反循环矩阵及广义反循环矩阵的若干性质

反循环矩阵及广义反循环矩阵的若干性质
反循环矩阵及广义反循环矩阵的若干性质

伴随矩阵的性质知识讲解

伴随矩阵的性质

编号2009011118 毕业论文(设计) ( 2013 届本科) 论文题目:伴随矩阵的性质 学院:数学与统计学院 专业:数学与应用数学 班级:09级本科1班 作者姓名:魏瑞继 指导教师:俱鹏岳职称:副教授 完成日期:2013年 4 月20日

目录 陇东学院本科生毕业论文(设计)诚信声明 (4) 摘要 (5) 关键词 (5) 0引言 (5) 1主要结论 (6) 1.1伴随矩阵的基本性质 (6) 1.2伴随矩阵的特征值与特征向量的性质 (9) 1.3矩阵与其伴随矩阵的关联性质 (10) 1.4两伴随矩阵间的关系性质 (11) 2应用举例 (12) 例1 (12) 例2 (12) 结束语 (13) 参考文献 (13) 致谢 (14)

陇东学院本科生毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明应用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 作者签名: 二〇一二年十二月二十日

伴随矩阵的性质 魏瑞继 (陇东学院 数学与统计学院 甘肃 庆阳 745000) 摘要:伴随矩阵是矩阵理论中一个重要的基本概念,我们对几类矩阵的伴随矩阵进行了研究,得到了一些有价值的结论,并给出了部分应用举例. 关键词:伴随矩阵;分块矩阵;正交矩阵;相似矩阵 0引言 伴随矩阵在高等代数中的作用是极其重要的,在关于伴随矩阵的一些性质可以应用到其他矩阵的计算证明中,在这时候就更需要这一方面的知识了,伴随矩阵的内容深入不仅增加了矩阵的内容,也补充了矩阵计算的不足,在矩阵的证明与应用中也得到广泛的推广. 定义1[1] 设矩阵()ij n n A a ?=,将矩阵A 的元素ij a 所在的第i 行第j 列元素划去后,剩余的2(1)n -个元素按原来的排列顺序组成的1n -阶矩阵所确定的行列式称为元素ij a 的余子式,记为ij M ,称(1)i j ij M +-为元素ij a 的代数余子式,记为ij A ,即 ij A = (1)i j ij M +-(i ,j=1,2,……,n). 定义2[2] 方阵()ij n n A a ?=的各元素的代数余子式ij A 所构成的如下矩阵 A *= 112111222212n n n n nn A A A A A A A A A ????? ???????L L M M O M M 称为矩阵A 的伴随矩阵.

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系 摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一 些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的 关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等. 关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵 1伴随矩阵的定义 设() n n ij a A ?=,则它的伴随矩阵()n n ij b A ?=* ,其中ji ij A b = (),,,3,2,1,n j i =ij A 为A 中ij a 的代数余子式. 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系 2.1 I A A A AA ==**. 2.2 若A 非奇异,则* 11A A A =-. 2.3 ()()T T A A ** =. 证 当A 可逆时,1*-=A A A ,且T A 也可逆. 故 ()()1 * -=T T T A A A =() T A A 1- 另一方面, ()()T T A A A 1* -==() T A A 1- 由上两式推出 ()() T T A A ** =. 2.4 ()() 1 ** 1 --=A A . 证 当A 可逆时,1*-=A A A ,且1-A 也可逆. 故 ()()A A A A A 1 1 11* 1= =---- 又由 E A A A A A A =??? ? ??=???? ??* *11 故 *A 也可逆,且()A A A 1 1 *= - 从而 ()() 1 ** 1 --=A A .

2.5 ()*1* A a aA n -= (a 为实数). 证 设()n n ij a A ?=,再设 ()()n n ij b aA ?=* , 那么ij b 为行列式aA 中划去第j 行和第i 列的代数余子式1-n 阶行列式,其中每行提出公因子a 后,可得 ji n ij A a b 1-= ()n j i ,2,1,= 由此即证()*1* A a aA n -=. 2.6 1 *-=n A A ()2≥n . 证当A 可逆时,由于,1*-=A A A 两边取行列式 得 1 1* --==n n A A A A 当A 不可逆时,,0=A 这时秩1*≤A 所以.0*=A 从而也有 1 * -=n A A 所以对任意n 阶方阵,A 都有.1 *-=n A A 2.7 当秩n A =时,则秩n A =*.当秩1-=n A 时则秩1*=A .,当秩2-≤n A 则秩0*=A . 证 当秩,0≠?=A n A 那么由上面的(1)式有0*≠==n A I A AA 所以 ,0*≠A 即秩n A =* 当秩,01=?-=A n A 0*==I A AA 从而秩,1*≤A 又因秩,1-=n A 所以至少有一个代数余子式,0≠ij A 从而秩,1*≥A 于是秩,1*=A 当秩2-=n A ?0*=A 所以秩0*=A 同理秩2-

对称矩阵的性质

对称矩阵的基本性质 在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念. 1 对称矩阵的定义 定义1 设矩阵()ij s n A a ?=,记()T ji n s A a ?=为矩阵的转置.若矩阵A 满足条件T A A =,则称A 为对称矩阵.由定义知: 1. 对称矩阵一定是方阵. 2. 位于主对角线对称位置上的元素必对应相等.即ij ji a a =,对任意i 、j 都成 立.对称矩阵一定形如111211222212n n n n nn a a a a a a a a a ?? ? ? ? ??? . 定义2 形式为12000000l a a a ?? ? ? ? ?? ? 的矩阵,其中i a 是数(1,2,,)i l = ,通常称为对角矩阵. 定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵. 定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵.由定义知: 1. 反对称矩阵一定是方阵. 2. 反对称矩阵的元素满足ij ji a a =-,当i j =时,ii ii a a =-,对角线上的元素 都为零.反对称矩阵一定形如12112212000n n n n a a a a a a ?? ?- ? ? ?--?? . 下面就对称矩阵的一些基本性质展开讨论. 2 对称矩阵的基本性质 性质1 同阶对称矩阵的和、差、数乘还是对称矩阵. 性质2 设A 为n 阶方阵,则T A A +,T AA ,T A A 是对称矩阵.

性质3设A为n阶对称矩阵(反对称矩阵),若A可逆,则1 A-是对称矩阵(反对陈矩阵). ?矩阵都可表为一对称矩阵与一反对称矩阵之和. 性质4任一n n 性质5设A为对称矩阵,X与A是同阶矩阵,则T X AX是对称矩阵. 性质6设A、B都是n阶对称矩阵,证明:AB也对称当且仅当A、B可交换. 1

伴随矩阵的性质及应用

一.伴随矩阵的定义及符号 伴随矩阵是在求非奇异矩阵的逆矩阵时提出来的, 1.代数余子式的定义 为了定义伴随矩阵,需要先定义一个矩阵某一元素的代数余子式: 在行列式 11111..................j n i ij in ni nj nn a a a a a a a a a 中划去元素ij a 所在的第i 行与第j 列,剩下的2(1)n -个元素按原来的排法构成一个n-1级的行列式,称为元素ij a 的余子式,记为ij M ,称(1)i j ij ij A M +=-为元素ij a 的代数余子式。 2.伴随矩阵的定义 设ij A 是矩阵 11111..................j n i ij in ni nj nn a a a A a a a a a a ?????? ??=?????????? 中元素ij a 的代数余子式,矩阵 112111222 2*12.........n n n n nn A A A A A A A A A A ???? ??=?????? 称为A 的伴随矩阵。 二.伴随矩阵的性质

1.伴随矩阵的基本公式:**AA A A A E == 由行列式按一行(列)展开的公式立即得出: **000000d d AA A A A E d ??????===?????? 其中d A =。 这是伴随矩阵的一个基本公式,我们可以从该等式出发推导出一些有关方阵的伴随矩阵的性质,使我们对伴随矩阵有一个更加全面的认识和理解。 2.在公式**AA A A A E ==基础上推导出的其他性质 (1)A 可逆当且仅当* A 可逆。 证明:若A 可逆,则A ≠0.由**AA A A A E ==知 * A A E A ?= 故*1A A A -= 两边取行列式得*1A A A -= 即*11n A A A ??= ? ??? 故*A 0≠,从而*A 可逆 (2)1*n A A -=,其中A 是n ?n 矩阵 证明:由**AA A A A E ==,知*n A A A = ①.当时,有及,故

循环矩阵在密码学中的应用

题目循环矩阵在密码学中的应用 学生姓名韩媛媛学号 1109014156 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学1102 指导教师潘平 2015 年 5 月 10 日

循环矩阵在密码学中的应用 韩媛媛 (陕西理工学院数学与计算机科学学院数学与应用数学专业1102班级,陕西 汉中 723000) 指导教师:潘平 [摘要]矩阵是线性代数的重要构成部分,而循环矩阵就是一类有特殊结构的矩阵,在许多实际问题中有广泛的 应用,有关循环矩阵的问题仍是矩阵论研究中的热点。在当今社会,随着科学技术水平的迅速发展,我们需要更深入的研究数学工具在现实中的实际应用。密码学是研究编译密码和破解密码的尖端技术科学,与数学、信息学、计算机科学有着广泛而密切的联系,由于循环矩阵是现代科技工程中具有广泛应用的一类特殊矩阵,具有良好的性质和结构,因而关于循环矩阵的研究非常活跃,本文中简单介绍了ElGamal 密码体制,以及循环矩阵在ElGamal 中加密解密过程的描述。利用循环矩阵在密码学中的研究,探索循环矩阵在几类典型密码中加密和破译的研究有着重要的现实意义。 [关键字]循环矩阵;密码学;有限域 1. 循环矩阵的概念 定义 1.1 ] 1[设),(n n n n R C A ??∈如果矩阵A 的最小多项式等于特征多项式,则称A 为循环矩 阵. 定义1.2 设A 是n 维向量空间V 上的一个线性变换,若存在向量V ∈α,使得,α αα1A ,,A -n 线性无关.则称α为A 的一个循环向量. 定义1.3 已知n 阶基本循环矩阵 ? ????????? ????? ???? ?=00 110000000001000010 D , 并令 ),,2,1(n i D I i i ==, 称121,,,-n I I I I 为循环矩阵基本列(其中n n I D I ==为单位矩阵). 2. 循环矩阵的性质 2.1 循环矩阵基本性质 性质2.1.1 ]3[循环矩阵基本列121,,,-n I I I I 是线性无关的. 性质2.1.2 ] 3[任意的n 阶循环矩阵A 都可以用循环矩阵基本列线性表出,即 11110--+++=n n I a I a I a A . 性质2.1.3 同阶循环矩阵的和矩阵为循环矩阵.

循环矩阵求特征值的方法

1、循环矩阵的定义 定义1 数域P 上的n ×n 阶矩阵 ()==-110,,,n n c c c cric C ????? ?? ???? ?????------01 3211043223 10 1122 10c c c c c c c c c c c c c c c c c c c c n n n n n n ,其中P c i ∈,称为n ×n 阶循环矩阵,或轮回矩阵。 如果取下面的基本循环矩阵A=??? ? ??? ?????? ???000 011000000100 0001 ,则上面的n ×n 阶循环矩阵可 改写为 1122110--++++=n n n A c A c A c I c C (1) 正是由于此时的成立,才能使循环矩阵n C 得以顺利研究。 定理1 数域P 上n ×n 阶矩阵n C =()ij c 为循环矩阵的充分必要条件为,当 k=???<+-≥-u v n u v u v u v ,,时,k uv c c =,其中u ,v ,k ,=0,1,2,…,n-1。 2、循环矩阵的性质 由以上循环矩阵的基本矩阵可以得出循环矩阵的各种性质,对于简单的性质不再证明,较为复杂的可以查看参考文献[1]。 性质1 基本循环矩阵1A ,2A ,3A ,…,n A 是线性无关的。 证明: 2 A =??? ? ? ???????? ???000 01 10000001000001 0 ??? ? ??? ?????????000 01 10000001000001

=??? ? ????????? ???0001000001000000010 0 , 3 A =????????????? ???000 1 000010000000100 =??? ? ??? ???? ?? ???001 00 00010000000000 , … n A =??? ? ??? ?????? ???010 00 00000000011000 , 显然,由线性相关的性质可以得出,基本循环矩阵1A ,2A ,3A ,…,n A 是线性无关的。 性质2 任意n 阶循环矩阵n C 都可以用基本循环矩阵线性表示出,即 1 122110--++++=n n n A c A c A c I c C 。 性质3 n 阶基本循环矩阵的乘积仍为基本循环矩阵。 证明:性质1中已经证过,在次不再赘述。 定理2 数域P 上的所有n ×n 阶循环矩阵按照矩阵的加法和乘法构成一个向量空间,其基为1A ,2A ,3A ,…,n A ,零向量为n 阶零方阵,负向量为-A 。 证明:对于数域P 上的所有n ×n 阶循环矩阵,很容易证明任意两个循环矩阵相加还是循环矩阵,循环矩阵的任意常数倍还是循环矩阵,那么就得到了这个定理。 性质3 循环矩阵的乘积还是循环矩阵。 证明: 设B ,n C 都是循环矩阵,则有n C =∑=n i i i A c 1,∑==B n j j j A b 1 ,那么就有乘积 B n C =∑=n j j j A b 1 ∑=n i i i A c 1=∑=n j i j i j i A A b c 1,=∑=n k k k A I 1 其中k I = ∑=+=n n k j i j i j i b c mo d 1 ,,则B n C 为循环矩阵。

块循环矩阵和块k一循环矩阵的Moore

块循环矩阵和块k一循环矩阵的Moore-Penrose逆和带w权的Drazin 逆研究 摘要 矩阵理论是二十世纪随着工程科学进步而发展起来的一种数学方法,计算机的发 明更加推动了计算数学的应用。如今,矩阵理论作为数学研究的一个基本工具被广泛应用。作为工程计算的产物,矩阵计算出现在很多领域。例如:矩阵的奇异值和谱理论出现在对物质光谱的分析;矩阵的扰动理论对大规模数据的误差分析。一般矩阵固有性质的研究对我们有深刻的指导意义,然而,特殊矩阵的研究也有着同等重要的地位。不仅如此,可以说这些特殊的矩阵是我们整个矩阵群的非常值得研究的那些元素,就像O和l之对应于自然数那样。 本文主要是对循环矩阵、块循环矩阵及块后.循环矩阵这类特殊矩阵求逆的一些讨论。我们陈列循环矩阵的一些定理,其中特别提到了Fourier矩阵。这样做有两个目的:一方面,这些定理本身就有很重要的应用,我们特别从循环矩阵的可对角化的角度说明了这些矩阵的内在联系,从而求其逆,这种思想是全新的;另一方面,我们统一了研究矩阵的一个基础出发点,从这些理论的推导,我们想更多的看到块的情形。关于块循环矩阵,前人作了深入的研究,引入了块循环矩阵的概念,并且做了几乎完美的工作,也正是他们的工作激发了我的兴趣。 本文分为四个部分: 第一部分主要说明背景知识。 第二部分介绍一般意义的循环矩阵及其重要性质。在将循环矩阵对角化的基础上, 讨论了循环矩阵的Moore-Penrose逆,并举例加以说明,这种在将矩阵对角化再讨论其逆就显得非常简便,我们只需要通过其Moore-Penrose逆的要求,构造出Moore—Penrose逆的形式。 第三部分将推广前人的一些工作,块循环矩阵的概念以及一些性质被系统叙述, 从而在此基础上求其Moore-Penrose逆及带形权的Drazin逆。这里主要也是根据第 二部分的思想,将块循环矩阵对角化,从而简化了我们的运算。 2 第四部分是对第三部分的推广,将块循环矩阵扩展到块七.循环矩阵,利用将块循 环矩阵对角化,得出了块七.循环矩阵的对角化形式,从而求出了块尼.循环矩阵的Moore—Penrose逆及带形权的Drazin逆。关于块k.循环矩阵的Moore-Penrose逆在 一些文献中有过说明,但都是在七的模为1的情形下进行讨论的,本文的该部分关于块七.循环矩阵的Moore-Penrose及带∥权的Drazin逆,对七∈C都是成立的,这也就推广了前人的结论。 总的来说,本文都是确定了其对角化形式,通过运算给出了他们的Moore-Penrose 逆及带矽权的Drazin逆,并结合实例加以说明。 关键词:循环矩阵;Fourier矩阵;块后一循环矩阵;Moore-Penrose逆;带形权 的Drazin逆。 第一章引言

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

对称矩阵与反对称矩阵

实对称矩阵 实数域内 <1> 定义:设A 为一n 阶实方阵,则A 称为是对称的如果A ˊ=A 。 <2> 性质:设A 为一n 阶实对称矩阵,令 A=(ij a ), i=1,2,3,···,n ;j=1,2,3,···,n 。 则有: 1) ;'A A = 2) ji ij a a =, i=1,2,3,···,n ;j=1,2,3,···,n ; 推论: 1),'2 AA A =A 2的主对角线上的元素为∑==n j ij n i a 12,...,2,1,全大于或等于0; 2)①若A 2的主对角线上的元素全为0,则A 为一零方阵; ②若,...3,2,1,0==n A n ,则A 为一零方阵; 3)每一个n 阶实对称矩阵A 对应于唯一的二次型f(X)=X ˊAX , '*1321),...,,,(n n x x x x X =其中; 4)存在一n 阶正交矩阵U(即UU ˊ=E),使得 ??????? ? ?,..., ,0 0 0, 0,=-n AU U λλλ.................0,...,0,0,....,0,0,211,其中ιλ,i=1,2,···,n 为A 的全部特征根。 5)实对称矩阵的特征根都是实数;属于实对称矩阵的不同特征值的特征向量正交。

<3>对称矩阵的构造 1)常见的对称矩阵: 对角矩阵,单位矩阵,正定矩阵,半正定矩阵; 2)设A为一n阶对称方阵,则以下的矩阵是对称的,k为任一常数 k A,A k,A+k E,k A+E, 3)设A为任一n阶方阵,则以下的矩阵是对称的,k为任一常数 A+Aˊ;k(A+Aˊ);AAˊ,k AAˊ,(A-Aˊ)2; 4)设B为任一反对称矩阵,则以下的矩阵是对称的,k为任一常数 k B2, <4>相关例题 1、n阶实方阵A为对称方阵的充要条件是' 2AA A 。

伴随矩阵的若干性质及应用

伴随矩阵的若干性质及应用 摘要 矩阵是学习高等代数中的一个非常重要的知识点,而在矩阵的运算和应用中伴随矩阵起着十分重要的作用.本篇文章运用矩阵计算中的一些技巧和方法,证明了一般n 阶方阵和某些特殊矩阵的伴随矩阵的一些性质.这些性质的探讨是基于矩阵的伴随矩阵与原矩阵之间的关系,利用研究矩阵的方法来着手.通过这些性质,对矩阵、伴随矩阵有了更深一步地认识.而且,在以后的学习中遇到关于伴随矩阵的问题我们可以直接应用这些性质,使问题变得简单. 关键词 矩阵 伴随矩阵 特征值 引言 因为伴随矩阵是学习矩阵的一个重要知识点,在计算中经常出现,把矩阵的 伴随矩阵看作一般的一个矩阵来研究.给出了伴随矩阵的秩、伴随矩阵的转置、伴随矩阵的特征值、几个特殊矩阵的伴随矩阵的性质,以及伴随矩阵的其他性质.这些性质能帮我们方便解决在计算矩阵时遇到的问题. 本文出现的矩阵A 和B 均为n 阶方阵. 1.一般n 阶方阵其伴随矩阵的一些性质及应用 1.1 E A A A AA ==**,在求解A 与*A 的乘积,*A 和1-A 的有关的问题时可以从这个性质着手.常用的关系式如下: ()1当A 为可逆矩阵时,*A 也为可逆矩阵,由E A A A AA = =**可得()A A A = -1 *; ()2当A 为可逆矩阵时,由E A A A AA = =**可得1*-=A A A ; 例1、已知A 为一三阶矩阵,且??? ? ? ??=100310241A ,求() 1 * -A . 解 经计算可得1=A ,所以() ? ??? ? ??===-1003102411 *A A A A .

例2、已知A 为一三阶可逆矩阵,它的伴随矩阵为*A ,且4 1= A ,求()*1 32A A --. 解 ()1 111* 14 32132132------=-= -A A A A A A A 1611 4141413 131-=? ?? ??-=??? ??-=-=--A A A . 例3、已知A 和 B 均为n 阶矩阵,相应的伴随矩阵分别为*A 和*B ,分块矩阵 ? ?? ? ??=B O O A C ,求C 的伴随矩阵* C . 解 由E C C C CC ==**得, ???? ??=???? ? ?=??? ? ??==------11 11 1 1 * B B A O O A B A B O O A B A B O O A B O O A C C C . 1.2 当A 为可逆矩阵时,有() () * 11 * --=A A 证明 因为 () E A A A E A AA 1 * 11 * ,---==故有,A A A * 1 =-;又因为A A 11=- 从而 () () E A E A A A A A A 1 1* 1 ** 11 = ==----,因0≠A ,故() E A A =-* 1*, 所以 () () * 11 * --=A A . 例4、已知A 为一三阶可逆矩阵,且???? ? ??=-2311123211 A , 求*A 的逆矩阵. ㈠解 因为E A AA A A ==**,且A 为可逆矩阵,可得 () A A A A A 11 * --== , 而2 311123 211=-A =8,() ???? ? ??------==--315513151811 1A A ,所以() ???? ? ??------=-3155131511 *A .

循环矩阵的性质及其应用

目录 一. 相关概念...................................................................................................................... - 2 - 定义1.1............................................................................................................. - 2 -定义1.2............................................................................................................. - 2 -定义1.3............................................................................................................. - 3 -定义1.4............................................................................................................. - 3 - 二. 循环矩阵的性质...................................................................................................... - 3 - 2.1 循环矩阵基本性质.................................................................................... - 3 - 2.2 关于循环矩阵的判定相关性质................................................................ - 5 - 2.3 循环矩阵可逆的判定及互素推论............................................................ - 6 - 2.4 循环矩阵的一个定理及其得出的推论.................................................... - 6 - 2.5 循环矩阵对角化相关性质........................................................................ - 7 - 2.6 等比数列构成的循环矩阵相关性质........................................................ - 9 - 2.7 循环矩阵行列式与特征值相关性质...................................................... - 10 - 2.8 循环矩阵的奇异性.................................................................................. - 12 - 2.9 循环矩阵与向量空间相关性质.............................................................. - 12 - 三.广义循环矩阵 ......................................................................................................... - 13 - 定义3.1........................................................................................................... - 13 -定义3.2........................................................................................................... - 13 -推论3.1........................................................................................................... - 14 -推论3.2........................................................................................................... - 14 -推论3.3........................................................................................................... - 14 -推论3.4........................................................................................................... - 14 -定义3.2........................................................................................................... - 14 -定义3.3........................................................................................................... - 15 -定义3.4........................................................................................................... - 15 -定义3.5........................................................................................................... - 15 - 参考文献 .................................................................................................................... ….. - 15 -

浅谈伴随矩阵的性质及其应用【开题报告】

开题报告 数学与应用数学 浅谈伴随矩阵的性质及其应用 一、综述本课题国内外研究动态, 说明选题的根据和意义 矩阵是代数学的一个主要研究对象, 是数学中最重要的基本概念之一, 也是数学研究及应用的一个重要工具. 矩阵这一概念自19世纪英国数学家凯利首先提出以后, 就形成了矩阵代数这一系统理论, 而且还广泛应用于实际生活. 把现实世界中的实际问题抽象成数学模型, 求出模型的解, 验证模型的合理性后, 用它的解来解释现实问题, 这其中要用到许多的数学知识, 而矩阵作为一种认识复杂问题的简捷的数学工具, 在数学模型中具有重要的作用, 如在各循环赛中常用的赛况表格、国民经济的数学问题等. 矩阵可以分为很多类, 有初等矩阵、分块矩阵、幂等矩阵、伴随矩阵等, 在不同的矩阵类型中近几年来分别取得了不同的成果与进展. 而伴随矩阵作为矩阵中较特殊的一类, 其理论与应用有自身的特点, 它是矩阵理论及线性代数中的一个基本概念, 是许多数学分支研究的重要工具. 在线性代数的解题方面, 灵活地运用这些伴随矩阵的性质有效地解决了线性代数中的问题, 且它有助于拓宽解决线性代数问题的思路. 比如, 矩阵间一些关系的证明, 求矩阵的逆, 一些复合矩阵的行列式等. 运用伴随矩阵的性质还可以用来解决一些复杂的问题. 比如, 用伴随矩阵的性质: I A A A AA ==**可以解决《美国数学月刊》上的E3227号问题(注: 若A 和B 为n 阶矩阵, 存在非零向量x 和向量y , 使得0=Ax , Bx Ay =. 设i A 为A 中第i 列被B 中的第i 列替换后所得到的矩阵,证明01=∑=n i i A ). 现今不仅专业研究伴随矩阵 的数学工作者愈加众多, 而且量子力学、刚体力学、流体力学、自动控制等各个学科或尖端技术领域内的研究工作者也都以它为必需的工具. 如蔡建乐提出了用特征矩阵的伴随矩阵求惯量主轴的代数方法, 这有利于刚体力学的发展, 体现伴随矩阵的物理意义. 正因为它有如此重要的作用, 古今中外对其研究颇多, 并且得到了许多重要的成果. 如杨闻起探讨了伴随矩阵在对称、反对称、正定、半正定、正交、相似和特征值等方面的性质; 王航平也在伴随矩阵的定义与基本性质的基础上, 探讨了伴随矩阵的运算性质, 特别研究了

总结求逆矩阵方法

总结求逆矩阵方法 直接算会死人的。根据矩阵特点用不用的分解,写成几个例程,每次实验之前进行尝试,根据尝试结果在算法里决定里决定用哪个。 irst 我想问: 1.全阶矩阵A的求逆运算inv(A) 和稀疏矩阵B(阶数和a一样) 的求逆运算inv(B)是不是采取一样的方法啊?也就是说他们的 计算量是不是一样的啊?不会因为是稀疏矩阵就采取特殊的 方法来处理求逆吧? 我电脑内存256M ,做4096*4096的矩阵求逆还可以,上万阶的 就跑不动了 稀疏存储方式会减少不必要的计算,虽然原理还是一样,不过 计算量大大减少了。 2.如果一个矩阵C非零元素都集中在主对角线的周围,那么对C求逆最好 应该采用什么样的方法最好呢? 一般还是用LU分解+前后迭代的方法,如果矩阵对角占优就更好办了。 只不过还是需要稀疏存储。 稀疏矩阵的逆一般不会是稀疏矩阵,所以对高阶的稀疏矩阵求逆, 是不可行的,对1万阶的全矩阵需要的内存差不多已经达到了pc的 极限,我想最好的办法就是迭代,既然是稀疏,乘法的次数就有限, 效率还是很高的。 不过求逆运算基本上就是解方程,对稀疏矩阵,特别是他那种基本上非零元素都在对角线附近的矩阵来说,LU分解不会产生很多的注入元,所以用LU分解解方程方法的方法是可行的。 如果用迭代法,好像也就是共轭梯度法了。 C的资源网络上有很多google一下 或者到https://www.360docs.net/doc/371452340.html,,https://www.360docs.net/doc/371452340.html,上找找 或者用IMSL for C 或者用Lapack 或者用Matlab+C混合编程 有现成代码,但要你自己找了

也可以使用程序库 second 30,000*30,000的稀疏矩阵求逆如何实现? 试试基于krylov子空间方法的算法吧。 如arnoldi和GMRES方法。 matlab中有函数可以直接调用。 直接help gmres就可以了。 如果效果还不好。 就用用预处理技术。 比如不完全lu预处理方法。。等等。。 各种各样的预处理+GMRES是现在解决大规模稀疏矩阵的主力方法。。 维数再多还是用不完全LU分解预处理+CG or Gmres 我一个同学这么求过200W阶的矩阵 求逆一般是不可取的,无需多说。但稀疏矩阵的直接解法还是不少的。基本上都是对矩阵进行重新排序以期减少填充或运算量。 在matlab里面,有许多算法可以利用: colamd, colmmd, colperm, spparms, symamd, symmmd, symrcm. 根据是否对称,采用LU分解或者chol分解。 这些算法在internet上搜一下,很多都有相应的C或fortran版本。 稀疏矩阵的存储最常见的是压缩列(行)存储,最近发现一种利用hash表来存储的,其存取复杂度是O(1),很是不错。有幸趣的可以看看下面网页咯,作者提供了源程序。 事实上Hash表存储的效率也跟Hash算法有关,弄不好的话,不见得比直接按行或者列 顺序检索快。而且规模越大,效率肯定越来越低。 https://www.360docs.net/doc/371452340.html,rmatik.hs-bremen.de/~brey/ 对称正定的稀疏矩阵很好办啊,用LU分解就可以了。 如果维数实在太大,比如超过10^4量级,那就只能用 共轭梯度法之类的迭代法求解了。

对称矩阵的性质及应用

对称矩阵的性质及应用 班级:数学1403班学号:20142681 姓名:张庭奥 内容摘要:本文主要描述对称矩阵的定义,研究对称矩阵的性质及应用.包括对称矩阵的基本性质,对称矩阵的对角化,对称矩阵的正定性以及对称矩阵在二次型,线性变换和欧式空间问题中的应用等。 关键词:对称矩阵;对角化;正定性;应用 1.导言 矩阵是高等数学中一个极其重要的应用广泛的概念,如线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程,二次型的正定性与它的矩阵的正定性相对应,甚至有些性质完全不同的表面上完全没有联系的问题,归结成矩阵问题后却是相同的。这就使矩阵成为代数特别是线性代数的一个主要研究对象。作为矩阵的一种特殊类型,对称矩阵有很多特殊性质,是研究二次型,线性空间和线性变换问题的有利工具,对称矩阵的对角化,正定性的判别等是高等数学中的重难点。本文就此浅谈一下对称矩阵的各种性质和应用。 2.具体内容部分 2.1对称矩阵的基本性质

在学习中我们发现,对称矩阵中的特殊类型如:对角阵,实对称矩阵以及反对称矩阵经常出现,以下首先介绍一些基本概念。 2.1.1 对称矩阵的定义 定义1 设矩阵()ij s n A a ?=,记()T ji n s A a ?=为矩阵的转置.若矩阵A 满足条件 T A A =,则称A 为对称矩阵.由定义知: (1)对称矩阵一定是方阵 (2)位于主对角线对称位置上的元素必对应相等。即ij ji a a =,对任意i 、j 都 成立。对称矩阵一定形如1112112 22212n n n n nn a a a a a a a a a ?? ? ? ? ? ?? 定义2 形式为1200000 l a a a ?? ? ? ? ??? 的矩阵,其中i a 是数(1,2,,)i l = ,通常称为对角矩阵 定义3 若对称矩阵A 的每一个元素都是实数,则称A 为实对称矩阵。 定义4 若矩阵A 满足T A A =-,则称A 为反对称矩阵。由定义知: (1)反对称矩阵一定是方阵。 (2)反对称矩阵的元素满足ij ji a a =-,当i j =时,ii ii a a =-,对角线上的元素 都为零。反对称矩阵一定形如12112 212000n n n n a a a a a a ?? ? - ? ? ? --?? 。 下面就对称矩阵的一些基本性质展开讨论。 2.1.2 对称矩阵的基本性质及简单证明 性质1 同阶对称矩阵的和、差、数乘还是对称矩阵。

伴随矩阵的性质及其应用

伴随矩阵的性质及其应用 摘要:在矩阵中占据着比较特殊的位置,通过它我们可以推导出逆矩阵的计算公式,使方阵求逆的问题得到解决,伴随矩阵的性质和应用有着与众不同的特点。伴随矩阵不仅仅可以求矩阵的逆,它还有很多重要的性质。本文介绍了伴随矩阵的十四条性质,每一条都给出了详细的证明,同时也给出了应用伴随矩阵性质的例子。伴随矩阵是矩阵学习中的重点和难点,它的性质及其应用更是学习中的重中之重,掌握这些性质、证明及其应用将有利于我们今后的数学学习. 关键词:伴随矩阵可逆矩阵方阵性质 Adjoint matrices properties and applications Abstract Adjoint matrices is matrix and linear algebra, is an important concept of an important branch of mathematics study many tools, through which we can deduce that the inverse matrix calculation formula of inverse square, is the problem can be solved, the status of adjoint matrix in the matrix, it is special the properties and application has unique characteristics. In university mathematics study, adjoint matrices is only used for the inverse matrix solution, not too deep understanding of adjoint matrix, actually there are many important properties, this paper introduces the properties of adjoint matrix 12 is given, every single detail of the proof and the partial nature, and introduces the application of the development process, along with matrix matrix was the key and difficult point matrix learning, it is also learning the properties and applications of priority, master these properties, proof and application will benefit our future mathematics learning. Keywords Adjoint matrix Reversible matrix The phalanx Properties 矩阵是高等数学中非常重要的一个概念,而且应用相当广泛,它是线性代数的核心,矩阵的运算、概念和理论贯穿整个线性代数的学习中。伴随矩阵是一种特殊矩阵,它和矩阵的逆矩阵有着紧密的联系,方阵的伴随矩阵是在求可逆矩阵的逆矩阵时提出

相关文档
最新文档