18

h =

,000,,(1,2,,8)i x x x hi i ==+=??????

利用复化梯形求积公式:(0,1)a b ==

1

1

11[]()[()()()]

2

2

n i i I f T h h f a f x f b -=≈=+

+

11

[00.115970989+0.21001746+0.279192312+0.32437208682

1 +0.349129215+0.358154104+0.356026145+

0.346574359]

2

=

?+?

0.270768686=

利用辛普森求积公式:(0,1)a b ==

1

2121

1

[]()[()4()2()()]3

n

n i i i i h I f S h f a f x f x f b --==≈=

+++∑∑

1[04(0.115970989+0.279192312+0.349129215+0.356026145)

24

+2(0.21001746+0.324372086+0.358154104)+0.346574359]

=

+??

=0.2722056

2.利用变步长法求解上题,并估计误差。 解:利用变步长复化梯形求积公式:

1(1)(10.345674359)0.1732867952

T =

+=

111

()(1)0.3243720860.24882944222T T =+?= 1111

()()(0.210017460.358154104)0.2664576114224

T T =+?+= 1111

()()(0.1159709890.2791923120.3491292150.356026145)

8248

0.270768638

T T =+?+++=

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

误差:11()()10.2707686380.26645761184()()0.001437833

T T I f T ---≈== 利用变步长复化辛普森求积公式:

1(1)[()()]0.1155247863

S f a f b =

+=

4111

()[()()4()](040.3247320860.346574359)

2660.27425045

S f a f b f x =++=+?+= {}26411

()()()4[()()]2()4121[04(0.210017460.358154104)20.32437320860.346574359]12

0.272333919

S f a f b f x f x f x =++++=++?++?+=

{}135724611()()()4[()()()()]2[()()()]824

1[00.3465743594(0.1159709890.2791923120.3491292150.356026145)

24

2(0.210017460.3243720860.358154104)]0.272205679

S f a f b f x f x f x f x f x f x f x =++++++++=++?++++?++= 误差:11

()()184

()()-0.000002815

S S I f S --≈

= 3.用龙贝格积分法解第1题(2). 解:列表计算:

0.173286795

0.24882944 0.274010321

0.266457611 0.272333668 0.272221891

0.270768638 0.272205647 0.272197112 0.272196718 近似值0.272197112的估计误差0.272196718-0.272197112=-0.000000349 近似值0.272196718的误差应当更小,故知(1)0.272196718i S ≈ 4.导出下列求积公式及其截断误差表达式:

(2)00110()(0)(0)()()h

f x dx A f B f A f h B f h ''≈+++?

(3)20120

()(0)()(2)h

f x dx A f A f h A f h ≈++?

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

(5)

000

()()x dx A f x ≈?

或1122()();A f x A f x +

解:(2)1?.已知该式含有四个待定系数,故设23()1,,,f x x x x =

当()1f x =时,0101h

dx h A A ==+?

当()f x x =时,2

011012

h

xdx h B A h B =

=++? 当2()f x x =时,23

2

110

123h

x dx h A h B h ==+? 当3()f x x =时,3

4

3

2

110134

h

x dx h A h B h =

=+?

由此解出:22

0101,,,2

2

1212h h h

h

A A

B B =

=

=

=-

2

2

()[](0)(0)()()2

12

2

12

h

h h

h h

f x dx Q f f f f h f h ''∴≈=

+

+-

?

且当4()f x x =时,4

5

15

h

x dx h =

?,3

4

[][244][]12

h Q f h h I f =-≠

所以该公式具有3次代数精确度,不可能更高。

2?

根据广义peano 定理取01230,0,,;x

x x h x h ==== 令(4)

22

1()()()4!

e x f

x x h ξ=

-,此时(0)(0)()()0e e e h e h ''====

(4)

2

2

5

(4)

2

2

(4)

[][()]()[6(0)(0)6()()]

12

1()()()4!

1()()()

4!

720

h h h h h R f R e x e x dx e he e h he h e x dx f

x x h dx

h

f

x x h dx f

ξηη''==

-

++-==-=

-=

?

?

?

?

(3)1?.已知该式含有3个待定系数,故设2

()1,,f x x x =

当()1f x =时,2012012h

dx h A A A ==++?

当()f x x =时,22

120

22h

xdx h A h A h ==+?

当2

()f x x =时,22

322

120

843

h x dx h A h A h =

=+?

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

由此解出:0124,,;3

3

3h h h A A A =

=

=

20

4()[](0)()(2)3

3

3h h h

h f x dx Q f f f h f h ∴

≈=

+

+

?

当3()f x x =时,23

4

3

3

4

04,[][48]4[]3h h x dx h Q f h h h I f ==+==? 当4()f x x =时,24

5

325

h x dx h =

?

,4

4

5

20[][416][]3

3

h Q f h h h I f =

+=

所以该公式具有3次代数精确度,不可能更高。

2?

根据广义peano 定理取01230,,,2;x

x h x h x h ==== 令(4)

2

1()()()(2)4!

e x f

x x h x h ξ=

--,此时(0)()(2)0e e h e h ===

20

22(4)

2

5

2(4)

2

(4)

[][()]()[(0)4()(2)]

3

1()()()(2)4!

1()()(2)()

4!

90

h h h h h R f R e x e x dx e e h e h e x dx f

x x h x h dx h

f

x x h x h dx f

ξηη==

-

++==--=

--=

?

?

?

?

(5).

解:对于000

()()x dx A f x ≈?

(1)

1?

截断误差000

[]()()R f x dx A f x =

-?

02[1]3R A =-,当023

A =时[1]0R =,此时(1)式代数精度0≥

022[]5

3

R x x =

-,当035

x =

时[]0R x =,此时(1)式代数精度1≥

2

2

0028[]07175

R x A x =

-=

≠,故(1)式代数精度最高为1;

求积公式为:0

23

()()35

x dx f ≈

?

2?

根据广义peano 定理取0130,5

x

x == ,

令13

()()()2!

5e x f x x ξ''=

-

,此时3

(0)()05

e e ==

3

1200

3

1

20

2

3

13[][()]()()()()()352!

5

134()()()

2

5175

R f R e x x dx e x dx f x x dx

f x x dx f ξηη''==

-

=

=

-

''''=-

=

?

?

?

?

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

对于11220

()()()x dx A f x A f x =+?

(2)

1?

截断误差11220

[]()()()R f x dx A f x A f x =

--?

121221111221222112221122333

11222

[1]0.............(1)223

(2)(1)()......(5)253[]0......(2)225

(3)(2)()..(6)275[]0....(3)72[]0.....(4)9R A A x A x x x R x A x A x x A x x x x R x A x A x R x A x A x ?

=

--=?

-?-=-??=--=??-?-=-??

=--=???

=--=?

22

1121122(4)(3)()..(7)97x A x x x x ???????-?-=-??

1

21

1,2

1

212

2

(6)

75

...(8)22(5)

553

22

963

(7)

97

(9)

22(6)

75

x x x x x x x ?-

??=?

?-?

?=??-??=?

-?

? ,代入(6),(7)

式得:1,213

300

A =

求积公式为0

15

15

()((33009633300963

x dx f f ??=--+++ ??

???

4

4

4

2

15

15[]((0.00301133009633

300963

R x ??=

---+++≈≠ ????,

故(2)式代数精度最高为3;

2?

根据广义peano

定理取0123550,19

639

63

x

x x

x

==-

=+

=

令(4)

155()()(1)4!

9

639

63

e x f

x x x x ξ=

-

+

--

-,

此时55(0)(((1)09

63

9

63

e e e e =-

=+

==

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

1(4)

1

(4)

(4)

15

15

[][()]()((((33009633300963

155()()(1)4!963963

155128()(1)()

4!

9

63

9

63

43659

R f R e x x dx e e x dx f x x x x dx

f

x x x x dx f

ξηη==

---

-++==-+-

-

-=

-

+

-

-

-=

?

?

?

?

11.确定下列数值微分公式的系数,导出截断误差简单表达式. (1)(0)()(0)();f af h bf cf h '≈-++ (2)()(0)[(2)()].f h af b f h f h ''≈+- (1)解:(0)(0)f f =

2

3

()(0)(0)(0)(0)()2

6

h

h

f h f h f hf f f ξ''''''-=-=-+

-

2

3

()(0)(0)(0)(0)()2

6

h

h

f h f h f hf f f ξ''''''=+=++

+

2

3

()(0)()()(0)()(0)()

(0)()

()

2

6

h

h

af h bf cf h a b c f c a hf a c f c a f ξ''''''∴-++=+++-+++-故得2

102()101()0

22

a a

b

c h

c a h b h

c a c h ??

=-??++=??

-=?=??????=+=??

故2

1111(0)()()()()()226

22h

f f h f h f h f h f h h

h h

h

''''=-

-+

-

≈-

-+

2

:[]()6

h

R f f ξ'''=-

截断误差为

(2)解: 2

3

4

(4)

(0)()()()()()()2

6

24

h

h

h

f f h h f h hf h f h f h f

ξ''''''=-=-+

-

+

2

3

(4)

(0)()()()()()2

6

h

h

f f h h f h hf h f h f

ξ''''''''=-=-+-

+

姓名 蒋丽丽 序号 15 院系 土木工程 专业 结构工程(06研)

2

3

4

(4)

(2)()()()()()()2

6

24

h

h h f h f h h f h hf h f h f h f

ξ''''''=+=++

+

+

()()f h f h =

2

3

2

(0)[(2)()]()()()()()()

2

()()6

2

bh af b f h f h b b f h bh a f h ah f h bh h

a f h ''''∴+-=-+-++'''+-

+

故得103

12032b b a bh a b bh

a h ?

??-==-???-=?????=??+=?

?

12()(0)[(2)()].33f h f f h f h h

''≈

+

- 2

2

2

235:[][

]()()1818

18

R f h h f h f ξξ''''''=+

=

截断误差为

计算方法_习题第一、二章答案..

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

计算方法 第5章 数值积分

第五章数值积分 §5.0 引言 §5.1 机械求积公式 §5.2 Newton-Cotes公式 §5.3 变步长求积公式及其加速收敛技巧§5.4 Gauss公式 §5.5 小结

§5.0 引 言 1. 定积分的计算可用著名的牛顿-莱布尼兹公式来计算: ()()()b a f x dx F b F a =-? 其中F (x )是f (x )的原函数之一,可用不定积分求得。 然而在实际问题中,往往碰到以下问题: (a) 被积函数f (x )是用函数表格提供的; (b) 被积函数表达式极为复杂,求不出原函数,或求出原函数后,由于形式复杂不利于计算; (c) 大量函数的原函数不容易或根本无法求出,例如 2 1 0x e dx -?,概率积分 1 0sin x dx x ?, 正弦型积分 2 22 2 2 4()1sin Ir x H x d r x r π θθ?? =- ?-?? ? 回路磁场强度公式 等根本无法用初等函数来表示其原函数,因而也就无法精确计算其定积分,只能运用数值积分。 2 所谓数值积分就是求积分近似值的方法。 而数值积分只需计算 ()f x 在节点(1,2,,)i x i n = 上的值,计算方便 且适合于在计算机上机械地实现。

§5.1 机械求积公式 1 数值积分的基本思想 区间[a ,b ]上的定积分()b a f x dx ? ,就是在区间[a,b]内取n+1个点 01,,,n x x x ,利用被积函数f (x )在这n+1个点的函数值的某一种线性组合 来近似作为待求定积分的值,即 ()()n b k k a k f x dx A f x =≈∑? 右端公式称为左边定积分的某个数值积分公式。 其中,x k 称为积分节点,A k 称为求积系数。 因此,一个数值积分公式关键在于积分节点x k 的选取和积分系数A k 的决定,其中A k 与被积函数f(x)无关。称为机械求积公式。 1.1 简单算例说明 例1 求积分1 ()x x f x dx ? 此积分的几何意义相当于如下图所示的曲边梯形的面积。 解:(1) 用f (x )的零次多项式00()()y L x f x == 来近似代替()f x ,于是, 110 0001()(()))(x x x x f x dx f x dx f x x x ≈ =-? ? (为左矩公式)

西工大计算方法作业答案

参考答案 第一章 1 *1x =1.7; * 2x =1.73; *3x =1.732 。 2. 3. (1) ≤++)(* 3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。 4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。 令3)1()1(1* 102 1 102211021)(-----?≤??=?= n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。 5. 答:(1)*x (0>x )的相对误差约是* x 的相对误差的1/2倍; (2)n x )(* 的相对误差约是* x 的相对误差的n 倍。 6. 根据******************** sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =* *****) ()()(tgc c e b b e a a e ++ 注意当20* π < >c tgc ,即1 *1 * )() (--

7.设20= y ,41.1*0 =y ,δ=?≤--2* 00102 1y y 由 δ1* 001*111010--≤-=-y y y y , δ2*111*221010--≤-=-y y y y M δ10*991*10101010--≤-=-y y y y 即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小10 10-倍。而110 10 <<-δ,故计算过程稳定。 8. 变形后的表达式为: (1))1ln(2--x x =)1ln(2-+-x x (2)arctgx x arctg -+)1(=) 1(11 ++x x arctg (3) 1ln )1ln()1(ln 1 --++=? +N N N N dx x N N =ΛΛ+-+- +3 2413121)1ln(N N N N 1ln )11ln()1(-++ +=N N N N =1)1ln()1 1ln(-+++N N N (4)x x sin cos 1-=x x cos 1sin +=2x tg

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

2020年奥鹏吉大网络教育《计算方法》大作业解答

2020年奥鹏吉大网络教育《计算方法》大作业解答 (说明:前面是题目,后面几页是答案完整解答部分,注意的顺序。) 一、解线性方程 用矩阵的LU分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用高斯消去法求解线性方程组 用高斯消去法求解线性方程组 用主元素消元法求解线性方程组 用高斯消去法求解线性方程组 利用Doolittle分解法解方程组Ax=b,即解方程组 1、用矩阵的LU分解算法求解线性方程组 X1+2X2+3X3 = 0 2X1+2X2+8X3 = -4 -3X1-10X2-2X3 = -11 2、用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1 2X1– X2+9X3 = 0 -3X1+ 4X2+9X3 = 1 3、用矩阵的Doolittle分解算法求解线性方程组 2X1+X2+X3 = 4 6X1+4X2+5X3 =15 4X1+3X2+6X3 = 13 4、用高斯消去法求解线性方程组

2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 5、用无回代过程消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 6、用主元素消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 7、用高斯消去法求解线性方程组 123123123234 4272266 x x x x x x x x x -+=++=-++= 8、利用Doolittle 分解法解方程组Ax=b ,即解方程组 12341231521917334319174262113x x x x -? ????? ???? ??-??????=? ? ????--?????? --???? ??

数值计算方法试题集和答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

西安交通大学计算方法B大作业

计算方法上机报告 姓名: 学号: 班级:

目录 题目一------------------------------------------------------------------------------------------ - 4 - 1.1题目内容 ---------------------------------------------------------------------------- - 4 - 1.2算法思想 ---------------------------------------------------------------------------- - 4 - 1.3Matlab源程序----------------------------------------------------------------------- - 5 - 1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 - 2.1题目内容 ---------------------------------------------------------------------------- - 7 - 2.2算法思想 ---------------------------------------------------------------------------- - 7 - 2.3 Matlab源程序---------------------------------------------------------------------- - 8 - 2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 - 3.1题目内容 --------------------------------------------------------------------------- - 11 - 3.2算法思想 --------------------------------------------------------------------------- - 11 - 3.3Matlab源程序---------------------------------------------------------------------- - 13 - 3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 - 4.1题目内容 --------------------------------------------------------------------------- - 15 - 4.2算法思想 --------------------------------------------------------------------------- - 15 - 4.3Matlab源程序---------------------------------------------------------------------- - 15 - 4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

第五章结构力学的方法

第五章结构力学的方法 1、常用的计算模型与计算方法 (1)常用的计算模型 ①主动荷载模型:当地层较为软弱,或地层相对结构的刚度较小,不足以约束结构茂变形时,可以不考虑围岩对结构的弹性反力,称为主动荷载模型。 ②假定弹性反力模型:先假定弹性反力的作用范围和分布规律、然后再计算,得到结构的内力和变位,验证弹性反力图形分布范围的正确性。 ③计算弹性反力模型:将弹性反力作用范围内围岩对衬砌的连续约束离散为有限个作用在衬砌节点巨的弹性支承,而弹性支承的弹性特性即为所代表地层范围内围岩的弹性特性,根据结构变形计算弹性反力作用范围和大小的计算方法。 (2)与结构形式相适应的计算方法 ①矩形框架结构:多用于浅埋、明挖法施工的地下结构。 关于基底反力的分布规律通常可以有不同假定: a.当底面宽度较小、结构底板相对地层刚度较大时假设底板结构是刚性体,则基底反力的大小和分布即可根据静力平衡条件按直线分布假定求得(参见图5.2.1 ( b )。 b.当底面宽度较大、结构底板相对地层刚度较小时,底板的反力与地基变形的沉降量成正比。若用温克尔局部变形理论,可采用弹性支承法;若用共同变形理论可采用弹性地基上的闭合框架模型进行计算。此时假定地基为半无限弹性体,按弹性理论计算地基反力。 矩形框架结构是超静定结构,其内力解法较多,主要有力法和位移法,并由此法派生了许多方法如混合法、三弯矩法、挠角法。在不考虑线位移的影响时,则力矩分配法较为简便。由于施工方法的可能性与使用需要,矩形框架结构的内部常常设有梁、板和柱,将其分为多层多跨的形式,其内部结构的计算如同地面结构一样,只是要根据其与框架结构的连接方式(支承条件),选择相应的计算图式。 ②装配式衬砌 根据接头的刚度,常常将结构假定为整体结构或是多铰结构。根据结构周围的地层情况,可以采用不同的计算方法。松软含水地层中,隧道衬砌朝地层方向变形时,地层不会产生很大的弹性反力,可按自由变形圆环计算。若以地层的标准贯入度N来评价是否会对结构的变形产生约束作用时,当标准贯入度N>4时可以考虑弹性反力对衬砌结构变形的约束作用。此时可以用假定弹性反力图形或性约束法计算圆环内力。当N<2时,弹性反力几乎等于零,此时可以采用白由变形圆环的计算方法。 接头的刚度对内力有较大影响,但是由于影响因素复杂,与实际往往存在较大差距,采用整体式圆形衬砌训算方法是近似可行的。此外,计算表明,若将接头的位置设于弯矩较小处,接头刚度的变化对结构内力的影响不超过5%。 目前,对于圆形结构较为适用的方法有: a.按整体结构计算。对接头的刚度或计算弯矩进行修正;

计算方法作业参考答案(不断更新)

: 第一次作业 1.下列各数都是经过四舍五入得到的近似数,指出他们有几位有效数字,并写出绝对误差限。 9800107480.566.385031.01021.1*65*5*4*3*2*1=?=====x x x x x x 解: 1* 11011021.01021.1?==x ,有5位有效数字,绝对误差限为4-5-1105.0105.0?=?; 1-* 2 1031.0031.0?==x ,有2位有效数字,绝对误差限为3-2-1-105.0105.0?=?; 3* 3103856.06.385?==x ;有4位有效数字,绝对误差限为-14-3105.0105.0?=?; 2* 41056480.0480.56?==x ;有5位有效数字,绝对误差限为3-5-2105.0105.0?=?; ; 65* 5 107.0107?=?=x ;有1位有效数字,绝对误差限为51-6105.0105.0?=?; 4* 6 109800.09800?==x ;有4位有效数字,绝对误差限为5.0105.04-4=?。 2.要使20的近似值的相对误差限小于%1.0,要取几位有效数字 解:由于110447213595.047213595.420??=?=,设要取n 位有效数字,则根据 定理,有()()%1.01081 1021111

计算方法大作业非线性方程求根的新方法

计算方法大作业 题目:非线性方程求根的新方法 班级:xxx 学号:xxx 姓名:xxx

非线性方程求根的新方法 一、问题引入 在计算和实际问题中经常遇到如下非线性问题的求解: F(x)=0 (1) 我们经常采用的方法是经典迭代法: 经典迭代方法 不动点迭代方法是一种应用广泛的方法,其加速方法较多,如Stiffensen加速方法的局部收敛阶(以下简称为收敛阶)为2阶;牛顿迭代方法的收敛阶亦为2阶,且与其相联系的一些方法如简化牛顿法、牛顿下山法、弦截法的收敛阶阶数介于1和2之间;而密勒法的收敛阶与牛顿法接近,但计算量较大且涉及零点的选择问题,同时收敛阶也不够理想。 因此本文介绍一种新的迭代方法 从代数角度看,牛顿法和密勒法分别是将f(x)在xk附近近似为一线性函数和二次抛物插值函数,一种很自然的想法就是能否利用Taylor展开,将f(x)在xk附近近似为其他的二次函数?答案是肯定的.其中的一种方法是将f(x)在Xk处展开3项,此时收敛阶应高于牛顿法,这正是本文的出发点. 二、算法推导 设函数f(x)在xk附近具有二阶连续导数,则可将f(x)在xk处进行二阶Taylor展开,方程(1) 可近似为如下二次方程: f(xk)+f’(xk)(x-xk)+2^(-1)f’’(xk)(x-xk)^2=0,(2) 即 2^(-1)f’’(xk)x^2+(f’(xk)-xkf’’(xk))x+2^(-1)f’’(xk)xk^2-xkf’(xk)+f(xk)=0(3) 利用求根公式可得 X=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(4) 其中±符号的选取视具体问题而定,从而可构造迭代公式 X k+1=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(5) 确定了根号前正负号的迭代公式(5),可称为基于牛顿法和Taylor展开的方法,简记为BNT 方法. 为描述方便起见,以下将f(xk),f’(xk),f’’(xk)分别记为f,f’,f’’.首先,二次方程(3)对应于一条抛物曲线,其开口方向由f’’(xk),x∈U(xk)的符号确定,其中U(xk)为xk的某邻域,其顶点为 P(xk-(f’’)^(-1)f’,fk-(2f’’)^(-1)(f’)^2).为使(5)式唯一确定x k+1,须讨论根式前正负号的取舍问题.下面从该方法的几何意义分析(5)式中正负号的取舍. 1)当f(xk)=o时,z。即为所求的根. 2)当f(xk)>O时,根据y=f(x)的如下4种不同情形(见图1)确定(5)式中根号前的符号. (a)当f’’(xk)o时,“±”取为“一”;(b)当f’’(xk)o,f(xk)>o时,“±”取为“一”;(d)当f’’(xk)>o,f(xk)o时,“±”取为“+”;(b)当 f’’(xk)o,f(xk)>o时,“±”取为“+”;(d)当f’’(xk)>o,f(xk)

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.*x=–1 2.0326作为x的近似值一定具有6位有效数字,且其误差限 ≤ 4 10 2 1 - ? 。() 2.对两个不同数的近似数,误差越小,有效数位越多。( ) 3.一个近似数的有效数位愈多,其相对误差限愈小。( ) 4.用 2 1 2 x - 近似表示cos x产生舍入误差。( )

5. 3.14和 3.142作为π的近似值有效数字位数相同。 ( ) 二、填空题 1. 为了使计算 ()()2334912111y x x x =+ -+ ---的乘除法次数尽量少,应将该 表达式改写为 ; 2. * x =–0.003457是x 舍入得到的近似值,它有 位有效数字,误差限 为 ,相对误差限为 ; 3. 误差的来源是 ; 4. 截断误差为 ; 5. 设计算法应遵循的原则是 。 三、选择题 1.* x =–0.026900作为x 的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x 近似表示e x 所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s *=21 g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在 时间t 内的实际距离,则s t - s *是( )误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。 四、计算题

工程计算方法及软件应用--本科生考查大作业

工程计算方法与软件应用 本科生大作业 考核方式:考查(成绩按各软件的课外作业成绩综合给出)。 各软件讲完后1~2星期内上交作业。 一、CAD/CAE软件作业(每个学生完成下列任意一题) 题目一: 一端固定支撑,一端集中力的梁,横截面为10x10cm,长为150cm,受集中载荷作用,P=50N。弹性模量E=70GPa,泊松比r=0.2。用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 (1)二维;(2)三维 图1梁受力简图

题目二: 图中所示为一个连接件,一端焊接到设备母体上,一端在圆柱销子作用下的圆孔,圆孔下半周受到30 kN的均布载荷作用,用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 图2 连接件受力简图 题目三: 如图3所示为一薄壁圆筒,在圆筒中心受集中力F作用,对此进行受力分析,并给出应力、位移云图,并求A、B两点位移。 圆筒几何参数:长度L=0.2m;半径R=0.05m壁厚t=2.5mm。 材料参数:弹性模量E=120Gpa;泊松比0.3 载荷:F=1.5kN。

图3薄壁管受力简图 题目四: 如图4所示为一燃气输送管道截面及受力见图,试分析管道在内部压力作用下的应力场。 几何参数:外径0.6m,内径0.4m,壁厚0.2m 材料参数:弹性模量E=120Gpa;泊松比0.26 载荷P=1Mpa。 图4燃气管受力简图

题目五: 如图5为一三角桁架受力简图,途中各杆件通过铰链链接,杆件材料及几何参数见表1和表2所示,桁架受集中力F1=5kN、F2=2.5kN 作用,求桁架各点位移及反作用力。 图5 三角桁架受力简图 表1 杆件材料参数 表2 杆件几何参数

数值计算方法第五章

第五章 数值拟合及最小二乘法 一、最小二乘法的基本原理 从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差 i i i y x p r -=)((i=0,1,…,m) 一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值i m i r ≤≤0max ,即误差 向量 T m r r r r ),,(10 =的∞—范数; 二是误差绝对值的和 ∑=m i i r ,即误差向量r 的1—范数; 三是误差平方和∑=m i i r 2 的算术平方根,即误差向量r 的2—范数;前两种方 法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方, 因此在曲线拟合中常采用误差平方和∑=m i i r 02 来 度量误差i r (i=0,1,…,m)的整 体大小。 数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即 ∑=m i i r 2 [] ∑==-m i i i y x p 0 2 min )( 从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线 )(x p y =(图6-1)。函数)(x p 称为拟合函数或最小二乘解,求拟合 函数p(x)的方法称为曲线拟合的最小二乘法。 合中,函数类Φ可有不同的选取方法 .

5—1 二 多项式拟合 假设给定数据点),(i i y x (i=0,1,…,m), Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一 Φ ∈=∑=n k k k n x a x p 0)(,使得 [] min )(0 02 02 =??? ??-=-=∑∑∑===m i m i n k i k i k i i n y x a y x p I (1) 当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。特别地,当n=1 时,称为线性拟合或直线拟合。 显然 ∑∑==-=m i n k i k i k y x a I 0 2 0)( 为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。由多元函数求极值的必要条件,得 n j x y x a a I m i j i n k i k i k j ,,1,0,0)(200 ==-=??∑∑== (2) 即 n j y x a x n k m i i j i k m i k j i ,,1,0, )(0 ==∑∑∑===+ (3) (3)是关于n a a a ,,10的线性方程组,用矩阵表示为 ???? ?? ???? ??????????=????????????????????? ??????????? +∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n m i n i m i n i m i n i m i n i m i i m i i m i n i m i i y x y x y a a a x x x x x x x x m 00010020 10 102000 1 (4) 式(3)或式(4 )称为正规方程组或法方程组。 可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出k a (k=0,1,…,n) ,从而可得多项式

相关文档
最新文档