2015高二数学三角函数值练习题及答案

2015高二数学三角函数值练习题及答案
2015高二数学三角函数值练习题及答案

2015高二数学三角函数值练习题及答案

【学习目标、细解考纲】

灵活利用利用公式一;掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。

【知识梳理、双基再现】

1、由三角函数的定义:的角的同一三角函数的值。

由此得诱导公式一

,其中。

2、叫做有向线段。

3、

角α的终边与单位圆交于点P,过点P作x轴的垂线,垂足为M;过点A(1,0)作单位圆的

切线,设它与α的终边(当α为第象限角时)或其反向延长线(当α为第象限角时)相交于点T。根据三角函数的定义:

sin α=y = ;

cos α=x = ;

tan α=x

y = 。

【小试身手、轻松过关】

4、= 2205sin ( ) A .21 B .21- C .22 D .2

2- 5、??

? ??-???? ??-341cos 647tan ππ的值为 ( ) A .21 B .21- C .23 D .6

3 6、若π

4 <θ < π2

,则下列不等式中成立的是 ( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ

C . tan θ>sin θ>cos θ

D .sin θ>tan θ>cos θ

7、sin (-1770°)·cos1500°+cos (-690°)·sin780°+tan405°= .

【基础训练、锋芒初显】

8、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( )

A .π4

B .3π4

C .7π4

D .3π4 或 7π4

9、若0<α<2π,且sin α<2

3 , cos α> 12 .利用三角函数线,得到α的取值范围是( ) A .(-π3 ,π3 ) B .(0,π3 ) C .(5π3 ,2π) D .(0,π3 )∪(5π3

,2π) 10、依据三角函数线,作出如下四个判断:

①sin π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π5 . 其中判断正确的有 ( )

A .1个

B .2个

C .3个

D .4个

11、4

25sin 2)311tan()415(cos 42π+--

的值为 ( ) A .1

B .13-

C .12-

D .()

122-

12、化简:2222222425131117cos 3tan sin 9336233

cos 4

m n n m ππππ+--= . 13、若-2π3

≤θ≤π6 ,利用三角函数线,可得sin θ的取值范围是 . 14、若∣cos α∣<∣sin α∣,则∈α .

15、试作出角α=

7π6

正弦线、余弦线、正切线.

【举一反三、能力拓展】

16、利用三角函数线,写出满足下列条件的角x 的集合.

⑴ sin x ≥2

2;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .

【名师小结、感悟反思】

1、用三角函数线可以解三角不等式、求函数定义域以及比较三角函数值的大小, 三角函数线也是利用数形结合思想解决有关问题的重要工具;

2、熟记特殊角的三角函数值。

三角函数练习题及答案

创作编号:BG7531400019813488897SX 创作者: 别如克* 三角函数 一、选择题 1.已知 α 为第三象限角,则 2 α 所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限 C .第一、四象限 D .第二、四象限 3.sin 3π4cos 6π5tan ??? ??3π4-=( ). A .- 4 3 3 B . 4 3 3 C .- 4 3 D . 4 3 4.已知tan θ+θtan 1 =2,则sin θ+cos θ等于( ). A .2 B .2 C .-2 D .±2 5.已知sin x +cos x =51 (0≤x <π),则tan x 的值等于( ). A .- 4 3 B .- 3 4 C . 4 3 D . 3 4 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β

7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3 π2,k ∈Z },C = {γ|γ=k π± 3 π 2,k ∈Z },则这三个集合之间的关系为( ). A .A ?B ?C B .B ?A ?C C .C ?A ?B D .B ?C ?A 8.已知cos (α+β)=1,sin α=31 ,则sin β 的值是( ). A .3 1 B .-3 1 C . 3 2 2 D .- 3 2 2 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .??? ??2π ,4π∪??? ??4π5 ,π B .?? ? ??π ,4π C .?? ? ??4π5 ,4π D .??? ??π ,4π∪??? ? ?23π ,4π5 10.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3 π 个单位长度,再把所得图象上所有点的横坐标缩短到原来的2 1 倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ??? ? ? 3π - 2x ,x ∈R B .y =sin ?? ? ??6π + 2x ,x ∈R C .y =sin ??? ? ? 3π + 2x ,x ∈R D .y =sin ??? ? ? 32π + 2x ,x ∈R 二、填空题 11.函数f (x )=sin 2 x +3tan x 在区间??? ???3π4π ,上的最大值是 . 12.已知sin α= 552,2 π ≤α≤π,则tan α= . 13.若sin ??? ??α + 2π=53,则sin ?? ? ??α - 2π= . 14.若将函数y =tan ??? ? ? 4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ??? ? ? 6π + x ω的图象重合,则ω的最小值为 . 15.已知函数f (x )=21(sin x +cos x )-2 1 |sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ??? ? ? 3π + 2x ,x ∈R ,有下列命题:

《与三角函数有关的最值问题》复习课教学设计

《与三角函数有关的最值问题》复习课教学设计 湖南师大第二附属中学刘海军 一.教学分析 三角函数的最值与值域问题,是历年高考重点考查的知识点之一,是对三角函数的概念、图象、性质以及诱导公式、同角三角函数间的关系、两角和与差公式的综合考查,是函数最值的一个重要组成部分.三角函数的最值与值域问题不仅与三角自身的所有基础知识密切相关,而且与前面复习过的函数、不等式、联系密切,综合性强,解法灵活,能力要求高,在复习完三角公式后,把三角函数的最值与值域作为专题复习,不仅可以帮助学生灵活运用三角公式,而且可以帮助学生掌握求最值和值域的方法,综合能力得到增强。 二.教学目标 1.知识与技能:正确理解三角函数的有关概念,掌握三角函数的基本概念、公式、图象及性质,并能综合运用这些概念,公式及性质解决实际问题. 2.过程与方法:在教学过程中,让学生学会运用数形结合思想、函数和方程的数学思想 来分析解决数学问题;培养学生的观察能力、动手能力、创新能力和归纳能力. 3.情感态度与价值观:通过例题的分析,方法的归纳,激发学生主动参与、主动探索的意识,使学生始终在动态过程中去感受知识、巩固知识、运用知识,提高45分钟的效率. 三.教学重点、难点 教学重点:求三角函数的最大、最小值. 教学难点:针对各题,会观察题中特点,正确运用相应方法求三角函数最值. 四.课型及课时安排 高三复习课,2课时:第1课时. 五.教学方法设计 综合启发教学,边教边让学生参与,学会对知识的归纳;强调教师为主导、学生为主体的互动原则,充分调动学生的积极性,发挥学生的主动性和创造性. 六.学情分析 高三学生对三角函数这部分知识比较熟悉.但学生对知识的前后联系,有效方法的选择,分析问题的内涵,综合运用知识的能力还很薄弱.学生对知识的归纳整理能力比较欠缺,所以对三角函数最值的几个基本类型需要进行归纳和整理,以便学生能够更好的掌握.

(完整版)三角函数大题专项(含答案)

三角函数专项训练 1.在△ABC中,角A、B、C对应边a、b、c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sin B. (1)证明a2+b2﹣c2=ab; (2)求角C和边c. 2.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B﹣).(Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 3.已知α,β为锐角,tanα=,cos(α+β)=﹣. (1)求cos2α的值; (2)求tan(α﹣β)的值. 4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB; (2)若DC=2,求BC. 5.已知函数f(x)=sin2x+sin x cos x. (Ⅰ)求f(x)的最小正周期; (Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值. 6.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin A=4b sin B,ac=(a2﹣b2﹣c2) (Ⅰ)求cos A的值; (Ⅱ)求sin(2B﹣A)的值 7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω; (Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值. 8.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a>b,a=5,c=6,sin B=

. (Ⅰ)求b和sin A的值; (Ⅱ)求sin(2A+)的值. 9.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 10.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cos B; (2)若a+c=6,△ABC的面积为2,求b. 11.已知函数f(x)=cos(2x﹣)﹣2sin x cos x. (I)求f(x)的最小正周期; (II)求证:当x∈[﹣,]时,f(x)≥﹣. 12.已知向量=(cos x,sin x),=(3,﹣),x∈[0,π]. (1)若,求x的值; (2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.13.在△ABC中,∠A=60°,c=a. (1)求sin C的值; (2)若a=7,求△ABC的面积. 14.已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值; (2)求f(x)的单调递增区间. 15.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2a cos B.(1)证明:A=2B; (2)若cos B=,求cos C的值. 16.设f(x)=2sin(π﹣x)sin x﹣(sin x﹣cos x)2.

三角函数最大值问题

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。

三角函数及解三角形测试题(含答案)

三角函数及解三角形 一、选择题: 1.设α是锐角,223)4 tan(,+=+απ 则=αcos ( ) 2.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( A ) A .5海里 B .53海里 C .10海里 D .103海里 3.若函数)0(sin )(>=ωωx x f 在区间??????3,0π上单调递增,在区间??? ???2,3ππ上单调递减,则=ω( ) A .3 B .2 4.已知函数)(),0(cos sin 3)(x f y x x x f =>+=ωωω的图象与直线2=y 的两个相邻交点的距 离 等 于 , π则 ) (x f 的单调递增区间是 ( ) A.Z k k k ∈????? ?+ - ,125,12 πππ π B. Z k k k ∈????? ? ++,1211,125ππππ C. Z k k k ∈?? ??? ?+-,6,3 ππππ D.[Z k k k ∈?? ??? ? ++,32,6 ππππ 5.圆的半径为c b a ,,,4为该圆的内接三角形的三边,若,216=abc 则三角形的面积为

( ) 2 2 C. 2 D. 22 6.已知5 4cos -=α且,,2 ? ? ? ??∈ππα则?? ? ? ? +4tan πα等于( C ) A .-17 B .-7 C .1 7 D .7 7.锐角三角形ABC 中c b a ,,,分别是三内角C B A ,,的对边设,2A B =则a b 的取值范围是( D ) A .(﹣2,2) B .(0,2) C .( ,2) D .( , ) 8.已知函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π 3 是其图象的一条对称轴,则符合条件的函数解析式是(D ) A .y =4sin ? ????4x +π6 B .y =2sin ? ????2x +π3+2 C .y =2sin ? ???? 4x +π3+2 D .y =2sin ? ???? 4x +π6+2 9.函数)3 2sin(π+=x y 的图象经怎样平移后所得的图象关于点)0,12 (π - 成中心对称 ( ) A.向左平移 12π B.向左平移6π C.向右平移6π D.向右平移12 π 10.如果函数x a x y 2cos 2sin +=的图象关于直线6 π -=x 对称,那么=a ( )

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

三角函数习题及答案

第四章 三角函数 §4-1 任意角的三角函数 一、选择题: 1.使得函数lg(sin cos )y θθ=有意义的角在( ) (A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角α、β的终边关于У轴对称,(κ∈Ζ)。则 (A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π 3.设θ为第三象限的角,则必有( ) (A)tan cot 2 2 θ θ (B)tan cot 2 2 θ θ (C)sin cos 2 2 θ θ (D)sin cos 2 2 θ θ 4.若4 sin cos 3 θθ+=-,则θ只可能是( ) (A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若tan sin 0θθ 且0sin cos 1θθ+ ,则θ的终边在( ) (A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限 二、填空题: 6.已知α是第二象限角且4sin 5α= 则2α是第▁▁▁▁象限角,2 α 是第▁▁▁象限角。 7.已知锐角α终边上一点A 的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。 8.设1 sin ,(,)sin y x x k k Z x π=+ ≠∈则Y 的取值范围是▁▁▁▁▁▁▁。 9.已知cosx-sinx<-1,则x 是第▁▁▁象限角。 三、解答题: 10.已知角α的终边在直线y =上,求sin α及cot α的值。 11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sin β=0。 12.已知()()cos ,5n f n n N π +=∈,求?(1)+?(2)+?(3)+……+?(2000)的值。 §4-2 同角三角函数的基本关系式及诱导公式 一、选择题: 1.()sin 2cos 22ππ?? --- ??? 化简结果是( ) (A )0 (B )1- (C )2sin 2 ()2s i n 2 D - 2.若1 sin cos 5 αα+= ,且0απ ,则tan α的值为( ) ()43A - ()34B - ()34C ()43D -或34 - 3. 已知1sin cos 8αα=,且42 ππ α ,则cos sin αα-的值为( )

《三角函数》单元测试题(含答案)

《三角函数》单元测试题 一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合要求的,把正确答案的代号填在括号内.) 1、 600sin 的值是( ) )(A ;21 )(B ;23 )(C ; 23- )(D ;21- 2、下列说法中正确的是( ) A .第一象限角都是锐角 B .三角形的内角必是第一、二象限的角 C .不相等的角终边一定不相同 D .},90180|{},90360|{Z k k Z k k ∈?+??==∈?±??=ββαα 3、已知cos θ=cos30°,则θ等于( ) A. 30° B. k ·360°+30°(k ∈Z) C. k ·360°±30°(k ∈Z) D. k ·180°+30°(k ∈Z) 4、若θθθ则角且,02sin ,0cos <>的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限( ) 5、已知21 tan -=α,则α ααα2 2cos sin cos sin 2-的值是( ) A .3 4- B .3 C .34 D .3- 6.若函数x y 2sin =的图象向左平移4π 个单位得到)(x f y =的图象,则( ) A .x x f 2cos )(= B .x x f 2sin )(= C .x x f 2cos )(-= D .x x f 2sin )(-= 7、9.若?++?90cos()180sin(αa -=+)α,则)360sin(2)270cos(αα-?+-?的值是( ) A .32a - B .23a - C .32a D .2 3a 8、圆弧长度等于圆内接正三角形的边长,则其圆心角弧度数为 ( ) A . 3 π B. 3 2π C. 3 D. 2 9、若x x f 2cos 3)(sin -=,则)(cos x f 等于( ) A .x 2cos 3- B .x 2sin 3- C .x 2cos 3+ D .x 2sin 3+

已知三角函数值求角知识讲解

【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin x =,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin x =知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 4π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

利用三角函数求解最值问题

利用三角函数求解最值问题 一、教学目标 1、知识技能目标:以圆的内接矩形的最大面积的求法作为引例,使学生逐步探究在半 圆,四分之一圆的内接矩形相关最值问题,学会用三角函数求得内接矩形面 积的最大值,能够总结求解最值问题基本思路。 2、过程方法目标:在恰当引进自变量、建立函数关系式的过程中,不断加强图形,文 字,符号这三种数学语言的联系,培养学生讲实际问题抽象为数学问题的化 归能力。同时增强学生数形结合、分类讨论的数学思想,逐步提高学生应用 意识和创新意识。 个问题的解决,培养学生积极主动的探索精神;通过加强学生的环保意识,增强学生的社会责任感 4、教材分析: (1)教材的知识结构:本节课是一节复习课,是以三角函数中的三角公式、三角函数 的图象、三角函数的性质为必要基础。属于人教版高中《数学》第 四册(必修B)第一、三章内容。 (2)教材的地位和作用:三角函数作为一种基本的初等函数,教材中主要介绍了各种 三角公式及三角函数的图象与性质,对三角函数的具体应用涉及 较少。而新课程标准提倡在学生生活经验的基础上,教师尽可能 多地提供各种机会让他们体验数学与日常生活及其他学科的联 系,感受数学的应用价值。本课为此联系生活实际提出问题,设 计层层探究,促使学生出于证明或求解需要而思考引进自变量的 特点,通过对常量和变量的分析,让学生体会三角函数的优势所 在。 (3)对知识的处理:本节课在设计上以“创设情景、揭示矛盾(提出数学问题)—— 自主探索、展开讨论(形成数学概念)——反思总结、归纳提升(获 得数学结论)——巩固深化、学以致用(运用数学知识)”为教学 模式。本课从教材中的一道习题出发,以最常见、最熟悉的例子— 锯木料为切入点,对教学内容层层分析挖掘,促使学生思考探究, 给学生提供了观察、操作、表达等机会。同时帮助学生对所学内容 进行加工处理,使之条理化,系统化便于存储记忆,并通过解题运 用不断加深对知识本质的认识。培养了学生勇于探索、深入研究的 优秀学习品质。 (4)教学过程与方法:在教学中要注意学生的数学学习思维形成和深化过程,培养学生探 究学习、合作学习的习惯。让学生充分体会由特殊到一般的认识规律, 培养学生学会观察、分析、发现、判断、归纳证明等研究问题的方法。 5、学情与学法指导 学情分析:一方面从知识水平上看,学生刚学完三角函数的相关内容,对这一知识体系的综合运用能力没有达到一定高度,但已经具备一定的观察能力,分析能力 和解题能力;另一方面师生之间比较熟悉,课堂沟通不成问题,在进度上可 适当加快,但结构设计要符合学生的认知结构,要注重对学生观察,归纳能

三角函数综合测试题(含答案)(1)

三角函数综合测试题 学生: 用时: 分数 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共18小题,每小题3分,共54分) 1.(08全国一6)2 (sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 2.(08全国一9)为得到函数πcos 3y x ? ? =+ ?? ? 的图象,只需将函数sin y x =的图像( ) A .向左平移 π 6个长度单位 B .向右平移 π 6个长度单位 C .向左平移5π 6 个长度单位 D .向右平移5π 6 个长度单位 3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角 4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .2 5.(08安徽卷8)函数sin(2)3 y x π =+图像的对称轴方程可能是 ( ) A .6 x π =- B .12 x π =- C .6 x π = D .12 x π = 6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移 2 π 个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x 7.(08广东卷5)已知函数2 ()(1cos 2)sin ,f x x x x R =+∈,则()f x 是 ( ) A 、最小正周期为π的奇函数 B 、最小正周期为 2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )

(完整版)锐角三角函数练习题及答案

锐角三角函数 1.把Rt △ABC 各边的长度都扩大3倍得Rt △A ′B ′C ′,那么锐角A ,A ′的余弦值的关系为( ) A .cosA=cosA ′ B .cosA=3cosA ′ C .3cosA=cosA ′ D .不能确定 2.如图1,已知P 是射线OB 上的任意一点,PM ⊥OA 于M ,且PM :OM=3:4,则cos α的值等于( ) A .34 B .43 C .45 D .35 图1 图2 图3 图4 图5 3.在△ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,则下列各项中正确的是( ) A .a=c ·sin B B .a=c ·cosB C .a=c ·tanB D .以上均不正确 4.在Rt △ABC 中,∠C=90°,cosA=23 ,则tanB 等于( ) A .35 B .53 C .255 D .52 5.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,?tanA=_______. 6.如图2,在△ABC 中,∠C=90°,BC :AC=1:2,则sinA=_______,cosA=______,tanB=______. 7.如图3,在Rt △ABC 中,∠C=90°,b=20,c=202,则∠B 的度数为_______. 8.如图4,在△CDE 中,∠E=90°,DE=6,CD=10,求∠D 的三个三角函数值. 9.已知:α是锐角,tan α=724 ,则sin α=_____,cos α=_______. 10.在Rt △ABC 中,两边的长分别为3和4,求最小角的正弦值为 10.如图5,角α的顶点在直角坐标系的原点,一边在x 轴上,?另一边经过点P (2,23),求角α的三个三角函数值. 12.如图,在△ABC 中,∠ABC=90°,BD ⊥AC 于D ,∠CBD=α,AB=3,?BC=4,?求sin α,cos α,tan α的值. 解直角三角形 一、填空题 1. 已知cosA=2 3,且∠B=900-∠A ,则sinB=__________.

已知三角函数值求角知识讲解

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42 π=,所以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=. (2)在R 上符合条件的角是所有与 54 π终边相同的角和所有与74π 终边相同的角.因此x 的取值集合为

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且 222 3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n (1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围. 3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2 a C c b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围. 4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=- (1)求角C ; (2)求ABC ?面积的最大值. 5. 已知向量(2,1),(sin ,cos())2 A m n B C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小; (2)在(1)的条件下,当a =22b c +的取值范围. 6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b (1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期; (2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值. 7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

三角函数综合测试题(及答案)

三角函数综合测试题 一、选择题(每小题5分,共70分) 1. sin2100 = A . 2 3 B . - 2 3 C . 2 1 D . - 2 1 2.α是第四象限角,5 tan 12 α=- ,则sin α= A .15 B .15- C .513 D .513 - 3. )12 sin 12 (cos ππ - )12sin 12(cos π π+= A .- 23 B .-21 C . 2 1 D .23 4. 已知sinθ=5 3 ,sin2θ<0,则tanθ等于 A .-4 3 B .4 3 C .-4 3或4 3 D .5 4 5.将函数sin()3y x π =- 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变) ,再将所得的图象向左平移3 π 个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π =- C .1sin()26y x π=- D .sin(2)6 y x π =- 6. ()2 tan cot cos x x x += A .tan x B . sin x C . c o s x D . cot x 7.函数y = x x sin sin -的值域是 A. { 0 } B. [ -2 , 2 ] C. [ 0 , 2 ] D.[ -2 , 0 ] 8.已知sin αcos 8 1 = α,且)2,0(πα∈,则sin α+cos α的值为 A. 25 B. -25 C. ±25 D. 2 3 9. 2 (sin cos )1y x x =--是

A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4( πππ π B .),4(ππ C .)45,4(ππ D .)2 3,45(),4(π πππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为 x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2 π B .ω=21,θ= 2π C .ω=2 1,θ=4π D .ω=2,θ=4π 12. 设5sin 7a π=,2cos 7b π=,2tan 7 c π =,则 A .a b c << B .a c b << C .b c a << D .b a c << 13.已知函数()sin(2)f x x ?=+的图象关于直线8 x π =对称,则?可能是 A . 2π B .4π- C .4 π D .34π 14. 函数f (x )= x x cos 2cos 1- A .在??????20π , 、??? ??ππ,2上递增,在??????23,ππ、??? ??ππ 2,23上递减 B .在??????20π,、??? ??23ππ,上递增,在??? ??ππ,2、??? ??ππ 223, 上递减 C .在?? ????ππ, 2、??? ?? ππ223,上递增,在?? ????20π,、??? ??23ππ, 上递减 D .在????? ?23, ππ、??? ??ππ2,23上递增,在?? ????20π,、??? ??ππ,2上递减 二.填空题(每小题5分,共20分,) 15. 已知??? ? ?- ∈2, 2ππα,求使sin α=3 2 成立的α= 16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+?)(ω>0,|?|< 2 π ,x ∈R )的部分图象如图,则函数表达式为

知识讲解_已知三角函数值求角

已知三角函数值求角 【学习目标】 1、掌握已知三角函数值求角的解题步骤; 2、要求学生初步(了解)理解反正弦,反余弦,反正切函数的意义,会由已知角的正弦值、余弦值、正切值求出[]π2,0范围内的角,并能用反正弦,反余弦,反正切的符号表示角或角的集合 【要点梳理】 要点一:反正弦,反余弦,反正切函数的定义 (1)一般地,对于正弦函数sin y x =,如果已知函数值[](1,1)y y ∈-,那么在,22ππ?? -???? 上有唯一的x 值 和它对应,记为arcsin x y =(其中11,22y x ππ-≤≤-≤≤).即arcsin y (||1y ≤)表示,22ππ?? -???? 上正弦等于y 的那个角. (2)在区间[]0,π上符合条件cos (11)x y y =-≤≤的角x ,记为arccos x y =. (3)一般地,如果tan ()x y y R =∈,且,22x ππ??∈- ???,那么对每一个正切值y ,在开区间,22ππ?? - ??? 内, 有且只有一个角x ,使tan x y =.符合上述条件的角x ,记为arctan ,(,)22 x y x ππ =∈-. 要点二:已知正弦值、余弦值和正切值,求角 已知角x 的一个三角函数值求角x ,所得的角不一定只有一个,角的个数要根据角的取值范围来确定,这个范围应该在题目中给定,如果在这个范围内有已知三角函数值的角不止一个,解法可以分为以下几步: 第一步,决定角可能是第几象限角. 第二步,如果函数值为正数,则先求出对应的锐角1x ;如果函数值为负数,则先求出与其绝对值对应的锐角1x . 第三步,如果函数值为负数,则可根据x 可能是第几象限角,得出(0,2π)内对应的角;如果它是第二象限角,那么可表示为-1x +π;如果它是第三或第四象限角,那么可表示为1x +π或-1x +2π. 第四步,如果要求(0,2π)以外对应的角,则可利用终边相同的角有相同的三角函数值这一规律写出结果. 【典型例题】 类型一:已知正弦值、余弦值,求角 例1.已知sin 2 x =- ,(1)x ∈[]0,2π,(2)x R ∈,求角x . 【思路点拨】因为所给的正弦值是负数,所以先求出其绝对值对应的锐角,然后在求出其他象限的角. 【解析】 (1)由sin 2 x =- 知x 的正弦值是个负值,所以x 是第三象限或第四象限的角.因为sin 42π=,所 以第三象限的那个角是544π ππ+ = ,第四象限的角是7244 ππ π-=.

三角函数10道大题(带答案)

三角函数 1.已知函数()4cos sin()16 f x x x π =+-. (Ⅰ)求 ()f x 的最小正周期; (Ⅱ)求()f x 在区间[,]64 ππ -上的最大值和最小值. 2、已知函数.,1cos 2)3 2sin()32sin()(2R x x x x x f ∈-+-++ =π π (Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4 ,4[π π-上的最大值和最小值. 3、已知函数()tan(2),4 f x x =+ π (Ⅰ)求()f x 的定义域与最小正周期; (II )设0,4?? ∈ ?? ? πα,若( )2cos 2,2 f =α α求α的大小 4、已知函数x x x x x f sin 2sin )cos (sin )(-= . (1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间. 5、 设函数2()cos(2)sin 24 f x x x π = ++. (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()() 2g x g x π + =,且当[0,]2 x π ∈时, 1 ()()2 g x f x = -,求函数()g x 在[,0]π-上的解析式.

6、函数()sin()16 f x A x π ω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对 称轴之间的距离为 2 π, (1)求函数()f x 的解析式; (2)设(0,)2π α∈,则()22 f α =,求α的值. 7、设 426 f (x )cos(x )sin x cos x π =ω- ω+ω,其中.0>ω (Ⅰ)求函数y f (x )= 的值域 (Ⅱ)若y f (x )=在区间322,ππ?? - ???? 上为增函数,求 ω的最大值. 8、函数2 ()6cos 3(0)2 x f x x ωωω=->在一个周期内的图象如图所示,A 为 图象的最高点,B 、C 为图象与x 轴的交点,且ABC ?为正三角形. (Ⅰ)求ω的值及函数()f x 的值域; (Ⅱ)若0()5f x =,且0102 (,)33 x ∈-,求0(1)f x +的值. 9、已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A ; (2)若2a =,ABC ?的面积为3;求,b c . 10、在?ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =2 3 ,sin B C . (Ⅰ)求tan C 的值; (Ⅱ)若a ?ABC 的面积.

相关文档
最新文档