高速离心泵振动故障诊断与分析

高速离心泵振动故障诊断与分析
高速离心泵振动故障诊断与分析

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

离心泵产生振动的原因及解决方法

离心泵产生振动的原因及解决方法 一. 机泵轴弯曲 机泵轴是带着固定在其上的叶轮或转子旋转,由于叶轮和转子的重量,特别是大机泵,当机泵较长时间停止工作时,使机泵轴在一个方向上受力,造成轴弯曲。轴弯曲的机泵在运行中就会引起叶轮等传动产生不平衡,致使叶轮与本壳发生摩擦,导致机泵产生振动现象。解决方法是每8h盘车一次,每次按同一方向将轴转动120度。 二. 轴承问题 1.轴承“跑外缘” 由于轴承装配质量不良,机泵经过长时间运行后,就会出现轴承“跑外缘”现象,造成轴承温度升高,产生杂音,出现转动。解决的方法是:(1)将轴承支架焊上一层金属,然后车削到合适的尺寸,重新装配;(2)如轴承间隙较大,可加薄铜皮,使轴承外缘静配合达到规定值。 2.轴承磨损 目前从市场上采购的轴承或多或少都存在一些质量问题。主要是滚珠大小不一、硬度差、间隙大等,很难保证维修质量。轴承磨损一般伴随有发热和异常声音,严重时发生卡泵。因此,发现轴承异常时应及时停机更换。 3.轴瓦间隙过大 这种情况常出现在采用滑动轴承的大、中型水泵中,若轴瓦间隙过大,就容易使轴松动,因此应及时调整轴瓦间隙。 三. 联轴器问题 联轴器的作用主要是把泵和电机连接起来一同旋转并转递扭矩,其问题有以下两点,一是不同心,有些大型泵使用一段时间后,就会发生变化,如果出现不同心现象,只能停机并重新找正;二是联轴器所使用的胶圈、梅花胶皮、等容易损坏,将损坏的胶圈换掉即可恢复正常。 四. 液体通道不畅 当机泵运行时,由于液体通道不畅,产生水力冲击而引起机泵振动。主要原因有以下几点。 1、出口阀门开度太小 离心式泵,特别是高扬程、大排量的泵在流量小时容易产生不通程度的振动,当开大阀门流量正常后,振动就会消失。 2、泵吸入端管道进气或有杂物 入口端装有底阀和过滤网的输送泵,在试运初期流体过脏或粘度过大,易产生气蚀,同时伴随有振动,严重时水泵不能正常工作。为了消除这一现象,最好在泵的入口端安装一负压表,以便随时观察负压变化,从而准确判断吸入管路的变化情况,及时清理底阀和过滤器。 3.出口管道存有气囊 在开泵时即使有空气排放比较彻底,也很难放净,运行时容易形成气囊,使管道压力产生波动。解决的方法是将排空点尽量安装在高处,并注意对个别局部的排气处理。此外,在操作中,开泵时先用小排量打水,使干线压力缓慢上升,也可使压力波动减小。 五.维修中注意的问题

导致离心泵振动的十大原因

导致离心泵振动的十大原因 一、引起离心泵振动的十大原因——轴 轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。另外,泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 二、引起离心泵振动的十大原因——基础及泵支架 驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。 三、引起离心泵振动的十大原因——联轴器 联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的

机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。这些原因都会造成振动。 四、引起离心泵振动的十大原因——水泵自身的因素 叶轮旋转时产生的非对称压力场;吸水池和进水管涡流;叶轮内 部以及涡壳、导流叶片漩涡的发生及消失;阀门半开造成漩涡而产生的振动;由于叶轮叶片数有限而导致的出口压力分布不均;叶轮内的 脱流;喘振;流道内的脉动压力;汽蚀;水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘,造成振动;输送高温水的锅炉给水泵易发生汽蚀振动;泵体内压力脉动,主要是泵叶轮密封环,泵体密封环的间隙过大,造成泵体内泄漏损失大,回流严重,进而造成转子轴向力的不平衡和压力脉动,会增强振动。另外,对于输送热水的热水泵,如果启动前泵的预热不均,或者水泵滑动销轴系统的工作不正常,造成泵组的热膨胀,会诱发启动阶段的剧烈振动;泵体来自热膨胀等方面的内应力不能释放,则会引起转轴支撑系统刚度的变化,当变化后的刚度与系统角频率成整倍数关系时,就发生共振。 五、引起离心泵振动的十大原因——电机 电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因

有限元与机械振动及故障诊断的关系

有限单元法与机械振动及故障诊断的关系 随着机械向轻量化方向发展,构件的柔度加大;随着机械向高速化方向发展,惯性力急剧增大。在这种情况下,构件的弹性变形可能给机械的运动输出带来误差。在高速、精密机械设计中,为了保证机械的精确度和稳定性,就必须计入这种弹性变形对精度的影响。机械系统柔度加大,系统固有频率下降;而机械运转速度提高,激振频率上升,这种变化使许多机械出现较强振动现象的危险增加了,而振动既破坏机械的运动精度,又影响构件的的疲劳强度,并加剧运动副中的磨损,因此,出现了计入构件弹性的动力分析方法,即弹性动力分析,很多大型机械系统的振动也被分析研究,并为机械故障诊断奠定了理论基础。构件产生振动时,其变形和受力状况非常复杂,弹性动力学给出的微分方程导不出解析解,有限单元法是一种非常有效的数值分析方法,所得的解可以足够逼近于精确值,它使弹性动力学获得了新的、巨大的生命力。 有限单元法的基本思想是将一个连续弹性体看成是由若干个基本单元在节点彼此相连接的组合体,从而使一个无限自由度的连续问题变成一个有限自由度的离散系统问题。有限元求解问题的基本步骤通常为: 第一步:待求解域离散化:将求解域或连续体近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。 第二步:选择插值函数:选择适当的插值函数以表达单元内的场变量的变化规律。场变量可以是标量、向量或者高阶张量。常数多项式为场变量的近似表达式,多项式的阶数取决于单元的节点数、节点的自由度数,以及单元间边界的变量协调性等。场变量及其导数都可以作为节点的未知量。 第三步:形成单元性质的矩阵方程:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成刚度矩阵。 第四步:形成整体系统的矩阵方程:将单元总装形成离散域的总矩阵方程,反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数连续性建立在结点处。 第五步:约束处理求解系统方程:利用系统矩阵方程建立求解方程组,引入边界条件,即约束处理,求解出结点上的未知场变量。 运用有限单元法可获得足够逼近于精确值的解,从而可获得反映设备实际运行状况的振动信号,其时域、频域和幅值域分析结果对于机器故障的准确判断具有重要意义。因此,在机械日益轻量化、高速化的趋势下,有限单元法显得极为重要,而准确的机械振动分析及故障诊断,更需要以有限单元法为支撑。

水泵振动原因分析和解决措施方案

56LKSB-25型泵振动与异响原因分析及解决措施 广东省电力工业局第一工程局安装公司何志军 一、摘要: 广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环冷却水系统循环水泵为3台56LKSB-25型立式斜流水泵。在循环水泵分部试运行时,3台循环水泵均出现间断性的异响,并伴随超标的振动。经过分析,间断性异响主要由于循环水泵吸水夹带汽体,内部形成了水力冲击,造成了间断性异响,并产生振动,影响循环水泵的运行。经过对产生水力冲击的原因分析,采取合理的措施,最终消除了水力冲击,解决了循环水泵的异响及振动问题。 二、关键词:循环水泵异响水力冲击导流锥 三、前言: 立式水泵在分部试运出现异响、振动情况是常见,引起立式水泵的异响、振动的原因比较多: ⑴从责任主体方面划分,有设备制造质量原因、安装施工质量原因及设计原因,但安装施工质量不合格引起的立式水泵异响、振动原因较常见。 ⑵从起因方面划分,有机械原因引起的异响、振动和水力冲击引起的异响、振动,而机械原因引起的异响、振动的情况是较常见的。 该机组3台循环水泵异响、振动的主因是设计原因引起的水力冲击造成的异响、振动,在工程施工中较为少见。通过对循环水泵异响、振动原因分析,问题解决,以达到引起相关部门在关心安装施工质量和设备制造质量的同时,也注重设计质量问题的目的。 四、正文: 4.1 泵的结构参数简介 广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环水泵

共有3台,其中2台工作泵,1台备用泵,均为露天安装。循环水泵采用长沙水泵有限公司生产的56LKSB-25型水泵。该型水泵为立式、单吸、转子可抽式、斜流泵,具体参数如附表1所示。 附表1: 4.2 问题产生及原因分析 4.2.1 问题产生 2#循环水泵首次带负荷运行时,主要发现两大问题:1)循环水泵运行过程中,伴随着间断性、频率不等的异响,类似水泥搅拌机搅拌时发出的响声;2)循环水泵泵体振动超标(如附表2)。随后,1#、3#循环水泵分部试运行情况和2#循环水泵的情况一样,同样存在异响、振动超标的问题。 附表2

离心泵及其振动

离心泵及其振动 简介 离心泵的原理及常见的故障 工业中的很多流程都需要将流体从一个位置输送到另一个位置,扮演者重要的角色。涵盖的工业很广泛,从大型核电厂和普通电厂、输油管线、石化厂、市政废水处理厂、水厂,到大小型建筑物,到轮船和海上石油平台等等。 一般来说,泵在旋转机械中是那种皮实、可靠的一类设备。但在很多流程中,泵是关键设备,一旦故障宕机,后果往往是严重的,甚至是灾难性的。除直接经济损失外,安全问题也是不容小视,甚至超过经济损失,如泵失效导致放射性物质或有毒液体泄露,会殃及工厂相关人员的生命,甚至包括周边百姓。此外环保因素也一样,有害流体因为泵的泄露等失效,会严重污染空气、水和土壤,甚至导致环境的不可逆危害,治理起来费时、费力、费钱。所以,虽然泵常常没有归入关键机组,但对它的重视,按关键机组对待并不为过。 什么是泵? 几乎所有人都都熟悉泵及其基本原理,如汽车发动机的冷却液通过泵在散热器和水套中循环。泵克服流体的重力、摩擦力,将流体加速到一定的出口速度,送到一定的高度。 克服重力的影响不难理解,但对于克服流体的阻尼–摩擦力的概念可能未必尽人皆知。流体流经管道,流体分子间会产生“摩擦”,因为分子间在运动过程中速度不一样,之间就会有相对运动,摩擦自然就

产生了。流体间运动速度不一样可以通过特殊情况理解,在管道壁流体的流速为零,在管道中心的流速最大,也就是所谓的流场梯度。所以,重力和摩擦力是泵运行中需要克服的阻力。 摩擦力有流体和管壁间的摩擦力,以及分子间的摩擦力。因此,简言之,管壁光滑的摩擦力比粗糙的小,大直径管比小直径管摩擦力小; 流体的特性影响摩擦力,内聚力大的流体,也就是粘度大的流体摩擦力大。当然实际情况可能要复杂得多,但足够去理解泵的阻力了。 泵是一种能量转换设备,是将驱动机械的旋转动能,转换成所泵流体的能量。 ?克服流体运动过程中的重力,提高扬程、克服流体内、外摩擦力。?流体出口速度比入口速度提高。 下图是流体流过泵和管道,流体能量的变化图

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

引起立式离心泵震动的大原因

引起立式离心泵震动的8大原因 立式离心泵是利用叶轮旋转而使水发生离心运动来工作的。水泵在启动前,必须使泵壳和吸水管内充满水,然后启动电机,使泵轴带动叶轮和水做高速旋转运动,水发生离心运动,被甩向叶轮外缘,经蜗形泵壳的流道流入水泵的压水管路引起立式离心泵震动的原因1:轴 1.轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。 2.泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 引起立式离心泵震动的原因2:联轴器 1.联轴器连接螺栓的周向间距不良,对称性被破坏。 2.联轴器加长节偏心,将会产生偏心力。 3.联轴器锥面度超差。 4.联轴器静平衡或动平衡不好。 5.弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中。 6.联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降。 7.联轴器上使用的传动螺栓质量互相不等。以上这些原因都会造成振动。 引起立式离心泵震动的原因3:电机 1.电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。 2.质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。 3.另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动。 4.电机缺相,各相电源不平衡等原因也能引起振动。 5.电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。 引起立式离心泵震动的原因4:水泵选型和变工况运行 1.每台泵都有自己的额定工况点,实际的运行工况与设计工况是否符合,对泵的动力学稳定性有重要的影响。 2.水泵在设计工况下运行比较稳定,但在变工况下运行时,由于叶轮中产生径向力的作用,振动有所加大;单泵选型不当,或是两种型号不匹配的泵并联。这些都会造成泵的振动。 引起立式离心泵震动的原因5:水泵自身的因素 1.叶轮旋转时产生的非对称压力场。 2.吸水池和进水管涡流,叶轮内部以及涡壳、导流叶片漩涡的发生及消失。 3.阀门半开造成漩涡而产生的振动。 4.由于叶轮叶片数有限而导致的出口压力分布不均。 5.叶轮内的脱流、喘振、流道内的脉动压力、汽蚀、水在泵体中流动,对泵体会有摩擦和冲击,比如水流撞击隔舌和导流叶片的前缘(公众号:泵管家),造成振动。 6.输送高温水的锅炉给水泵易发生汽蚀振动。 7.泵体内压力脉动,主要是泵

振动检测与故障诊断技术

振动检测是状态检测的手段之一,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 1、机械振动检测技术 机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,其他的能量消耗在机械传动的各种摩擦损耗之中并产生正常振动,如果出现非正常的振动,说明机械发生故障。这些振动信号包含了机械内部运动部件各种变化信息。分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。 所以由此看来,任何机械在输入能量转化为有用功的过程中,均会产生振动;振动的强弱与变化和故障有关,非正常的震动感增强表明故障趋于严重;不同的故障引起的振动特征各异,相同的振动可能是不同的故障;振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障;因此识别和确定故障的内在原因需要专门的一起设备和专门的技术人才。 2、振动监测参数与标准 振动测量的方位选择 a、测量位置(测点)。 测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。 b、测量方向。 由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H 向、水平方向)和垂直方向(v向)。例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。高频或随机振动测量径向,而低频振动要测量三个方向。总之测量方向和数量应全面描述设备的振动状态。 测量参数的选择 测量振动可用位移、速度和加速度三个参数表述。这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。 a、振动位移 选择使用在低频段的振动测量(<10HZ),振动位移传感器对低频段的振动灵敏。在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。b、振动速度 选择使用在中频段的振动测量(10~1000hz)。在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的寿命取决于受力变形和循环速度,既和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。所以将振动速度作为衡量振动严重程度的主要指标。 c、振动加速度 选择使用在高频段的振动测量(>1000hz)。当振动频率大于1000hz时,动载荷表现为冲击载荷,冲击动能转化为应变能,使材料发生脆性破坏。多用于滚动轴承的检测。 以上三这三个参量可以互为辅助性的补充和参考。 振动判定标准 a、绝对判断标准。此类标准是对某机器长期使用、维修、测试的经验总结,由行业协会或国家制订图表形式的标准。使用时测出的振动值与相同部位的判断标准的数值相比较来做出判断。一般这类标准是针对某些类型重要回转机械而制订的。例如国际通用标准ISO02372和ISO3945。 b、相对判断标准。对于同一设备的同一部位定期进行检测,按时间先后作出比较,以初始的正常值为标准,以实测振动值超过正常值的多少来判断。

离心泵振动

导致震动大有噪音的四个原因: 1、电气方面 电机是机组的主要设备,电机内部磁力不平衡和其它电气系统的失调,常引起 振动和噪音。如异步电动机在运行中,由定转子齿谐波磁通相互作用而产生的定 转子间径向交变磁拉力,或大型同步电机在运行中,定转子磁力中心不一致或各 个方向上气隙差超过允许偏差值等,都可能引起电机周期性振动并发出噪音。 2、机械方面 电机和水泵转动部件质量不平衡、粗制滥造、安装质量不良、机组轴线不对称、 摆度超过允许值,零部件的机械强度和刚度较差、轴承和密封部件磨损破坏,以 及水泵临界转速出现与机组固有频率一直引起的共振等,都会产生强烈的振动和 噪音。 3、水力方面 水泵进口流速和压力分布不均匀,泵进出口工作液体的压力脉动、液体绕流、 偏流和脱流,非定额工况以及各种原因引起的水泵汽蚀等,都是常见的引起泵机 组振动的原因。水泵启动和停机、阀门启闭、工况改变以及事故紧急停机等动态 过渡过程造成的输水管道内压力急剧变化和水锤作用等,也常常导致泵房和机组 产生振动。 4、水工及其它方面 机组进水流道设计不合理或与机组不配套、水泵淹没深度不当,以及机组启动 和停机顺序不合理等,都会使进水条件恶化,产生漩涡,诱发汽蚀或加重机组及 泵房振动。采用破坏虹吸真空断流的机组在启动时,若驼峰段空气挟带困难,形 成虹吸时间过长;拍门断流的机组拍门设计不合理,时开时闭,不断撞击拍门座; 支撑水泵和电机的基础发生不均匀沉陷或基础的刚性较差等原因,也都会导致机 组发生振动。 离心泵振动的原因及其防范措施 (1)离心泵产生振动的原因 ①设计欠佳所引起的振动离心泵设计上刚性不够、叶轮水力设计考虑不周全、叶轮的静平衡未作严格要求、轴承座结构不佳、基础板不够结实牢靠,是泵产生振动的原因。 ②制造质量不高所引起的振动离心泵制造中所有回转部件的同轴度超差、叶轮和泵轴制造质量粗糙,是泵产生振动的原因。 ③安装问题所引起的振动多级离心泵安装时基础板未找平找正、泵轴和电动机轴未达到同轴度要求、管道配置不合理、管道产生应力变形、基础螺栓不够牢固,是泵引起振动的原因。 ④使用运行不当所引起的振动选用中采用了过高转速的离心泵、操作不当产生小流量运转、泵的密封状态不良、泵的运行状态检查不严,是泵引起振动的原因。 (2)离心泵防治振动的措施 ①从设计上防治泵振动 a·提高泵的刚性刚性对防治振动和提高泵的运转稳定性非常重要。其中很重要的一点是适当增大泵轴直径和提高泵座刚性。提高泵的刚性是要求泵在长期的运转过程中保持最小的转子挠度,而增大泵轴刚性有助于减少转子挠度,提高运转稳定性。运转过程中发生轴的晃动、破坏密封、磨损口环等诸多故障均与轴的刚性不够有关。泵轴除强度计算外,其刚度计算不能缺。 b.周全考虑叶轮的水力设计泵的叶轮在运转过程中应尽量少发生汽蚀和脱流现象。为了减少脉动压力,宜于将叶片设计成倾斜的形式。 c.严格要求叶轮的静平衡数据离心泵叶轮的静平衡允许偏差数值一般为叶轮外径乘以0.025g/mm,对于高转速叶轮(2970r/min以上),其静平衡偏差还应降低一半。

离心泵的振动原因分析

离心泵的振动原因分析 离心泵的振动原因分析 1.离心泵的转子不平衡与不对中。这个问题在离心泵的振动问题中所占比例较大,约为80%的比例。造成离心泵转子不平衡的因素:材料阻止不均匀、零件结构不合格,造成转子质量中心线与转轴中心线不重合产生偏心据形成的不平衡。校正离心泵的转子不平衡又可分为两。静平衡与动平衡:一般也称为单面平衡和双面平衡。其区别就是:单面平衡是在一个校正面进行校正平衡,而双面平衡是在两个校正面上进行校正。 2.安装原因:基础螺栓松脱、校调的水平度没有调整好,在离心泵工作之前,要检查一下其基础螺栓是否有松动的现象,以及离心泵的安装是否水平。这些也会造成离心泵在工作的时候发生振动的情况。 3.离心泵内有异物。在离心泵工作之前,要检查下泵内部,由于长期使用,在离心泵的内部可能存在一些例如水中的杂草等异。 4.由于长时间的使用造成离心泵内部的气蚀穿孔。 5.离心泵的设计方面存在不合理的情况,例如零件大小尺寸等问题。不过这种情况相对较少。离心泵在出场之前,都会在车间内部进行多次的检测工作,以保证出厂离心泵的合格率。 CQB-G高温磁力驱动离心泵安装和调试: (一)应水平安装.开车前应检查冷却箱之润滑油油位.若油位过低时应及时补充。开泵前.首先应打开冷却水回路.进水管阀门的开启度应根据泵正常工作后冷却出水管的温度进行调节。 (二)当抽吸液面高于果轴心线时.起动前打开吸入管道阀门即可.若抽吸液面低于泵轴心线时.管道需配备底阀。 (三)泵使用前应进行检查.电机风叶转动要灵活.无卡住及异常声响.各紧固件要紧固。 (四)检查电机旋转方向是否与磁力泵转向标记一致。 (五)电机启动后.缓慢打开排出阀.待泵进入正常工作状态后.再将排出阀调到所需开度。泵停止工作前.应先关闭排出阀门.然后切断电源.再关闭冷却水管阀门。 CQB-G高温磁力驱动离心泵产品概述: CQB-G高温磁力驱动离心泵采用多重循环冷却结构,保证了原动力和磁传动的可靠性和稳定性,同时采用柱销联轴器减少了泵的噪音和震动,便拆式和柱销联轴器同时使用,使泵的结构增长,更有利于泵的散热。同时,也十分方便用户的维修或更换零件,在泵的外转子部分还设计了散热风叶,确保磁钢的稳定性。本系列适用于输送高温介质,温度≤200℃。 CQB-G高温磁力驱动离心泵使用注意事项:

振动检测与故障诊断分析

概述 对旋转设备而言,绝大多数故障都 是与机械运动或振动相密切联系的,振 动检测具有直接、实时和故障类型覆盖 范围广的特点。因此,振动检测是针对 旋转设备的各种预测性维修技术中的核 心部分,其它预测性维修技术:如红外 热像、油液分析、电气诊断等则是振动 检测技术的有效补充。 相关仪器-----测振仪 VIB05 来自中国祺迈KMPDM的VIB05多功能振动检测仪是 基于微处理器最新设计的机器状态监测仪器,具备有振动 检测,轴承状态分析和红外线温度测量功能。其操作简单, 自动指示状态报警,非常适合现场设备运行和维护人员监 测设备状态,及时发现问题,保证设备正常可靠运行。 振动测量 VIB05可测量振动速度,加速度和位移值。当保持振 动速度读数时,仪器立即比较内置的ISO10816-3振动标准,自动指示机器报警状态。 轴承状态检测 VIB05可测量轴承状态BG值和BV值,它们分别代表高频振动的加速度和振动速度有效值。当保持轴承状态读数时,仪器按内置的经验法则自动指示轴承报警状态。 振动检测仪是测量物体振动量大小的仪器,在桥梁、建筑、地震等领域有广泛的 应用。振动检测仪还可以和加速度传感器组成振动测量系统对物体加速度、速度和位 移进行测量。

VIB07 来自中国祺迈KMPDM的VIB07多功能振动检测仪是基 于微处理器最新设计的机器状态监测仪器,具备有振动检测, 轴承状态分析和红外线温度测量功能。其操作简单,自动指 示状态报警,非常适合现场设备运行和维护人员监测设备状 态,及时发现问题,保证设备正常可靠运行。 主要特点 1、测振仪设计先进,具有功耗低、性能可靠、造型美 观、使用携带极为方便的特点。 2、按国标制造,测量值与国际振动烈度标准(ISO2372)比对可直接判断设备运行状态。 3、高可靠性的环形剪切加速度传感器,性能远远优于压缩式传感器。 4、具有高低频分档功能,在振动测量时,便于识别设备故障类型。 5、备有信号输入功能,配接温度传感器,即可测量温度。 6、备有信号输出功能,选配专用耳机,兼具设备听诊器功能;配接示波器、可用来监测、记录振动信息。 7、按振动传感器与主机的连接方式分为一体式和分体式供您选择。 8、适用于各类机械的振动、温度测量。 动平衡仪-----KMBalancer现场动平衡仪 现场动平衡分析仪KMBALancer是KMPDM 祺迈公司的产品。它嵌入式计算机技术和动平衡技 术,兼备现场振动数据测量、振动分析和单双面动 平衡等诸多功能,简捷易用。是工矿企业预知保养 维修,尤其是风机、电动机等设备制造厂和振动技 术服务机构最为理想之工具。它是美国尖端科技产 品。

振动分析仪之设备状态监测与故障诊断的三个阶段

振动分析仪之设备状态监测与故障诊断的三个阶段 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测 状态监测是在设备运行中,对特定的特征信号进行检测、变换、记录、分析处理并显示、记录,是对设备进行的基础工作。检测的信号主要是机组或零部件在运行中的各种信息(振动、噪声、转速、温度压力、流量等),通过利用如机械状态分析仪VIB07这种类型仪器的把这 些信息转换为电信号或其他物理信号,送入信号处理系统中进行处理,以便得到能反映设备 运行状态的特征参数,从而实现对设备运行状态的监测和下一步诊断工作。 2.分析诊断 分析诊断实际上包括两方面的内容:信号分析处理、故障诊断。 信号分析处理的目的是把获得的信息通过一定的方法进行变换处理,从不同的角度提取 最直观、最敏感、最有用的特征信息。分析处理可用专门的振动分析仪器,如VIB07或计算 机进行,一般情况下要从多重分析域、多个角度来分析观察这些信息。分析处理方法的选择、处理过程的准确性以及表达的直观性都会对诊断结果产生较大影响。 故障诊断是在状态监测与信号分析处理的基础上进行的。进行故障诊断需要根据状态监 测与信号分析处理所提供的能反映设备运行状态的征兆或特征参数的变化情况,有时还需要 进一步与某些故障特征参数进行比较,以识别设备是在运转正常还是存在故障。如果存在故障,要诊断故障的性质和程度、产生原因或发生部位,并预测设备的性能和故障发展趋势。 这是设备诊断的第二阶段。 如VIB07振动分析仪,兼备振动分析软件CM-Trend,可软件形成具有机器振动状态数据采集,数据管理,状态报警,故障诊断和趋势分析功能的基本预测维修系统。软件为使用者 提供一个方便灵活的工作平台,使其能够管理机器状态数据,进行日程数据采集,评价机 器状态,分析机器故障并提出预测维修报告。 3.治理预防 治理预防措施是在分析诊断出设备存在异常状态,即存在故障时,就其原因、部位和危 险程度进行研究并采取治理措施和预防的办法。通常包括调整、更换、检修、改善等方面的 工作。如果经过分析认为设备在短时间内尚可继续维持运行时,那就要对故障的发展加强监测,以保证设备运行的可靠性。根据设备故障情况,治理预防措施有巡回监测、监护运行、 立即停机检修三种。 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测

多级离心泵振动、泄漏的原因及处理措施

多级离心泵振动、泄漏的原因有哪些?下面专业的水泵厂来给你分析一下原因: 1.多级离心泵存在较大轴向推力 每次检修拆开检查平衡盘,都发现其表面被擦伤,多为轴向推力过大而造成的。多级离心泵的轴向推力比单级离心泵大得多,如果设单级叶轮的轴向推力为FA,对同样尺寸的多级离心泵叶轮,其级数为i,则总的轴向推力为iFA,多级离心泵的轴向推力可在几十kN,甚至上百kN。它的轴向推力的平衡方法是采用平衡盘,其结构如图1。离心泵正常工作时,末级叶轮出口处压力P2通过径向间隙b后,泄漏到平衡盘中间室的液体压力降到平衡盘前的压力P1,液体再经过轴向间隙,压力降为P0,在平衡盘两侧由于压力差P1-P0的存在,作

用在相应的有效面积上,便产生了与轴力方向相反的平衡力-FA。若因负荷的变化使轴向推力增大,当作用在平衡盘上的平衡还未改变时,轴向推力将大于平衡力,转子便朝吸入侧位移一段微小距离。此时,轴向间隙减小,泄漏的液体量将会减小。而径向间隙b是不变的,当泄漏量减小时,阻力损失减少,平衡盘前的压力P1升高。同时泄漏量减少也会使平衡室内的压力P0下降。这样在平衡盘两侧的压力差增大,平衡力增加。直到轴向间隙b0减少到使平衡力与轴向推力相等为止。反之亦然。 多级离心泵振动、泄漏的原因及处理措施 2.叶轮密封环间隙的影响 检查中发现,叶轮的密封环间隙磨损较为严重,检修规程要求控制在0.3~0.44mm,而实际多数已达到1mm以上,有的间隙甚至有2mm。当密封环的间隙变大后使叶轮前盖板与泵腔内产生了径向流动,当有径向流动时,会改变泵腔内的压力分布,使前泵腔中液体压强减小。这是因为叶轮出口压力不变,液体在流动中必然产生附加压力。于是增大了轴向力。8个叶轮的密封环间隙都有较大磨损,单个叶轮的轴向推力也都增大了,而整台泵的轴向推力是8个叶轮轴向推力的迭加。而且导叶轮与叶轮之间的间隙也磨损增大,又进一步增大了轴向推力。整个轴向推力增大后,以前平衡盘的结构就不能完全抵消轴向推力了。 3.零件的相互影响 密封环间隙及叶轮与导叶轮间隙磨损增大导致平衡盘磨损,这并不是一个单向的问题,泵体众多轴系零件之间的故障影响是相互的。泵轴弯曲,轴承座与泵

2电机振动异常的识别与诊断

电机振动异常的识别与诊断 一、三相交流电机定子异常产生的电磁振动 三相交流电机在正常运转时,机座上受到一个频率为电网频率2倍的旋转力波的作用,而可能产生振动,振动大小与旋转力波的大小和机座的刚度直接有关。 定子电磁振动异常的原因: ①定子三相磁场不对称,如电网三相电压不平衡。因接触不良和断线造成单相运行,定子绕组三相不对称等原因,都会造成定子磁场不对称,而产生异常振动。 ②定子铁心和定子线圈松动将使定子电磁振动和电磁噪声加大。 ③电磁底脚线条松动,相当于机座刚度降低使定子振动增加。 定子电磁振动的特征: ①振动频率为电源频率的2倍,F=2f ②切断电源,电磁振动立即消失 ③振动可以在定子机座上和轴承上测得 ④振动强度与机座刚度的负载有关 二、气隙静态偏心引起的电磁力 电机定子中心与转子轴心不重合时,定、转子之间气隙将会出现偏心现象,偏心固定在一个位置上,在一般情况下,气隙偏心误差不超过气隙平均值的上下10%是允许的,过大的偏心值产生很大的单边磁拉力。 气隙静态偏心产生的原因: ①电磁振动频率是电源频率的2倍F=2f。 ②振动随偏心值的增大在增加,随负载增大而增加。 ③断电后电磁振动消失。 ④静态偏心产生的电磁振动与定子异常产生的电磁振动非常相似,难以区别。 三、气隙动态偏心引起电磁振动 偏心的位置对定子是不固定的,对转子是固定的,因此偏心的位置随转子而转动。 气隙动态偏心产生的原因: ①转子的转轴弯曲 ②转子铁心与转轴或轴承不同心。 ③转子铁心不圆 气隙动态偏心产生电磁振动的特征; ①转子旋转频率和定子磁场旋转频率的电磁振动都可能出现。 ②电磁振动的振幅随时间变化而脉动(振),脉动的频率为2sf,周期为1/2sf 当电动机负载增加,S加大,其脉动节拍加快。 ③电动机往往发生与脉动节拍相一致的电磁噪声。 ④断电后,电磁振动消失,电磁噪声消失。 四、转子绕组故障引起的电磁振动 笼形电机笼条断裂,绕组异步电机由于转子回路电气不平衡都将产生不平衡电磁力。 转子绕组故障产生的原因: ①笼条铸造质量不良,产生断条和高阻。

机泵类设备振动原因分析

振动是评价水泵机组运行可靠性的一个重要指标。振动超标的危害主要有:振动造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。 引起泵振动的原因是多方面的。泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。 1 对引起泵振动原因的分析 1.1 电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。

1.2 基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。水泵基础松动,或水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。另外,基础地脚螺栓松动,导致约束刚度降低,会使电机的振动加剧。 1.3 联轴器联轴器连接螺栓的周向间距不良,对称性被破坏;联轴器加长节偏心,将会产生偏心力;联轴器锥面度超差;联轴器静平衡或动平衡不好;弹性销和联轴器的配合过紧,使弹性柱销失去弹性调节功能造成联轴器不能很好地对中;联轴器与轴的配合间隙太大;联轴器胶圈的机械磨损导致的联轴器胶圈配合性能下降;联轴器上使用的传动螺栓质量互相不等。这些原因都会造成振动。 1.4 叶轮 ①叶轮质量偏心。叶轮制造过程中质量控制不好比如,铸造质量、加工精度不合格;或输送的液体带有腐蚀性,叶轮流道受到冲刷腐蚀,导致叶轮产生偏心。②叶轮的叶片数、出口角、包角、喉部隔舌与叶轮出口边的径向距离是否合适等。③使用中叶轮口环与泵体口环之间、级间衬套与隔板衬套之间,由最初的碰摩,逐渐变成机械摩擦磨损,这些将会加剧泵的振动。 1.5 传动轴及其辅助件 轴很长的泵,易发生轴刚度不足,挠度太大,轴系直线度差的情况,造成动件(传动轴)与静件(滑动轴承或口环)之间碰摩,形成振动。另外泵轴太长,受水池中流动水冲击的影响较大,使泵水下部分的振动加大。轴端的平衡盘间隙过大,或者轴向的工作窜动量调整不当,会造成轴低频窜动,导致轴瓦振动。旋转轴的偏心,会导致轴的弯曲振动。 1.6 泵的选型和变工况运行每台泵都有自己的额定工况点,实际的运行工况与设计工况是

振动监测与故障诊断

压电式:必须使所测信号最高频率位于幅频特性曲线水平段,有足够高的共振频率 内置IC的集成加速度传感器,恒流供电阻抗变换方式,对电缆铺设要求不高 非集成式:电压干扰进入通道,要求该电容不随机壳振动而变化。因而必须紧贴机壳固定,使耦合电容值最小且不变。 应变式:粘贴式:加电桥线路,温度补偿。 非粘贴式:不粘贴于弹性元件,直接贴在活动。质量块与基座之间。电阻变化反应灵敏度高,低频特性好,稳定,易受温度湿度影响。 安装方式:绝缘:1钢螺栓安装(绝缘螺栓,钢螺栓)2双面胶(AB 胶,502胶,不耐高温,可用丙酮、酒精清洗)3石蜡(薄螺母)不耐高温 2·瞬时转速诊断内燃机故障原理 柴油机的瞬时转速是所有缸做功及负载共同作用的结果。 负载(包括轴带系,摩擦损失扭矩等)的扭矩TL为常数,即柴油机输出扭矩。 简化后,柴油机运动方程: 某缸做功能力↓,该缸转速波动峰值↓↓ 某缸做功能力↓,各缸之间转速波动率↑ 由波动率作功峰值变化+波动率峰值之间差值变化可检测单缸失火与功率不足故障,定位故障缸 转速波动原因:气体压力,往复惯性力 3·振动信号按频率范围分类,各振动考察什么物理量。 机械振动:1、低频振动(<10HZ)2、中频振动(10~100)3高频振动(>1000HZ) 低频:主要测量位移量-与应力相关 中频:主要测速度量-疲劳进程,振动能量正比于速度平方 高频:主要测量振幅是加速度。表征冲击力的强度 4·频谱分析 时间长度:T=N*△t,分析频率:fs=1/△t, 时间分辨率:△f=1/T,采样频率:fs=1/△t 频率分辨率:fc=Nf*△f,谱线数目参数:fs=2.5bfc,采样总数点:Nf=N/2或N/2.56 5·正常示功图的特征

电机振动的原因

电机振动的原因 电机振动的原因很多,也很复杂。8极以上大极数电机不会因为电机制造质量问题引起振动。振动常见于2--6极电机,GB10068-2000,《旋转电机振动限值及测试方法》规定了在刚性基础上不同中心高电机的振动限值、测量方法及刚性基础的判定标准,依据此标准可以判断电机是否符合标准。 电动机振动的危害 电动机产生振动,会使绕组绝缘和轴承寿命缩短,影响滑动轴承的正常润滑,振动力促使绝缘缝隙扩大,使外界粉尘和水分入侵其中,造成绝缘电阻降低和泄露电流增大,甚至形成绝缘击穿等事故。另外,电动机产生振动,又容易使冷却器水管振裂,焊接点振开,同时会造成负载机械的损伤,降低工件精度,会造成所有遭到振动的机械部分的疲劳,会使地脚螺丝松动或断掉,电动机又会造成碳刷和滑环的异常磨损,甚至会出现严重刷火而烧毁集电环绝缘,电动机将产生很大噪音,这种情况一般在直流电机中也时有发生。 电动机振动的十个原因 1.转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 2.铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 3.联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。 4.联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 5.与电机相联的齿轮、联轴器有故障,齿轮咬合不良,轮齿磨损严重,对轮润滑不良,联轴器歪斜、错位,齿式联轴器齿形、齿距不对、间隙过大或磨损严重,都会造成一定的振动。 6.电机本身结构的缺陷,轴颈椭圆,转轴弯曲,轴与轴瓦间间隙过大或过小,轴承座、基础板、地基的某部分乃至整个电机安装基础的刚度不够。 7.安装的问题,电机与基础板之间固定不牢,底脚螺栓松动,轴承座与基础板之间松动等。 8.轴与轴瓦间间隙过大或过小不仅可以造成振动还可使轴瓦的润滑和温度产生异常。 9.电机拖动的负载传导振动,比如说电机拖动的风机、水泵振动,引起电机振动。

相关文档
最新文档