弯梁桥事故

弯梁桥事故
弯梁桥事故

1.深圳市春风路高架桥(1994年建成)

该桥为独柱三跨预应力连续弯梁,桥梁中心线曲线半径60米,采用单箱单室箱型截面,全宽10.5米,两侧悬臂3.0米(详细情况不详)。在施工预应力张拉后发生梁体的转动,导致梁体曲线内侧支座脱空。

该桥发生问题的主要原因:

(a)由于箱梁两侧外悬臂较大,箱梁底宽较小,使得由两块板式橡胶支座组成的抗扭约束抵抗力矩不足,造成梁体扭转变形。

(b)对梁体内预应力产生的扭矩缺乏足够的认识。

事故处理:

(a)通过顶升两侧端支点处内侧,对支座施加预加力,调整横坡,减小支座负反力,消除支座脱空现象。

(b)在主梁内侧施加压重荷载,调整全梁扭矩分布,增大边墩内侧支座反力。

2.深圳市滨河路车公庙立交(1998年建成)

该桥采用单箱双室箱型截面,桥梁中心线曲线半径R=266.3米,6跨一联,长度、跨度较大,其中中间两孔跨度为62.8米、59.2米,中间三个支承采用独柱支承,其余为双柱支承。该桥全宽10米,两侧悬臂2.0米,梁高2.8米。施工采用分段浇注、分段张拉预应力方法。首先浇注中间两跨(62.8+59.2米),张拉预应力后,浇注两侧边孔。预应力通过连接器连接。该桥施工第一浇筑段,预应力张拉后,按照施工程序拆除跨中支架时,引起梁端及中间支承附近梁体外侧支架承载能力不足,产生支架垮塌,主梁产生翻转。

该桥发生问题的主要原因:

(a)在第一段砼浇筑、预应力张拉完成后,梁体跨中部位支架脱空,支点附近支架不足以承受梁体自重及预应力产生的扭矩,而造成支架的垮塌。

(b)设计中特别是第一浇筑段单点支承支点附近的支架没有提出具体、明确的技术要求,造成支架在预应力张拉后,支点附近支架承载能力不足。

(c)对梁体内预应力产生的扭矩缺乏足够的认识。

事故处理:

(a)针对事故发生的原因,对第一段浇筑主梁进行多点顶升,恢复梁体的扭转变形。

(b)加强第一段浇筑梁体的临时支承,在梁体扭转变形得到恢复后,进行下一浇筑段的施工,使全桥形成稳固的结构体系。

3.深圳市滨海大道南油立交及侨城东路、侨城西路立交(1999年建成)

三座立交采用同样的设计手法,发生同样的问题。出问题三座匝道桥均采用独柱三跨连续梁结构,边墩采用隐盖梁。其中中跨为35~45米,边跨为30~35米,梁体中心线圆曲线半径为68.5米或83.5米。桥梁宽度8米,箱梁底宽3.8米,外悬臂2.1米,主梁梁高2.0米(中跨45米)、1.65米(中跨35米)。中间独柱支承采用双向活动盆式橡胶支座。

其中南油立交匝道在进行荷载实验时发生梁体的较大偏转,最大偏转为1.53%,外侧最大下沉为60厘米,内侧最大上翘为63厘米,主梁向曲线外侧最大滑移为45厘米。

同时其余两座立交匝道也发生了不同程度的偏转和侧移,但由于未进行荷载实验,发生偏转和侧移程度较小。

该桥发生问题的主要原因:

(a)全联支承体系抗扭能力及水平方向抗滑动能力弱。

(b)预应力钢束配置不尽合理。对预应力产生的扭矩缺乏足够的认识。

(c)中墩支座预偏心设置偏小,结构分析表明未起明显作用。

(d)双向活动支座滑动系数设计中采用值与产品出厂指标差别巨大(国标μ≤0.01)。其滑动摩阻系数取值偏大对下部结构安全,但对预应力弯梁上部结构的滑动稳定性不利。

事故处理:

(a)对主梁进行多点顶升,以两边墩外侧支座中心连线为轴,按刚体位移顶升主梁各控制点的相对位移值,梁体顶升的控制以顶力和各点相对位移比值双控,恢复梁体变位。

(b)改变支承体系,加大墩柱截面。将原设计圆形墩柱改为椭圆形墩柱。将中墩墩顶单点双向活动支座改为两支点板式橡胶支座,使中墩形成抗扭约束,减小扭转跨径。

(c)中墩加桩、加大承台,以抵抗中墩墩柱由于增加抗扭约束而产生的横向弯矩。

(d)为保证在运营阶段,边墩曲线内侧支座不出现脱空现象。在恢复梁体位移、改变支承体系完成后,对边墩内侧支座施加顶力调整支座位置,拆除顶力后对边墩内侧支座形成预压。

4.深圳市华强北立交(1998年建成)

该桥由多座桥梁组成其中A、B匝道桥均为6孔预应力砼连续梁,桥梁中线曲线半径分别为255米和275米。桥梁全长239.504米,跨径组合为26.083+37+54+34.421+54+34米,箱梁截面为单箱单室,梁高2.2米,箱梁顶宽9.0米,底宽5.0米,支座布置边墩采用板式橡胶支座,其余均为双向活动支座。

该桥2000年6月在无任何先兆情况下,A匝道桥突然发生严重的梁体侧向位移、平面外挠曲并伴随严重的扭转变形。各墩处径向平移位移量分别为18、21、33、47、46、22、19厘米(A匝道),梁端端部扭转角达2.42°和2.35°。两侧边墩曲线内侧支座已脱空。

该桥发生问题的主要原因:

(a)中间墩A6~A10均为多向活动盆式橡胶支座,其抵抗水平力、水平位移的能力较弱。

当摩阻系数μ≤0.015时,在温度力作用下A6~A10墩水平力均超过支座摩阻力而发生滑动。

(b)梁体位移发生过程,应包括二个阶段:

1)在温度力和日照温差荷载在长期反复作用下,梁体中间支承出现较大的平面累计位

移。即“弯、斜桥的爬行现象”

2)当平面累计位移发展到一定阶段,支承体系偏心达到一定数值时(见前述—临界状态

各墩支承偏心值表),结构支承体系中的边支座A5、A11出现内侧橡胶支座的脱空现象,同时扭转变形造成的梁体自重水平力分力,以及温度力、日照温差荷载产生的水平力造成梁体的突然变位。

按上述分析,主梁发生严重侧向位移和转动的过程应是:

梁体中间支承发生的累计水平变位→主梁在较大偏心支承作用下发生翻转→由于翻转产生的主梁自重水平分力加剧了水平变位的发生→全联支承系统(包括抗震锚栓)失去抵抗水平力能力发生突然侧移和翻转。

由此可以看出,横桥向的累计位移是造成梁体侧移和翻转的重要因素。

(d)设计规范中,对盆式橡胶支座有关聚四氟乙稀板的摩擦系数有关规定(常温下μ=0.05),与实际厂家产品出厂时的检验标准出入较大(出厂时μ≤0.01)。对上部结构的整体抗滑动稳定性是明显的不安全因素。

(e)支座预偏心设置不合理(原设计中间四个墩预偏心设置为45、0、0、30厘米)。由

于中间三个大跨未设置预偏心,其扭转跨径依然较大,主梁扭矩未得到明显改善。

事故处理:

(a)在两侧临近边墩的中墩加设盖梁,加大墩柱截面,由φ160厘米增大为280X200厘米椭圆形截面。将原设计单点支承改为两点抗扭支承,增加全桥的扭转约束、减小扭转跨径。

(b)改变中墩各墩的支座型号,其中中间墩改为盆式固定支座,其余两墩改为单向活动支座(切向活动,径向固定)。

(c)边墩支座改为滑板橡胶支座。

(d)对全联主梁顶升,进行纵向、横向位移调整,恢复主梁纵、横坡及平面位置。

目前事故处理正在进行中。

5.深圳市泥岗立交桥

其一号桥第3 联为曲线半径103m 的预应力曲线箱梁,由于受弯桥偏载影响,部分墩盖梁开裂。裂缝长度最大达57mm,同时桥梁出现明显翻转,内侧支座脱空。

6.福州紫阳立交桥

桥型为曲线半径60m 的曲线板梁结构,在荷载长期作用下产生了较大的侧向和扭转位移,桥梁的支撑体系发生不同程度的破坏,部分墩的盆式橡胶支座的内侧橡胶被挤出盆外。

7.京福高速三明连接线互通A匝道桥

2001年9月25日,该匝道桥模板支架在加载预压时,突然垮塌,造成6人死亡、20人受伤的重大事故。

1.钢管立柱直接立在水泥砼路面上,柱基不坚实,产生了一定的竖向和水平位移

2.贝雷支架缺少斜向支撑,侧向约束薄弱,在堆荷过程的外力作用下(堆荷设计重量

1065t,实际加载至700t时),由于支撑体系的局部变形引发支撑体系整体失稳破坏,造成严重支架垮塌事故。

上述弯梁桥所发生的事故可归结为:

(1)对预应力钢束产生的扭矩认识不足,计算分析中未计入预应力对扭矩的影响。

(2)支座预偏心设置不合理,致使全梁扭矩分布得不到改善,从而引起端部(抗扭支承)曲线内侧支座脱空。

(3)支承体系设计不合理。或全部采用双向活动支座,或全部采用球型支座,致使支承体系在平面外约束较弱,导致平面外的位移。

(4)设计中对长期荷载,特别是对温度力、制动力、收缩、徐变引起的平面外水平变位认识不足,水平限位措施不利,导致上部结构主梁在长期荷载作用下的“水平爬行现象”。(5)设计中对独柱预应力弯桥,特别是分段浇筑预应力弯桥临时支承,未做明确、详细的设计说明,致使施工时支架垮塌造成事故。

(6)现行桥梁设计规范急待修订,特别是对于弯、坡、斜桥缺乏明确规定,致使其无“规”可寻,必须加强有关技术规定。

(7)设计规范中,对盆式橡胶支座有关聚四氟乙稀板的摩擦系数有关规定(常温下μ=0.05),与实际厂家产品出厂时的检验标准出入较大(国标出厂时μ≤0.01)。设计中对上部结构的整体抗滑动稳定性未予考虑。

(8)未注意《桥规》中对于支座最小压力的控制。

悬浇连续梁0#块支架施工与安全控制参考文本

悬浇连续梁0#块支架施工与安全控制参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

悬浇连续梁0#块支架施工与安全控制 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 近年来,随着国家铁路建设的大规模展开,一些客运 专线相继上马,京津、郑西、武广、广深港等均在建设之 中,由于铁路跨越线路长,跨越地形复杂,悬浇连续梁结 构得到了广泛的应用,而且都是控制性工程,连续梁悬浇 施工工序多,标准高,又多在高空作业,施工安全至关重 要。从我局管段悬浇施工的各方面安全控制进行介绍,为 以后类似工程提供借鉴。 1 工程概况 本悬浇连续梁位于京津城际铁路客运专线杨村特大桥 的578#墩至582#墩上,里程DK64+149.54~ DK64+381.24,全长231.5米,为一联45+2×70+45m

连续箱梁。纵向坡度为+4‰的直线段。梁体为单箱单室、变高度、变截面结构。箱梁顶宽13.4m,箱梁底宽6.7m,顶板厚度40至50cm,按折线变化,底板厚度40至 90cm,按直线线性变化,腹板厚48至80cm,厚度按折线变化,中支点处腹板局部加厚到165cm。全联在端支点、主跨跨中及中支点处共设7个横隔板,桥面板宽13.4m。中支点处梁高6.5m,边跨梁高为3.5m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m。下部建筑为钻孔灌注桩基础,三层矩形承台,园端形墩柱,墩柱高分别为10.60m、11.60m、13.8m和14.8m。 2 现浇梁段0#块支架布置及受力计算 2.1 支架搭设 碗扣式脚手架直径为48mm,壁厚3.5mm。这种支架的优点是:轴心受力好,拆装工艺简单,且有各种长度规格(包括上下托螺杆),便于调整高度,但它的缺点是杆

预应力混凝土连续弯箱梁桥设计

预应力混凝土连续弯箱梁桥设计 方、-1 预应力混凝土连续弯箱梁桥设计 摘要:老龙沟二号桥为山西运(城)■三(门峡)高速公路上的一座跨深谷桥梁,为预应力混凝土单箱单室等截面连续弯箱梁。文中以该桥施工图设计为根据,对其设计特点及施工顺序进行了简单介绍。 关键词:预应力混凝土弯箱梁斜腹板设计 一、概述运平至三门峡高速公路是国道主干线209 (二连浩特至河口)公路山西境内的一部分,是山西省quot;大quot;字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5mo 两幅桥之间的分离带为50cmo设计行车速度为60km /ho桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035o该桥位于平曲线为圆曲线内,路线中心线半径为251m, 左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R= 13000m的竖曲线内。竖曲线两边纵坡分别为3. 8%和3%,竖曲线半径为R= 13000m, T=117m, E=0. 526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。 二、技术及工程用材(表1)设计荷载:汽车■超20级挂车-120。地震基本烈度:VII度。温度:极端最高温度43°C,最低温度-13.2°C,常年平均温度14. 6°Co支座沉降:0. 015m。

三、桥址区自然概况1?地形、地貌老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈quot;Vquot;字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m o 2.气象桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14. 6°C,最冷一月平均气温-1O C,极端最低气温-13. 2°C, 最热平均气温27.6°C,极端最高气温43°Co最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。3.水文桥梁跨越老龙沟为V字型沟,两边基岩裸露,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1?1.5m,枯水期流量减少,水位只有1.5?0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。4.工程地质桥址区分布的主要是太古界涕水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。 四、主要材料1.混凝土上部结构主桥箱梁采用50号混凝土;防撞护栏釆用30号混凝土。下部结构桥墩釆用40号混凝土;基础釆用25号混凝土;桥头搭板、桥台耳墙、背墙均采用25号混凝土。2.钢材钢筋:直径12mm者,均釆用II级(20MnSi)热扎螺纹钢筋;直径V12mm者,釆用I级(A3)光圆钢筋。钢板:应符合GB700-65规定的A3钢材。3?其他锚具及管道成孔:主桥箱梁锚具釆用OVM15-12型,OVM15-12型连接器及其配套的相关配件,管道成孔采用内径为90mm的钢波纹管。支座均釆用KPZ系列抗震型

探讨曲线梁桥设计

探讨曲线梁桥设计 [摘要]:本文着重论述了连续桥设计中的几个技术问题,如:中横梁刚度对荷载分配的影响、支座偏心距对扭矩分配的影响、剪力滞后对翼缘板有效宽度影响等,并结合工程实践提出了解决问题的相应办法。 关键词:曲线梁桥;支座偏心距;有效宽度 [abstract] : this paper focuses on the continuous bridge design of several technical problems, such as: the bar to the influence of the distribution stiffness load eccentricity, problems of torque distribution, effects of shear lag of flange plate effective width influence to wait, and combined with engineering practice, this paper proposes the corresponding measures to solve the problems. keywords: curve beam bridge; bearing eccentricity; effective width 中图分类号: u448 文献标识码: a 文章编号: 1前言 曲线梁桥是现代交通工程中一种重要桥型。在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方面交通联结的必要手段。早期修建的曲线梁桥,由于受设计方法和施工工艺的限制,多建成钢筋混凝土简支梁,其上部结构略显笨重,且易开裂,给后期养护带来较大困难。随着道路交通的迅猛发展,以及人们对审美观念的

连续弯梁桥悬灌施工工法

连续弯梁桥悬灌施工工法 1.前言 随着悬臂灌注法越来越广泛地应用于施工中,其施工技术也趋于成熟,但从有关资料查知,该方法用于连续弯梁桥中的施工并不多见。本工法是在2006年~2007年中铁七局集团郑州公司承建的武汉天兴洲公铁两用长江大桥北岸引桥连续弯梁桥悬灌施工中,通过成立科技攻关小组,开展调研和技术攻关,不断完善施工工艺,经过总结整理形成的。通过大桥检测单位检测的应力和线性数据说明,悬灌箱梁线性圆顺,悬灌施工平衡且安全,抗风能力强,横向稳定性好,各种工况下应力和挠度均满足设计和规范要求,施工工艺具有先进性和安全性,社会效益和经济效益显著,对桥梁的悬灌施工具有很高的应用价值和指导作用。 2.工法特点 2.1梁体采用菱形挂篮(图2-1、2-2)悬臂浇注施工。挂篮结构简单、轻便、受力合理、横向稳定性好、行走一次到位,模板升降全部采用机械化和自动化,提高生产效率、降低工人劳动强度; 2.2模板和内外作业平台一次安装形成封闭整体,施工作业防护设施齐全,安全可靠; 2.3箱梁节段线性圆顺,两端悬臂重量平衡,混凝土应力及挠度变化稳定,节段施工横向稳定性好、抗风能力强; 2.4受环境影响小,可在较恶劣的气候条件下施工,且保证桥下正常的通航要求;

2.5施工方法简单,易于掌握;且有较好的社会效益和经济效益; 2.6需配置较完整的配套机械设备,机械化程度高; 图2-1 挂篮施工正面图

图2-2 挂篮施工侧面图 3.适用范围 本工法适用于公路、铁路预应力混凝土连续刚构悬臂浇注施工,尤其是安全因素复杂、风力在10级以下的大跨度预应力混凝土连续刚构。 4.施工工艺及关键技术 4.1工艺原理 利用墩身预埋牛腿焊接三角形托架(图4-1)浇注墩顶0#、1#梁段,在1#梁段顶面沿纵向对称安装悬臂菱形挂篮(图2)。挂篮是一个能沿梁顶纵向滑道滑动的承重构架,其后端锚固在已浇注完梁段上,在挂篮前端悬挂平台上可进行下一个梁段的模板、钢筋、预应力管道安设、混凝土灌注和预应力张拉、压浆等作业。完成一个梁段的循环后,挂篮对称纵向前移并锚固,两端对称平衡进行下一梁段的施工,如此循环直至悬臂灌注完毕。通过挂篮横向连接和箱梁腹板设置

现浇连续箱梁桥施工组织设计

普光倒虹管管桥现浇箱梁施工方案 一、工程概况 普光倒虹管管桥位于后河普光大桥下游2.4km,横跨后河,管道中心高程为349.00m。 管桥段全长257.96m,上部结构为C40砼箱梁简支结构,单跨长度13m~25m,高度 1.55m,梯形箱形结构,底板、侧墙厚度0.25m,顶板0.2m,两榀箱梁间设键槽连接, 上部为C40砼铺装层。箱梁下部设置排架10个,排架最大高度14.2m,排架立柱断面尺寸为0.8×0.8m,立柱中间设联系梁,间距4m。排架基础为C25砼机械灌注桩,桩径1.8m,横向桩距3.0m,桩端深入基岩中风化层。 二、施工测量 采用全站仪,根据经校核的测量控制网点放出本现浇箱梁桥的桥梁中轴线,再对各个 桥台的轮廓控制点进行测量定位。采用水准仪进行高程控制。 在施工测量之前,应对全桥测量座标进行复核,对全桥各个细部平面位置及高程进行列表计算,经复核无误后再现场放样。 三、施工方法 1 施工工艺流程图

见图现浇钢筋混凝土预应力箱梁工艺流程图 2 主要施工方法与施工措施 2.1 支架准备 施工前先对钢桁梁(计算承重荷载并放样)的准备,架子管、顶托、扣件、吊装的机械

设备及各项安全设备准备。 2.1.2 支架工程 2.1.2.1 支架设计 计划采用钢桁梁架,把钢桁梁吊在系梁上,在钢桁架下方跨距3/1处架设八字支撑,角度为45度。然后钢桁架上面铺设型钢(50*50)cm并用电焊焊接成一个整体。然后采用50cm ×80cm间距布设支架,脚手架立杆上下设可调顶托和可调底托。水平联结杆上下间距120cm,最下方一层距地面和最上方一层距顶托顶均不大于30cm。上部用立杆可调顶托, 采用12cm ×12cm木方做横梁,5cm×10cm方木和外径48mm,壁厚3.5mm的钢管做纵梁,间距为15cm。(施工通道(0.5米宽)搭建同上(立柱间距为一米)见附图 2.1.2.2 支架施工要求 a、支架施工时,工人必须带安全带和安全帽,扣件和支撑头不得乱抛; b、支架旁必须设人行步梯,步梯上要有扶手和防滑装备; c、支架两侧设0.5m宽人行道,通道外设安全防护措施; d、所有扣件必须按规范要求上紧; e、支架拆除顺序:每跨从跨中向两边拆除; f、模板支架预压 支撑体系搭设结束以后,进行支架预压,支撑体系预压采用在支撑顶面堆码编织袋装砂的方式,砂袋的重量为箱梁自重和模板重量的1.2倍,用吊车吊装、人工堆码。待支撑体系沉降稳定以后,测出支架及地基变形量参数。满载后若连续48小时测量未见明显沉降,则可视为地基处理能满足要求;卸载后要求支架反弹在1cm以内,否则支架的竖向刚度需要加强。 2.2 模板工程 ①、模板设计 模板规格尺寸根据图纸要求在厂家定制 ②、模板施工要求 a、外模要求光洁、平整、色泽一致、拼缝整齐,缝宽不得大于1mm;面板缝处必须外背方木; b、底板钢筋安装前,要均匀涂脱模剂; c、砼浇注前,模板要进行认真清洗,一般采用高压水冲洗; d、内模采用加工场加工,分块吊装,现场合体;内模要求尺寸正确,不准漏浆;砼浇注前均匀涂脱模剂; e、端模和底模钉在一起,注意预留的钢筋眼位正确; f、内模、端模一次性投入使用,外模可重复倒用; g、端模24h即可拆模,内模待砼达50%强度拆模,底模砼达100%强度方可拆模,箱底模拆除顺序是从跨中向两边; h、进人洞,设在距墩中心4~5m处,每跨设一个,尺寸50×80(纵向)cm,并在四角设15cm 的倒角,人孔局部增加适当的施工用加强刚筋。除底板钢束张拉所必须之外,其余人孔须在张拉预应力束之前全部封闭,封闭人孔时采用吊模施工,其模板不得许支撑到底板上,人孔内原割断的钢筋应等强度恢复; i、注意预埋件和预留洞; j、底模预留沉降5mm。

连续梁施工控制要点

珠三角城际轨道交通网 广州至清远轨道交通GQZH-2标 连续梁施工控制要点中铁十一局集团广清城际GQZH-2标项目经理部 二○一四年八月

连续梁施工控制要点 引言:几个关键词定义 简支梁:两端为铰支承的梁。 连续梁:沿梁长方向有三处或三处以上由支座支承的梁。 连续刚构:梁与中间墩刚性连接的连续梁结构 悬臂浇筑法:在桥墩两侧设置工作平台,平衡地逐段向跨中悬臂浇筑混凝土梁体,并逐段施加预应力的施工方法。 一、连续梁支架系统 图1-1、支架钢管立柱图1-2、支架系统(1)主要施工工艺介绍 1、0#块及现浇段支架采用Φ630mm和800mm钢管立柱,钢管上横梁采用双拼56工字钢,纵向分配梁采用40工字钢,浇筑段坡度通过扇形排架来调整,扇形排架采用20工字钢,间距85cm。钢管之间剪刀撑采用20槽钢。 2、支架预压:预压荷载不小于最大施工荷载的1.2倍,预压加载分三级加载,分别为60%、100%、120%,第三级加载后最后两次沉落量观测平均值之差不大于2mm时,即可终止预压开始分级卸载。 图1-3、支架预压 (2)施工控制要点

1、钢管之间焊接要满焊,剪刀撑与钢管之间焊接采用钢板帮焊。控制好立柱倾斜度。 2、支架体系要严格按照方案执行。 3、扇形排架高度一定计算准确,直接决定了模板标高。 二、连续梁模板 图2-1、0#块模板安装 (1)主要施工工艺介绍 模板分底模、外模、内模。 连续梁模板采用大型钢模,先在平整场地将模板试拼,对模板尺寸及拼缝进行检查,发现问题及时与厂家联系。 图2-2、连续梁模板 (2)对于0#块及现浇段模板:先安装底模,待其标高和轴线调整到位,再安装外模。外模安装时先安装中间段再安装两端。待其调整到位进行底板及腹板钢筋安装,再安装内模,内模采用竹胶板。 普通节段模板:模板跟着挂篮一起行走,每节段只需对模板轴线、标高进行调整。 (2)施工控制要点 1、模板之间拼缝处理好,防止产生较大错台。模板标高、轴线要调整到位,

弯梁桥设计体会总结

以上文献主鏗见诸于国内近30年來Ifi 科技期刊巧仑文集,此外*还有不少研究生 的学S 论文以混嶽土桥樂咒候温度效应为研究主额】*''?丁可:廉为r 贾隊 刘开元、李 全林、郭河、徐钢、谢青华、帯源等在他们的领士学位论艾中大务以实麻拼梁工程为 背疑,根据有fsfe^无方法对混凝上ffi 梁的n 照ffl 度场进行tts 让算.进而对最不利温度 分布卜箱袈弁内外约束卜的产牛前ffl 度应力进行计算?值得一提的是,刘开元社ft 线 箱荣左不同支祇方式.不同圆心甬、不同褊莘梯歴荷《作用下的支S 力y 及位移和应 力变化规i#进行『参数研究.刘华液、王毅、江剑、彭友松等人的醇上学蛍论丈人多 战科研课題或S 金拘依托,系统地W 究了混凝上桥架气候温?效应.王毅和汪甸还都 参与f 对人却混凝土连续樂或连续刚构温度场少则戲月、多则数年的长期观测.他们 提出传感器存箱梁截向中的优优布昔、梯便温苣取值的?率分析尊问题并提出 了解决问題的办注。 1.1.2混凝土箱梁温度作用效应 由于混凝土箱梁的温度作用产生的应力称为混凝土箱梁的温度应力。 约 束而产生的温度应力又分别称为温度内约束应力和温度外约束应力。 于温度 在混凝土箱梁结构的非线性分布而使构件各部分因温度的收缩不均匀而产生的约束应力, 于这种 应力在箱梁截面上是自平衡的, 也称为温度自约束应力, 简称温度自应力。对于属于超静定 结构的 桥梁而言,赘余约束会阻止结构由于温度而产生的变形, 由此产生的应力称为温度外约束应 力,也 称为温度次应力,相应的内力称为温度次内力。 事实上,对悬拼或悬浇的方法施工的混凝土连续梁的一个节段而言,若其任意时刻 场 可表达联)t ,则任意时刻t 的实际竖向温差分布应表示为 D 双)t 一双0)t ,其中命为该节段施 工完毕的 时刻,D 联)t 表示t 时刻的竖向温差分布。 但对于绝大多数的桥梁而言 D 双0)t 都是未知的, 因此在无 法忽略D 双0)t 的条件下是不可能准确求出温度应力的。 然而随着时间的推移, 徐变的发展 可以基本 消除D 联肠)引起的初始温度应力,运营阶段的 算#[]。因此 本文中所指的竖向温差分布如无特别注明,均指 (一)外形:由顶板、底板、肋板及梗腋组成 1、 顶板: 除承受结构正负弯矩外,还承受车辆荷载的直接作用。在以负弯矩为主的悬壁梁及 T 形刚 构桥中,顶板中布置了数量众多的预应力钢束, 要求顶板面积心须满足布置钢束的需要, 厚 度一般取18— 25cm 。 2、 底板 因混凝土箱梁的内、外 温度内约束应力是指由 t 的温度 t 时刻的温度应力只要通过 D 双)t 就可以计 D 双)t ,而不是D 联)t 一联0) t 。

曲线梁桥平面位移机理分析

总第222期交 通 科 技Ser ial No.222 2007年第3期T r anspor tation Science&T echno log y N o.3June.2007 收稿日期:2007 01 23曲线梁桥平面位移机理分析 刘柱国 (河北省交通厅公路管理局 石家庄 050051) 摘 要 分析了曲线梁桥平面位移的机理,探讨了影响平面位移的主要因素,并结合工程实例对影响因素进行了验证。 关键词 曲线梁桥 平面位移 温度效应 收缩 徐变 连续曲线梁桥在使用过程中,由于预加力、温度效应、车辆行驶或一些其他影响因素的作用,会产生侧向的变位。由于曲线梁桥的结构特点、支承形式等原因,当外荷载等影响因素消失后,弯梁发生的侧向变位并不能够完全恢复,会产生部分不可恢复的残余位移,在长期反复作用下,侧向的残余位移就会累积,产生较大的位移,即曲线梁桥的侧向位移(或称 爬移)。曲线梁桥的侧向位移问题轻则导致梁段伸缩缝的剪切破坏,影响其使用寿命;严重的则会出现支承结构破坏,梁体滑移和翻转。桥梁在使用过程中出现该类问题,不仅影响交通,而且加固起来非常困难,造成巨大的经济损失。 1 影响曲线梁桥平面位移的因素 1.1 支承方式 支承方式是影响曲线梁桥平面位移的内在因素,支承方式直接影响全桥的内力分布,合理的支承方式可以承受自重和活载、偏载等因素所产生的组合扭矩作用,限制结构的平面位移。 曲线梁桥可以采用多种支承布置形式。理论上讲,连续曲线梁桥的所有支承均可采用点铰支承,但在荷载作用下梁端将产生扭转变形,从而在梁端与桥台背墙间产生上下相对变形,这会导致伸缩缝破坏。一般在两端的桥台设置能抵抗外扭矩的抗扭支座,中间支承可以采用抗扭支承,或点铰支承,或者交替使用两种支承形式,从而限制梁端的扭转变形,以保证伸缩缝正常工作[1 2]。 主梁在各种荷载作用下,除了梁端扭转变形外,在支座位置处还会产生纵桥向与横桥向的变位,为了保证结构的正常工作,总希望沿着 切线方向移动。为此,除了在桥台处设置抗扭支座外,还必须采取一些 限制措施,一般可以在活动端的定向切线支座上安置 限制位移方向的措施,以保证桥头的位移能符合 切线方向的运动要求,但在设计计算时,必须计及这个 强制力的影响。根据具体桥型,充分考虑各种因素,设置合理的支承方式,就可以使曲线梁桥的平面变形顺着目标方向进行,阻止非正常变位的发生。 1.2 温度和混凝土收缩的影响 温度变化和混凝土收缩引起在平面内的位移 属于弧段膨胀或收缩性质的位移[1],涉及到弧段的半径变化但圆心角不变,即r0!r,而 0= (见图1)。 图1 曲线梁桥平面内变形 在此情况下: r=r0(1- ), =?!t+ cs ?3=2(r0-r)sin 0 2 式中: cs为混凝土的收缩应变。 因此温度变化和混凝土收缩时,曲线梁桥会发生两个方向的位移分量:#沿桥轴线方向的纵向分量;?沿桥轴线垂直方向的分量(见图2)。 温度变化和收缩在各种活动支座处将引起纵桥向与横桥向的变形,横桥向的变形不仅给伸缩缝的活动带来困难,而且产生了曲线梁桥的支座受力、布置以及一些侧向问题。

预应力混凝土连续刚构箱梁桥

浅谈预应力混凝土连续刚构箱梁桥几种常用受力分析方法的对 比 【摘要】随着我国交通事业的迅速发展,公路桥梁与城市桥梁的修建也日益增多。同时由于技术的进步与成熟,桥型也由之前的简支转变为结构受力比较先进,跨度更大的连续梁或者连续刚构。当桥梁跨径加大时,结构性能优良的箱形截面往往是合宜的横截面选择。因此,对箱梁桥的受力分析方法的研究就显得很有必要。本文首先对箱梁截面的优点进行简要阐述,然后重点针对学者们对预应力混凝土连续钢构箱梁公路桥梁受力的几种常用分析方法进行阐述并加以对比,着重阐述了解析法和数值法在预应力箱梁受力分析中的原理和应用,并进一步得出相应结论。 1前言 箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。在国内外得

到了十分迅速的发展和广泛的应用。 预应力混凝土的研究已有一百余年的历史。近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。 2 解析法在预应力箱梁受力分析中的原理及应用 解析法是为了把问题简化,往往采用一些假定和近似处理方法。如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。通过这些荷载分解,就单项问题进行较深入的探讨。采用若干假定,是解析法的另一特点,如对位移模式的假定等。 箱形梁剪力滞的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。对于箱形梁的横向弯曲,分析方法有影响面法和框架分析法。影响面法计算较为繁琐,而框架分析法是一种颇为简便的方法。

重点连续梁施工注意事项

连续梁施工注意事项 1、培训资料提到的支座安装的5个案例,很有现实意义,尤其是临时锁定的设置和解锁尤为重要,切忌连续梁在合龙前拆除临时锁定。三项目部跨金丽温1#特大桥两联连续梁的临时锁定需要再加固。 2、在进行支座安装前,需要认真审图,正确提取支座的型号、尺寸。安装时注意不同支座型号对号入座,方向以及偏移量不可安反。 支座的纵向预偏量按L=-(L1+L2)进行设置,除固定墩对应支座外均应设置。L1为箱梁在预应力、二期恒载及收缩徐变作用下引起的支座预偏量,此值图纸上已给出,L2为各支座处梁体由于实际合拢温度与设计温度(5 °~10 °)之间的温差引起的偏移量,该值根据?铁路桥涵钢筋混凝土和预应力混凝土结构设计规范(TB10002.3-2005)?给出的L2=0.0000118S(Ti-T0)计算得出,当为正值时向远离固定支座方向偏移。 3、连续梁钢筋加工时尤其注意变截面腹板钢筋尺寸,要标注型号,防止形成绑扎时没能按照正确位置摆放,造成面板出现腹板筋凸出过高或过低,同时注意混凝土保护层满足要求。 4、梁面预埋的挡砟墙、竖墙、遮板的纵向钢筋要顺直,防止扭曲后在进行该部分混凝土施工时切割移位的钢筋。

5、桥面纵、横向预应力波纹管在安装过程中必须要拉线;腹板波纹管安装要按照设计坐标认真定位;另外锚垫板安装要与模板密贴,并须与波纹管保持垂直状态。横向预应力固定端注意留足保护层厚度,挤压头外露钢绞线保证在5mm左右即可。 6、挂篮行走安全尤为重要,此项工序出现的安全事故太多。尤其跨铁路、公路时,项目副经理、总工、安全总监必须亲临现场指挥作业。 7、挂篮的前后吊杆预留的预埋空位置要准确,防止吊筋弯曲。另外吊筋的连接器在安装之前,需要将精轧螺纹钢对应的连接器拧紧的位置做好油漆标识。 8、T构两端对称均衡进行施工。悬臂施工中左右两侧出现不对称施工时应检算墩梁临时固结或刚构稳定性,要求稳定系数不小于1.5。 梁体在进行混凝土浇筑过程中,布料及捣固尤为重要,尤其在腹板波纹管下部位在、齿块端头需捣固密实,确保齿板及锚垫板处混凝土质量。底板齿板禁止采用翻浆混凝土浇筑,而应采用粗细骨料均匀的混凝土浇筑并振捣密实。为防止出现锚后裂缝,锚后螺旋筋应紧靠锚垫板并加设钢筋网片。 同时在腹板位置要预埋测温管,及时测温并记录完整。 9、连续梁浇筑后的覆盖养生、梁面成品保护、端头凿毛等必须加强控制。 10、连续梁每道工序施工测量的准确度尤为重要,杜绝反复

浅谈连续弯梁桥设计(一)

浅谈连续弯梁桥设计(一) 【摘要】本文介绍了曲线桥梁的受力特点,分析了弯梁桥设计时应考虑和注意的几个问题【关键词】弯梁桥制约因素受力特点结构设计1概述 目前弯梁桥在现代化的公路及城市道路立交中的数量逐年增加,应用已非常普遍。尤其在互通式立交的匝道桥设计中应用更为广泛。由于受地形、地物和占地面积的影响,匝道的设计往往受到多种因素的限制,这就决定了匝道桥设计具有以下特点:⑴匝道桥的桥面宽度比较窄,一般匝道宽度在6~11m左右。⑵由于匝道是用来实现道路的转向功能的,在城市中立交往往受到占地面积的限制,所以匝道桥多为小半径的曲线梁桥,而且设置较大超高值。⑶匝道桥往往设置较大纵坡,匝道不仅跨越下面的非机动车道,有时还需跨越主干道和匝道,这就增大了匝道桥的长度。由于匝道桥具有斜、弯、坡、异形等特点,给桥梁的线型设计和构造处理带来很大困难。 2弯梁桥的平面及纵、横断面布置 随着高等级公路在路线线形方面的要求越来越高,要求桥梁设计完全符合路线线形,所以桥梁的平面布置,基本上应服从整体线形布置的要求,桥梁纵坡也应服从路线纵坡。为了抵抗梁截面的弯矩和扭矩,在弯梁桥设计中多采用箱形截面。由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,故可在桥梁横向将各主梁布置做成不同的梁高,如图一所示。为了构造简单,方便施工,也可将主梁做成等高度的,其超高横坡由墩台顶面形成,如图二所示。3弯梁桥结构受力特点 3.1梁体的弯扭耦合作用 曲梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直梁桥大得多,这是曲梁独有的受力特点。弯梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。 3.2内梁和外梁受力不均 在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载,尤其在宽桥情况下内、外梁的差异更大。由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离,即“支座脱空”现象。 3.3墩台受力复杂 由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。弯桥下部结构墩顶水平力,除了与直桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。 故在曲线梁桥结构设计中,应对其进行全面的整体的空间受力计算分析,只采用横向分布等简化计算方法,不能满足设计要求。必须对其在承受纵向弯曲、扭转和翘曲作用下,结合自重、预应力和汽车活载等荷载进行详细的受力分析,充分考虑其结构的空间受力特点才能得到安全可靠的结构设计。 4弯梁桥的结构设计 直梁桥受“弯、剪”作用,而弯梁桥处于“弯、剪、扭”的复合受力状态,故上、下部结构必须构成有利于抵抗“弯、剪、扭”的措施。 4.1弯梁桥的弯扭刚度比对结构的受力状态和变形状态有着直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于弯梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。所以在曲线梁桥中,宜选用低高度梁和抗扭惯矩较大的箱形截面。

连续梁施工质量控制要点

连续梁施工质量控制要点 一、固结及支架控制要点 1)墩顶梁段临时固结约束,必须形成刚性体系,能承受中支点处最大不平衡弯矩和竖向支点反力。 2)临时固结可采用临时支墩与临时支座,临时支座与0#块通过预埋精扎螺纹钢筋或粗钢筋锚固方式来实现主墩与0#块的固结。 3)临时支墩可以采用钢管或钢管砼柱,采用时要和梁底固结设计,钢管或钢管砼柱要支立在箱梁腹板梁底位置,梁底要预埋钢板,钢板要锚固箱梁砼中。 二、支座安装控制要点 1)施工单位审核活动支座和固定支座平面布置图。 2)检查预留孔平面位置、孔位、深度。 3)检查支承垫石表面凿毛,清除预留孔中杂物。 4)检查支座上下座板是否水平安装固定。 5)锚栓孔,垫石顶面与支座板底面内压浆采用重力式压浆,自由高度大于3米,压力不小于1MPa。 三、0#块施工质量控制要点 墩顶现浇梁段(0#段)是悬灌的关键梁段,结构复杂,施工难度大,为三向预应力,管道多、钢筋密,技术要求及质量要求高,施工前要了解掌握整个梁的预应力管道布置情况和张拉步骤。

1)检查模板平整度,钢度,强度及稳定性,检查保护层厚度,垫块质量,数量,检查拉筋安装情况。 2)检查模板拼装缝隙,错台,几何尺寸是否满足设计要求。 3)检查锚固端,预留孔截面位置孔径和孔数,检查通风孔、泄水孔。 4)审核支架方案时支架杆件强度安全系数应大于1.3,抗倾覆稳定系数应大于1.5,具有足够的承载力和整体稳定性。 5)钢筋制作安装检查控制 ①钢筋绑扎前由测量人员复测模板的平面位置及高程,其中高程包括按支架计算挠度所设的预拱度,无误后方可进行钢筋绑扎。 钢筋安装程序:底板及腹板钢筋—安装纵向、竖向管道—安装内模、端模板—安装顶板底钢筋—安装横向、纵向预应力管道-安装顶板上层钢筋。 ②检查综合接地钢筋及连接钢筋、防撞墙、声屏障,接触网支柱即拉线预埋质量,检查挂蓝施工预埋件等情况。 6)预应力管道安装检查控制 ①预应束波纹管安装 a、检查纵向波纹管布置情况,三向预应力管道调整原则是先钢筋,后竖向、再横向保持纵向预应力管道位置不动。 b、钢束管道位置用定位钢筋固定,定位钢筋网片牢固焊接在钢筋骨架上,如管道位置与骨架相碰时,应保证管道位置不变。 c、波纹管的接头长度不小于30cm。

预应力混凝土连续弯箱梁桥设计

预应力混凝土连续弯箱梁桥设计 摘要:老龙沟二号桥为山西运(城)-三(门峡)高速公路上的一座跨深谷桥梁,为预应力混凝土单箱单室等截面连续弯箱梁。文中以该桥施工图设计为根据,对其设计特点及施工顺序进行了简单介绍。 关键词:预应力混凝土弯箱梁斜腹板设计 一、概述运平至三门峡高速公路是国道主干线209(二连浩特至河口)公路山西境内的一部分,是山西省quot;大quot;字型公路主骨架的重要组成部分,是晋煤外运主要通道之一。老龙沟二号桥位于209国道运城至平陆段内的山岭重丘区,跨越老龙沟,为双幅分离式高速公路大桥,桥梁全宽20.5m。两幅桥之间的分离带为50cm。设计行车速度为60km /h。桥梁中心桩号为K17+930,起点中心桩号为K17+825,终点桩号为K18+035。该桥位于平曲线为圆曲线内,路线中心线半径为25lm,左幅桥中心线半径为256.25m,右幅桥中心线半径为245.75m。桥梁纵断面部分位于半径为R=13000m的竖曲线内。竖曲线两边纵坡分别为3.8%和3%,竖曲线半径为R=13000m,T=117m,E=0.526m。横桥向设有5%的超高。桥梁结构体系为单箱单室等截面预应力混凝土连续弯梁桥。 二、技术及工程用材(表1)设计荷载:汽车-超20级挂车-120。地震基本烈度:Ⅶ度。温度:极端最高温度43℃,最低温度-13.2℃,常年

平均温度14.6℃。支座沉降:0.015m。 三、桥址区自然概况1.地形、地貌老龙沟二号桥位于山岭重丘区,跨越老龙沟,沟谷呈quot;Vquot;字型,地形起伏很大,山岭陡峭,沟谷幽深,属中条山脉西南段的低山重丘区,地层上部为坡积物,下伏为太古界二长花岗片麻岩,高差达80m。2.气象桥址区属温带大陆性季风气候,一年四季分明,夏季干热多雨,冬季寒冷干燥,春秋季风较温和。年平均气温14.6℃,最冷一月平均气温-1℃,极端最低气温-13.2℃,最热平均气温27.6℃,极端最高气温43℃。最大冻深33cm,最大积雪厚14cm,平均风速3.5m/s,最大风速18m/s,主导风向为东风。3.水文桥梁跨越老龙沟为V字型沟,两边基岩裸露,灌木荆棘丛生,沟壁陡峭,沟底平常只有一股细流流淌,水量受季节控制,雨季洪水时,流量增大,最深水位达1~1.5m,枯水期流量减少,水位只有1.5~0.8m左右。洪水主要由两边区域的山坡降雨汇流而成。4.工程地质桥址区分布的主要是太古界涑水群的变粒岩和后期燕山期泥合花岗岩以及由于热液变质作用形成的花岗片麻岩。其中夹有多层片麻岩。该区处于构造发育区,且中条山前大断裂至今仍在活动。使得岩石风化变质严重、节理、裂隙发育,岩石破碎。 四、主要材料1.混凝土上部结构主桥箱梁采用50号混凝土;防撞护栏采用30号混凝土。下部结构桥墩采用40号混凝土;基础采用25号混凝土;桥头搭板、桥台耳墙、背墙均采用25号混凝土。2.钢材钢筋:直径12mm者,均采用Ⅱ级(20MnSi)热扎螺纹钢筋;直径<12mm者,采用Ⅰ级(A3)光圆钢筋。钢板:应符合GB700-65规定的A3钢材。3.其

连续梁桥施工

目录 摘要 (1) Abstract (2) 目录 (3) 第一章绪论 (4) 1.1选题背景4 第二章工程概况 (5) 2.1工程说明 (5) 2.1. 1地形地貌 (6) 2.1.2工程地质 (6) 2.1. 3 地震 (6) 2.1. 4 气候 (6) 2.1. 5 水文 (7) 2.2施工措施 (7) 2.2.1施工期间安全措施 (7) 2.2.2.确保工程质量的措施 (7) 2.2.3.工期保障措施 (7) 2.2.4.雨季施工及农忙季节的施工安排 (8) 2.2.5.环境保护和文明施工措施 (8) 第三章工程进度 (8) 3.1施工方法 (8) 3.1. 1路基的填料 (8) 3.1.2路基的压实 (9) 3.1. 3构造物两侧路基 (9) 3.1.4高填路基处理 (9) 3.1.5.其它施工注意事项 (11) 3.1. 8路基防护 (12) 3.2路基施工方案 (16) 3.2. 1施工准备 (16) 3.2.2人员及机具 (17) 3.2.3路基土石方填筑 (20) 3.2. 4质量保证措施 (20)

3.2.5安全保证措施 (21) 3.3劳动力计划 (21) 3.4主要材料计划表 (22) 3.5工程进度图 (23) 3. 5.1 主体工程进度图详见附表 (23) 3. 5. 2 附属工程进度图详见附表 (23) 3. 5. 3 土石方调配图详见附表 (23) 结论 (23) 致谢 (24) 参考文献: (25)

第一章绪论 1.1毕业设计的目的与意义 毕业设计的U的在于培养毕业生综合能力,灵活运用大学所学的各门基础课和专业课知识,并结合相关设讣规范,独立的完成一个专业课题的设计工作。设计过程中提高学生独立的分析问题,解决问题的能力以及实践动手能力,培养学生实事求是、谦虚谨慎的学习态度和刻苦钻研、勇于创新的精神,达到具备初步专业工程人员的水平,为将来走向工作岗位打下良好的基础。 桥梁的设讣需要综合考虑各方面的因素,其中包括桥址处地形、地貌、水文条件、工程地质、以及周围所处的环境等等,除此之外,任何一个设计都必须考虑怎样将经济性、美观性和实用性融入在设计当中。 本次设计为(40-60+40)m预应力栓连续梁,桥宽为28,分为两幅,设计时只考虑单幅的设计。梁体采用单箱双室箱型截面,全梁共分74个单元一般单元长度分为2m。顶板、底板、腹板厚度均不变。由于多跨连续梁桥的受力特点,黑近中间支点附近承受较大的负弯矩,而跨中则承受正弯矩,则梁高采用变高度梁,按二次抛物线变化。这样不仅使梁体自重得以减轻,还增加了桥梁的美观效果。 本次设计的预应力混凝土连续梁采用悬臂法施工。 本次设计中得到了魏永健、朱连波等儿位老师的悉心指导,在此表示衷心的感谢。 由于本人水平有限,且乂是第一次从事这方面的设计,难免出现错误,恳请各位老师批评指正。 1-2预应力混凝土连续梁桥概述 预应力混凝土连续梁桥以结构受力性能好、变形小、伸缩缝少、行车平顺舒适、造型简洁美观、养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一。 山于普通钢筋混凝土结构存在不少缺点:如过早地出现裂缝,使其不能有效地釆用高强度材料,结构自重必然大,从而使其跨越能力差,并且使得材料利用率低。 为了解决这些问题,预应力混凝土结构应运而生,所谓预应力混凝土结构,就是在结构承担荷载之前,预先对混凝土施加压力。这样就可以抵消外荷载作用下混凝土产生的拉应力。自从预应力结构产生之后,很多普通钢筋混凝土结构被预应力结构所代替。 预应力混凝土桥梁是在二战前后发展起来的,当时西欧很多国家在战后缺钢的情况下,

预应力连续梁桥的施工控制

预应力连续梁桥的施工控制 摘要:在公路建设中,预应力连续梁桥由于施工方法灵活、适应性强、结构刚度大、通车平顺舒适、造型美观等优点,已经被广泛使用。连续梁桥结构受力特点独特, 为超静定结构,支座多设在弯矩最小的位置。施工时,逐段浇筑、X拉,先简支 后连续,有体系转换的要求,X拉一般采用一端X拉,不易控制。鉴于其施工复 杂,监理人员对各道工序监理时,须有一套完整的程序进行控制。 关键词:连续桥梁;施工过程;施工控制 1.地基处理 1.1地基承载力的要求 连续箱梁桥上部恒载及活载最终通过支架传递到大地中去。在施工时,一般采用搭设满堂支架整体现浇的施工方法。为保证支架具有足够的刚度和稳定性,防止支架沉陷,需要验算桥梁最不利荷载位置所对应的地基承载力,最不利荷载位置一般位于桥梁跨中。通过验算选择合适的地基处理方法。 1.2地基处理 可根据本地区的地质条件选择不同的处理方法。地质条件好的地区,处理方法可简单一些,原地面整平压实后做C15砼条形基础即可。对于地基承载力不够的地基,应将地表的泥浆或粘泥清理干净,下挖松散粘土,一般下挖深度为60cm,换填矿渣、石子等优良填筑材料,或用石灰缠拌分层碾压,并夯实平整,设置横坡,四周挖排水沟,以防积水而浸

泡地基,导致地基下陷。对一些不易处理的软弱地基,可采用20cm的混凝土硬化。 2.支架搭设 1)支架方式的选择:根据就地取材、施工方便的原则,一般采用碗扣式支架或钢管支架。 2)间距、步距的确定:根据最不利位置荷载大小,查阅《公路施工手册》,确定支架杆的间距、步距,尽可能保证安全系数较大。在支架的底部,为分担上部传递的荷载,增大支架与地基的接触面积,可垫以枕木或预制混凝土块,混凝土块的大小可采用80cm×40cm×15cm。 3)支架稳定性的验算:支架确定后,应当验算其稳定性,由剪应力验算支架斜向剪力,并适当增加斜向杆,抵消其剪力影响,满足横向杆架立稳定。 4)底模下方木的验算:在支架的顶部,一般采用12cm×15cm×250cm的方木作为横梁,方木的排列间距为20cm—40cm,并验算方木的最大挠度,为保证底板的平整度,方木的尺寸大小应当统一。 3.模板的铺设 1)模板的选择:为保证混凝土表面的光洁度及平整度,底模板一般采用比较经济的竹胶板,因为其强度、刚度满足要求,韧性、光洁度上佳,周转次数多,模板的接缝容易处理,减少了投资。从现场操作来看,效果比较理想。侧模一般采用大块钢模,以备于架设和固定。 2)模板的铺设:模板铺设时,各个截面的形状、尺寸应准确,满足图纸、规X要求。为确保混凝土面的平整、光滑,应刷以脱模剂,如发现模板有超过允许偏差变形值时,应立即纠正。 4.预压 1)预压的目的:在支架搭设完毕后,由于其刚度的限制,在大地及支架中存在着非弹性变形及弹性变形。为消除非弹性变形,测量弹性变形的大小,防止因支架变形而造成混

第六章 曲线梁桥

6 曲线梁桥 6.1一般规定 6.1.1本章适用于平面曲线钢筋混凝土、预应力混凝土、钢-混凝土联合梁式桥。 6.1.2本章仅就曲线梁桥特有的问题做出规定,其它有关问题参照相关规定执行。 6.1.3在选择曲线梁桥的结构形式及截面形状时,必须考虑有足够的抗扭刚度以适应扭转效应的影响。 6.1.4在保证结构体系受力合理的前提下兼顾桥梁美观的要求,分联处公用墩和桥梁宽度大于10m的曲线梁桥中墩宜设置为双柱;不应设置隐盖梁结构形式;箱梁的悬臂不宜过大,特别是多跨连续曲线匝道桥梁。 6.2结构体系 6.2.1曲线梁桥更需选择合理跨径,以有利于控制扭矩峰值,控制负反力的发生。 1

6.2.2曲线梁桥支座设置原则 (1)梁端支座宜设置橡胶支座,以保证适当的垂直方向的弹性约束; 沿弯梁径向应设置水平方向约束,以防止过大的径向水平位移; (2)结构中墩在满足结构受力的情况下,尽可能与主梁固结或设置固定支座、抗震型盆式支座。当采用沿曲线切线的滑动支座时, 必须保证支座具有可靠的滑动能力。中墩不应设置球形支座、球 冠支座或双向滑动支座。 6.2.3曲线梁桥中墩应设置适当的偏心值,以调整全梁的扭矩分布。其偏心值应与中墩支座选用形式相适应。 2

6.2.4曲线梁桥中墩不采用墩、梁固结时,应设置适当的径向水平限位措施,其强度应满足水平力强度要求。 6.3结构分析 6.3.1曲线梁桥结构静力分析模型的建立应满足以下要求: (1)当扭跨所对应的圆心角φ<5o时,可作为以曲线长为跨径的直线桥进行分析。 (2)当5o<φ≤30o时,弯矩及剪力可按直线桥进行分析,反力及扭矩需按空间程序进行分析,并且应考虑由于预应力、混凝土收 缩、徐变及温度作用所产生的效应。 (3)当30o<φ≤45o时,所有截面内力均应按空间程序进行分析。 (4)当φ>45o时,除按空间程序分析外,还应考虑翘曲约束扭转的影响。 (5)当采用具有相当抗扭刚度的闭口截面曲线梁桥,其扭转跨径所对应的(曲跨梁段)圆心角小于12o时,可以按直线桥进行分 3

相关文档
最新文档