混凝土应变计(组)应力计算方法

混凝土应变计(组)应力计算方法
混凝土应变计(组)应力计算方法

大体积混凝土应力计算

大体积混凝土应力计算 在混凝土浇筑时,除按上述公式计算混凝土的各种温度外,还应对混凝土裂缝进行计算。在浇筑前、浇筑中、浇筑后均应及时进行计算,控制混凝土裂缝的出现。混凝土裂缝计算采用中国建筑设计研究院研制的PKPM 计算软件。 a. 混凝土浇筑前裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 大体积混凝土贯穿性或深进的裂缝,主要是由于平均降温差和收缩差引起过大的温度收缩应力而造成的。混凝土因外约束引起的温度(包括收缩) 应力(二维时),一般用约束系数法来计算约束应力,按以下简化公式计算: △卄(2/3)? T(c+T7(t)-Th 式中:旷混凝土的温度(包括收缩)应力(N/mm2); E(t)--混凝土从浇筑后至计算时的弹性模量(N/mn2),—般取平均 a--混凝土的线膨胀系数,取1.0 X 105; △T--混凝土的最大综合温差(C)绝对值,如为降温取负值;当大体积混凝土基础长期裸露在室外,且未回填土时,△T值按混凝土水化热 最高温升值(包括浇筑入模温度)与当月平均最低温度之差进行计算;计算结果为负值,则表示降温; T o--混凝土的浇筑入模温度(C ); T(t)--浇筑完一段时间t,混凝土的绝热温升值(C); T y(t)--混凝土收缩当量温差(C); T h--混凝土浇筑完后达到的稳定时的温度,一般根据历年气象资料取当年平均气温「C); S t)--考虑徐变影响的松弛系数,一般取0.3?0.5 ; R--混凝土的外约束系数,当为岩石地基时,R=1;当为可滑动垫 层时,R=0, —般土地基取0.25?0.50 ; v--混凝土的泊松比

⑵计算: 取S t ) =0.19 , R= 0.50 , Y =0.15; ① 混凝土 3d 的弹性模量由式: 计算得:E ⑶二0.60 X 104 ② 最大综合温差 △ T=11.66 C ③ 基础混凝土最大降温收缩应力,由式: 计算得: ④ 不同龄期的抗拉强度由式 X(i) = 0^(18 ⑤ 抗裂缝安全度: K=0.94/0.08=11.75>1.15 故满足抗裂条件。 b. 混凝土浇筑后裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 弹性地基基础上大体积混凝土基础或结构各降温阶段综合最大温度收 缩拉应力,按下式 计算: 降温时,混凝土的抗裂安全度应满足下式要求: 式中:6)--各龄期混凝土基础所承受的温度应力(N/mm ); a --混凝土线膨 胀系数,取1.0 X 105; v -混凝土泊松比,当为双向受力时,取0.15 ; 计算得: t (3)=0.94N/mm 1-他 er =0.08N/mm ---------- 1工E 闵工 谢%

应力-应变曲线

应力-应变曲线(stress-strain curves) 根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。 应力及应变值按下式计算:

式中σ i 表示拉伸图上任意点的应力值,δ i 为i点的延伸率,P i 及Δl i 为该 点的拉力与绝对伸长值,F 0及l 为试件的断面积和计算长度。 试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保 持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σ s 表示,其求法见屈服点。 拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在 细颈部分。出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σ b 表示 σ b =P max /F 式中P max 为拉伸图上所记录的最大载荷值。 试件出现细颈后很快即断裂,断裂应力σ f σ f =P f /T f 式中P f 是断裂时的拉力,F f 是断口面积。 试件拉断时的延伸率δ f (%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标: 矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。 抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。 应力-应变曲线表征材料受外力作用时的行为。材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变

应力应变计算方法

钢筋砼梁应力应变计算方法的探讨 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。 关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应力计算。 1.2.1受压区边缘砼应力

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构内力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中, c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。

大体积混凝土计算

西工大创新科技大楼 大体积混凝土计算书 编制人: 编制时间:2014年2月20日 计算说明:本计算书按草席上下各铺设一层塑料膜养护计算(因未找到黑心棉相关数据)。

目录 第一章工程概况----------------------------------------3页1.1项目概况------------------------------------------3页1.2计算说明------------------------------------------3页 第二章温度计算---------------------------------------4页2.1绝热温升------------------------------------------4页2.2砼中心温度----------------------------------------4页2.3砼表面温度----------------------------------------5页2.3.1保温材料的厚度----------------------------------5页2.3.2砼保温层传热系数--------------------------------6页2.3.3混凝土的虚厚度----------------------------------6页2.3.4混凝土的计算厚度--------------------------------6页2.3.5砼表面温度--------------------------------------7页2.4砼内的平均温度------------------------------------7页2.5温度计算结论--------------------------------------8页 第三章混凝土应力计算---------------------------------9页3.1砼的干缩率----------------------------------------9页3.2砼收缩当量温差------------------------------------10页3.3砼的结构计算温差----------------------------------10页3.4各区段拉应力计算----------------------------------11页3.4.1计算 E平均弹性模量------------------------------11页 i E瞬时弹性模量--------------------11页3.4.1.1大体积混凝土t 3.4.1.2 E平均弹性模量-------------------------------12页 i 3.4.2 S平均应力松弛系数-----------------------------12页 i β平均地基约束系数。---------------------------12页3.4.3 i β地基约束系数-----------------------13页3.4.3.1各龄期的t Cx桩的阻力系数---------------------------13页3.4.3.1.1 2 3.4.3.1.1.1 Q桩产生单位位移所需水平力---------------13页 Cx桩的阻力系数-------------------------14页3.4.3.1.1.2 2 β各龄期的地基约束系数----------------------14页3.4.3.2 t β平均地基约束系数。------------------------14页3.4.3.3 i 3.4.4 计算ch双曲余弦函数值-------------------------15页 δ各区段拉应力计算----------------------------15页3.4.5 i δ最大拉应力---------------------15页3.5到指定龄期砼内max 第四章安全验算--------------------------------------16页

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

混凝土外约束拉应力计算书

混凝土外约束拉应力计算书计算依据: 1、《大体积混凝土施工标准》GB50496-2018 2、《建筑施工计算手册》江正荣编著 一、混凝土外约束拉应力 第1层保温层厚度δ1(m) 0.5 第1层保温材料导热系数λ1[W/(m·K)] 0.06 第2层保温层厚度δ2(m) 0.7 第2层保温材料导热系数λ2[W/(m·K)] 0.09 实测日期t1(d) 3 实测温度T1(°C) 50 松弛系数H1(t1) 0.186 实测日期t2(d) 6 实测温度T2(°C) 45 松弛系数H2(t2) 0.215 实测日期t3(d) 9 实测温度T3(°C) 35 35.7 松弛系数H3(t3) 0.383 固体在空气中的放热系数 βu[W/(m2·K)] 混凝土的导热系数λ0[W/(m·K)] 0.45 混凝土浇筑体的长度L(mm) 4 4 混凝土浇筑体的实际厚度h(m) 1 外约束介质水平变形刚度 C X(10-2N/mm3) 水泥品种修正系数M1 1.1 水泥细度修正系数M2 1.13 水胶比修正系数M3 1.21 胶浆量修正系数M4 1.45 养护时间修正系数M5 1.11 环境相对湿度修正系数M6 1.1 水力半径的倒数修正系数M70.76 E S F S/E C F C修正系数M80.85 减水剂修正系数M9 1.3 粉煤灰掺量修正系数M100.9 0.99 矿粉掺量修正系数M11 1.03 粉煤灰掺量对弹性模量调整修正系数 β1 1.03 系数φ0.09 矿渣粉掺量对弹性模量调整修正系数 β2 1、各龄期混凝土弹性模量

E i(3)=βE0(1-e-φt)=β1β2E0(1-e-φt)=0.99×1.03×3×104×(1-2.718-0.09×3)=7241N/mm2 同理:E i(6)=12768N/mm2,E i(9)=16987N/mm2 2、各龄期混凝土浇筑体综合降温差的增量 εy(3)=εy0(1-e-0.01t)·M1·M2·M3…M11=4×10-4×(1-2.718-0.01×3)×1.1×1.13×1.21×1.45×1.11×1.1×0.76×0.85×1.3×0.9×1.03=2.451×10-5 3天的混凝土的收缩当量温度: T y(3)=εy(t)/α=2.451×10-5/1.0×10-5=2.45°C 同理: εy(6)=4.829×10-5,T y(6)=4.83°C, εy(9)=7.137×10-5,T y(9)=7.14°C ΔT2i(6)=(T2-T1)+(Ty(6)-Ty(3))=(50-45)+(4.829-2.451)=7.378°C 同理:ΔT2i(9)=12.308°C 3、各龄期外约束系数 保温层总热阻: R S=Σ(δi/λi)+1/βu=(0.5/0.06+0.7/0.09)+1/35.7=16.139(m2·K)/W 保温层总放热系数: βS=1/R S =1/16.139=0.062W/(m2·K) 保温层相当于混凝土的虚拟厚度: h'=λ0/βS=0.45/0.062=7.263m R i(6)=1-1/cosh[(C X/HE(6))0.5×L/2]=1-1/cosh[(4×10-2/((7.263+1)×103×12768))0.5×4×103/ 2]=0.00076 同理:R i(9)=0.00057 4、各龄期外约束拉应力 σx(6)=αΔT2i(6)×E i(6)×H i(6)×R i(6)/(1-μ)=1×10-5×7.378×12768×0.186×0.00076/(1-0.15)= 0.000156MPa 同理:σx(9)=0.000301MPa

钢筋混凝土梁的应力应变计算

钢筋砼梁应力应变计算方法的探讨 余海森 (江西省交通科研院南昌 330038) 摘要:对于钢筋砼梁应力应变的计算,分别用桥梁规范中弹性体假定的应力计算方法和以砼处于弹塑性阶段的应力计算方法进行分析,通过算例比较两者计算结果的差异,提出一些个人的见解。关健词:桥梁工程;钢筋砼梁;应力应变值;计算方法;基本假定;弹性;弹塑性 0 前言 钢筋砼梁属于受弯构件。按《公路钢筋砼及预应力砼桥涵设计规范》(以下简称《桥规》)要求,对于钢筋砼受弯构件的设计,首先按承载能力极限状态对梁进行强度计算,从而确定构件的设计尺寸、材料、配筋量及钢筋布置,以保证截面承载能力要大于荷载效应;另外,尚需按正常使用极限状态对构件进行应力、变形、裂缝计算,验算其是否满足正常使用时的一些限值的规定。为检验钢筋砼梁的施工是否满足设计要求,均应对形成该梁的材料(钢筋及砼)进行强度检验,但由于砼的养护环境、工作条件及钢筋的加工、布置等方面,均存在试样与实际构件之间的差异,因而不能完全地说明该构件的工作性能。有时,按需要可对梁进行直接加载试验以量测荷载效应值,通过实测值与理论计算值的比较,以检验其工作性能是否能满足设计和规范的要求。通常情况下,我们不能直接测定梁体的应力值,只能通过实测梁体的应变值,进而求算其应力值。但钢筋砼结构属于非匀质材料,不能直接运用材料力学计算公式进行其应力及应变的计算,因此,本文按弹性阶段应力计算和弹塑性阶段应力计算2种方法进行分析比较。 1 按弹性阶段计算应力的方法 钢筋砼梁在使用阶段的工作状态可认为与施工阶段的工作状态相同,都处于带裂缝工作阶段,因此可按施工阶段的应力计算方法进行计算。 1.1 基本假定 《桥规》规定:钢筋砼受弯构件的施工阶段应力计算,可按弹性阶段进行,并作以下3项假定。 1.1.1 平截面假定 认为梁的正截面在梁受力并发生弯曲变形后,仍保持为平面,平行于梁中性轴的各纵向纤维的应变与其到中性轴的距离成正比,同时由于钢筋与砼之间的粘结力,钢筋与其同一水平线的砼应变相等。其表达式为: εh/x=εh′/(h0-x) εg=εh′ 式中:εh′-为与钢筋同一水平处砼受拉平均应变; εh-为砼受压平均应变; εg-为钢筋平均拉应变; x-为受压区高度; h0-为截面有效高度。 1.1.2 弹性体假定 假定受压区砼的法向应力图形为三角形。钢筋砼受变构件处在带裂缝工作阶段,砼受压区的应力分布图形是曲线形,但曲线并不丰满,与直线相差不大,可以近似地看作呈直线分布,即受压区砼的 应力与应变成正比。 σh=εhEh 式中:σh-为砼应力; εh-为砼受压平均应变; E h-为砼弹性模量。 1.1.3 受拉区砼完全不能承受拉应力 在裂缝截面处,受拉区砼已大部分退出工作,但在靠近中和轴附近,仍有一部分砼承担着拉应力。由于其拉应力较小,内力偶臂也不大,因此,不考 虑受拉区砼参加工作,拉应力全部由钢筋承担。 σg=εgEg 式中:σg-为钢筋应力; εg-为受拉区钢筋平均应变; E g-为钢筋弹性模量。 1.2采用换算截面计算应力 根据同一水平处钢筋应变与砼的应变相等,将钢筋应力换算为砼应力,则钢筋应力为砼应力的n g 倍(n g=E g/E h)。由上述假定得到的计算图式与材料力学中匀质梁计算图非常接近,主要区别是钢筋砼梁的受拉区不参予工作。因此,将钢筋假想为受拉的砼,形成一种拉压性能相同的假想材料组成的匀质截面,即为换算截面,再按材料力学公式进行应

烟囱大体积混凝土计算

烟囱大体积混凝土计算书 烟囱底板混凝土为宽5.9m,高2 m的圆环体,属大体积混凝土,需进行大体积混凝土计算。底板混凝土采用标号C30混凝土,中热硅酸盐水泥。 一、大体积混凝土计算公式 1.混凝土最大绝热温升 Th=m c*Q/(c*ρ*(1-e-mt)) 式中Th----------最大绝热温升(℃); m c---------混凝土中水泥(包括膨胀剂)用量(Kg/m3),取m c=350 Kg/m3; Q---------水泥28d水化热(KJ/(mg*K)),取Q=375 KJ/(mg*K); C---------混凝土比热,取C=0.97 KJ/(mg*K); ρ-----混凝土密度(Kg/m3),取ρ=2400 Kg/m3; e------为常数,取e=2.718; t------混凝土龄期(d); m------系数,随混凝土浇筑温度改变; 计算求得:Th=350×375×103/(0.97×103×2400×(1- e-0.362×28))=56.38℃ 2.混凝土中心温度计算 T1(t)=T j+Th*ξ(t) 式中T1(t)------t龄期混凝土中心温度(℃);

T j-----------混凝土浇筑温度(℃) ξ(t)---------------t龄期混凝土降温系数; T1(3)=52.14℃ T1(18)=32.40℃ T1(6)=49.32℃ T1(21)=29.87℃ T1(9)=46.78℃ T1(24)=27.61℃ T1(12)=41.71℃ T1(27)=25.92℃ T1(15)=36.63℃ T1(30)=25.36℃ 3.混凝土表面(表面下50~100mm处)温度 (1)保温材料厚度 δ=0.5h*λx*(T2- T q)*K b/(λ*(Tmax- T2)) 式中δ---------保温材料厚度(m); λx--------所选保温材料导热系数(W/(m*K)),草袋取 λx=0.14 ; h---------混凝土实际厚度(m),h=2 m; T2--------混凝土表面温度(℃); T q--------施工期大气平均温度(℃); λ-------混凝土导热系数(W/(m*K)),取λ=2.33 W/(m*K); Tmax-----计算得最高温度(℃) 计算时可取:T2- T q=18℃,Tmax- T2=20℃; K b--------传热系数修正值,取K b=2.0; 计算所得:δ=0.5×2×0.14×18×2/(2.33×20)=0.108m

材料力学公式汇总

材料力学重点及其公式 材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。 变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。 外力分类: 表面力、体积力;静载荷、动载荷。 内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力 截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。(3)根据平衡条件,列平衡方程,求解截面上和内力。 应力: dA dP A P p A = ??=→?lim 0正应力、切应力。 变形与应变:线应变、切应变。 杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。 静载荷:载荷从零开始平缓地增加到最终值,然后不在变化的载荷动载荷:载荷和速度随时间急剧变化的载荷为动载荷。 失效原因:脆性材料在其强度极限 b σ破坏,塑性材料在其屈服极限s σ时失效。二者统称为极限应 力理想情形。塑性材料、脆性材料的许用应力分别为: []3 n s σσ=, []b b n σσ=,强度条件: []σσ≤??? ??=max max A N ,等截面杆 []σ≤A N m a x 轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=?1,沿轴线方向的应变和横截面上的应力分别为:l l ?= ε,A P A N ==σ。横向应变为:b b b b b -=?=1'ε,横向应变与轴向应变的关系为:μεε-=' 。 胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。E 为弹性模量。将应力与应变的表达式带入得:EA Nl l = ? 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。 圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设dx d φ ρ γρ=。物理关系——胡克定律dx d G G φρ γτρρ==。力学关系dA dx d G dx d G dA T A A A ???===2 2ρφφρρτρ 圆轴扭转时的应力:t p W T R I T == max τ;圆轴扭转的强度条件: ][max ττ≤=t W T ,可以进行强度校核、截面设计和确

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

基于应变模态的车轴动应力仿真计算

文章编号:1673-0291(2011)04-0130-04 基于应变模态的车轴动应力仿真计算 刘志明,马跃峰 (北京交通大学机械与电子控制工程学院,北京100044) 摘 要:基于动车组的动车车轴和拖车车轴的应变模态分析结果,结合线路实测数据,运用模态叠加法对动车组车轴进行了动应力的仿真计算,得出了两种车轴上相应测点的应力时间历程,并与线路测试数据进行了比较.结果表明:经过仿真计算得到的测点应力时间历程与实测结果比较吻合, 从而验证了将应变模态与测试数据结合计算动应力的可行性,可以进一步开展疲劳强度分析.关键词:车轴;应变模态;模态叠加法;动应力;振动中图分类号:U2601111 文献标志码:A Simulation and calculation of dynamic stress to axles based on strain modal LI U Zhiming,M A Yue f eng (School o f M echanical,Electronic and Contr ol Engineer ing ,Beijing Jiaotong U niversity ,Beijing 100044,China) Abstract:Based on the strain modal analysis results of EMU .s motor -car ax le and trai-l car axle,and combined w ith actual line test data,simulation and calculation of dynam ic stress to EM U .s axles was done w ith modal superposition method.Stress -time history of the corresponding point on motor -car axle and trai-l car axle w as obtained,and comparison w ith the line test data w as also performed.The results show that:stress -time history of the measured points got by simulation and calculation was in g ood ag reement with the test results.Therefore,the feasibility of calculating dynamic stress w ith strain modal and test data w as verified,and it is doable to make further research on the fatigue strength analysis. Key words:axle;strain modal;modal superposition method;dynam ic stress;vibration 收稿日期:2009-11-27 基金项目:国家科技支撑项目资助(M 10B300140) 作者简介:刘志明(1966)),男,江西南昌人,教授,博士,博士生导师,主要从事结构疲劳可靠性研究.email:zhmliul@https://www.360docs.net/doc/361267660.html,. 在复杂结构的动态设计中,分析结构在动态载荷下的应力状态是进行强度设计和疲劳寿命评估的基础和关键,分析车轴疲劳强度的关键是得到车轴在实际运用状态下的动应力.对结构动态特性的研究主要有有限元方法和实验模态分析技术,根据所测物理量的不同,实验模态分析又分为位移模态分析和应变模态分析.位移模态分析是以位移响应(加速度)为基本参数,该技术已经在工程上广泛应用,但位移模态分析结果不能直接用于结构的疲劳设计,在运动机械和承受动载荷结构的设计校核中,从 强度和疲劳的观点出发,更侧重于对结构的应力、应变分布情况的研究.应变模态分析是以结构的应变响应为基本参数,从而确定结构的应变最大点和共振疲劳点[1-2] . 目前对应变模态的分析一般是基于简单的梁和板,针对应变模态运用模态叠加法对结构响应进行计算分析的文献比较少.本文作者以有限元仿真的方法对高速动车组车轴进行应变模态分析,结合线路实测数据,运用模态叠加法对车轴进行动应力仿真计算. 第35卷第4期 2011年8月 北 京 交 通 大 学 学 报 JOU RNAL OF BEIJING JIA OT ON G U N IV ERSIT Y Vol.35No.4Aug.2011

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

应力与应变(试题学习)

第三章 应力与强度计算 一.内容提要 本章介绍了杆件发生基本变形时的应力计算,材料的力学性能,以及基本变形的强度计算。 1.拉伸与压缩变形 1.1 拉(压)杆的应力 1.1.1拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1) 杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;如果是偏 心受压或受拉的轻质杆件,那么必然存在靠近轴力的一侧受压,远离轴力的一侧受拉,应力肯定不同,方向相反。并存在中和轴。(即应力在中和轴处为0) (2)适用于离杆件受力区域稍远处的横截面;(大于截面宽度的长度范围内——圣维南) (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀(即应力集中); (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时,可应用式(3-1)计算,所得结果的误差约为3%。 1.1.2拉(压)杆斜截面上的应力(如图3-1) 图3-1 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1sin 22 ατσα= (3-4) 式中σ为横截面上的应力。

正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。 两点结论: (1)当00α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=090=0。 (2)当045α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ=。 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即

应变的计算方法

应变的计算方法 本章介绍了几种网格应变的计算方法,通过分析网格变形的特点及规律,将网格的变形分解为分别沿两个主应变的方向一次变形而得,从而通过欧拉法推导了有限应变解析的方网格应变计算方法,并把三维空间网格的每个网格作为线性孔斯曲面介绍了三维空间网格的应变计算方法。此外还介绍了工程应变、等效应变和厚度的计算。 4.2 基于欧拉法和有限应变理论解析的方网格计算方法 根据有限应变的理论,不同的应力加载可以获得相同的应变结果。对于近似于平面应力状态的板材成形来说,每个单元体的应变主方向(除去因为位移造成的转动)在成形过程中保持不变。这样就可以将应变分成不同的加载阶段,利用真实应变的可叠加性,就可以推导出方网格变形的应变计算方法。 连续体的有限变形有两种表述方法。一种方法的相对位移计算是以变形前后物体内一点作为参考点,即以变形前的坐标作为自变量,这种方法称为拉格朗日法。另一种方法的相对位移计算是以变形后物体内一点作为参考点,以及已变形后的坐标作为自变量,这种方法称为欧拉法[48]。这里给出基于欧拉法和有限应变理论解析的方网格计算原理。 4.2.1 方网格内部的变形 设任意方向正方形网格内接于圆网格,将其变形过程分解为两个阶段,如图4-5所示。第一个阶段沿着X方向变形,Y方向保持不变;第二个阶段沿着Y方向变形,X方向保持不变,即应变主方向与坐标轴相平行。变形的结果使圆网格变形为椭圆,正方形网格变形为平行四边形(假设单元网格内沿主应变方向的变形是均匀的) (a)初始网格 (b)横向变形后的网格 (c)纵向变形后的网格 图4-5 基于有限应变的网格分解变形过程 4.2.2 应变主方向和真实应变的计算 对于方网格中心的应变,假设网格内部变形是均匀的,所以变形前后四边形对角线的交点就是网格中心,对角线把方网格划分成四个三角形。将变形后的网格中心和变形前的网格中心重合,建立直角坐标系,如图4-6所示。 图4-6 以欧拉法建立的变形前后网格中心重合的坐标系统 根据欧拉方法,以变形之后的网格坐标来分析,将主应变方向定为坐标方向,设X方向为主应变的方向,Y方向为主应变的方向,两个方向分别有拉形比: (4-20)

相关文档
最新文档