1函数部分基本题型练习

1函数部分基本题型练习
1函数部分基本题型练习

函数部分练习

3.如果对于定义域内某个区间D上的任意两个自变量的值x

1,x

2

,且x

1≠

x

2

,都有0

)

(

)

(

2

1

2

1>

-

-

x

x

x

f

x

f

,

那么函数f(x)在区间D上是_________函数(填“增”或“减”)。 4.如果对于定义域内某个区间D上任意两个自变量的值x

1

,x

2

, 且x

1≠

x

2

,都有0

)

(

)

(

2

1

2

1<

-

-

x

x

x

f

x

f

,那么函数f(x)在区间D上是_________函数(填“增”或“减”)。

1.下面给出的四类对象中,构成集合的是( )

A.一切很小的实数

B.所有聪明的人

C.不小于2的实数

D.2,3,π,3,……

2.给出下列关系:①R

2

1

②Q

?

2③|-3|?N+ ④|-3|∈Q,其中正确的个数为( )

A.1

B.2

C.3

D.4

3.方程组

?

?

?

-

=

-

=

+

1

1

y

x

y

x

的解集是( )

A.{x=0,y=1}

B.{0,1}

C.{(0,1)}

D.{(x,y)|x=0或y=1}

4.下列四个命题,其中正确的命题是( )

A.空集没有子集

B.空集是任何集合的一个真子集

C.空集的元素个数为0

D.任何集合至少有二个不同子集

5.六个关系式:①{a,b}?{a,b} ②{a,b}={b,a} ③{0}?φ④0∈{0} ⑤φ∈{0} ⑥φ={0},其中正确的个数为( )

A.6个

B.5个

C.4个

D.小于4个

6.已知集合A,B满足A?B=A,则下列关系一定成立的是( )

A. A?B

B. A=B

C. A?B=B

D. A?B=A

7.已知集合A={x∈N|x≤5},B={x∈N|x>1}, 那么A?B等于( )

A.{1,2,3,4,5}

B.{2,3,4,5}

C.{2,3,4}

D.{x∈R |1

8.设M={1,2,m2-3m-1},P={-1,3},M?P=3,则m的值为( )

A. 4

B. –1

C. 1,-4

D. 4,-1

9.已知集合A={x|x2+m x+1=0},若A?R=φ,则实数m的取值范围是( )

A. m<4

B. m>4

C. 0

D. 0≤m<4

10.已知I={0,1,2,3,4},集合A={0,1,2,3},B={2,3,4},则C

I

A?C

I

B等于( )

A.{0}

B.{0,1}

C.{0,1,4}

D.{0,1,2,3,4}

11.集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不表示从P到Q的映射是()

A. f:x →y=

2

1x B. f:x →y=

3

1x C. f:x →y=

3

2x D. f:x →y=x 12.以下四组函数中,表示同一函数的是( )

A.f(x)=|x|,g(t)=2t

B.f(x)=2x ,g(x)=(x )2

C.f(x)=1

1

2

--x x

,g(x)=x+1 D.f(x)=11-?+x x ,g(x)=12

-x

13.函数y=

x

111+

的定义域是( ) A. x>0 B. x>0或x ≤-1 C. x>0或x<-1 D. 0

(1)y=2x+5 (2)y=112

+x

(3)=x x -|| (4)y=?

??

??≥+-<0

1

21

02x x x x

定义域为R 的个数为( )

A.1个

B.2个

C.3个

D.4个 15.已知g(X)=1-2x,f[g(x)]=

)0(12

≠-x x

x ,则f(

2

1)=( )

A.1

B.3

C.

4

15 D.30

16.函数y=2x-1在区间[3,6]上的最大值与最小值分别是( )

A.最大值是9,最小值是3

B.最大值是36,最小值是9

C.

16,最小值是6

17.的最大值___________,此时对应的自变量

为____________,取的最小值是_________,此时对应的自变量x 为___________.该函数的定义域是_________________,值域是_________________. 18.求下列函数的定义域:

(1)y=x x -+-64:______________; (2)y=

6

1+x :______________;

19.下列函数

①∈{0,1,2,3,4}

②x

y 2= x ∈N + ③y=2x-3 x ]0,(-∞∈ ④y=-4x 2+2x-5 x ),0[+∞∈

在给定集合或区间上是增函数的有_________,是减函数的有________.(将序号填在横线上) 20.如果下列函数在给定集合区间上是减函数,那么字母k 属于什么区间: ①y=kx x ∈R k ∈____________ ②y=

x

k x ∈(-∞,0) k ∈____________

③y=-kx+2 x ∈R k ∈____________ ④y=kx 2-3

2x+1 x ),0[+∞∈ k ∈___________

21.作出y=-3x+4的图象,并证明它是R 上的减函数。

22.函数y=|x-3|+2的图象,并指出单调区间.

23.已知f(x+1)=x 2-3x+2,求: (1)f(x)的解析式;

(2)画出f(x)的图象,并指出单调区间;

(3)求f(x)在x ∈[-1,1]上的最大值与最小值.

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

基本初等函数经典总结

第十二讲 基本初等函数 一:教学目标 1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质; 2、理解基本初等函数的性质; 3、掌握基本初等函数的应用,特别是指数函数与对数函数 二:教学重难点 教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用 三:知识呈现 1.指数与指数函数 1).指数运算法则:(1)r s r s a a a +=; (2)() s r rs a a =; (3)()r r r ab a b =; (4 )m n a = (5 )m n a - = (6 ,||,a n a n ?=? ?奇偶 2). 指数函数:形如(01)x y a a a =>≠且 2. 1)对数的运算: 1、互化:N b N a a b log =?= 2、恒等:N a N a =log 3、换底: a b b c c a log log log =

推论1 a b b a log 1log = 推论2 log log log a b a b c c ?= 推论3 log log m n a a n b b m =)0(≠m 4、N M MN a a a log log log += log log log a a a M M N N =- 5、M n M a n a log log ?= 2)对数函数: 3.幂函数 一般地,形如 a y x =(a R ∈)的函数叫做幂函数,其中a 是常数 1)性质: (1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1);

(2) 如果α>0,则幂函数图象通过(0,0),并且在区间[0,+∞)上是增函数; (3) 如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋于+∞时,图象在x 轴上方无限逼近x 轴。 四:典型例题 考点一:指数函数 例1 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判 断底数与1的大小,对于含有参数的要注意对参数进行讨论. 例2 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围. 解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-. ∴当1a >时,∵[]11x ∈-,, ∴1x a a a ≤≤,即1 t a a ≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去); 当01a <<时,∵[]11x ∈-,, ∴1x a a a ≤≤,即1 a t a ≤≤, ∴ 1t a =时,2 max 11214y a ?? =+-= ??? , 解得13a =或15a =-(舍去),∴a 的值是3或1 3 . 评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入 等. 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞.

一次函数基础训练

一次函数基础训练 1.一次函数y=x+1经过 象限, 2.一次函数y=-2x+3的图象不经过 象限。 3.如果一次函数y=kx+b 的图象经过第一象限,且与y 轴负半轴相交,那么k 0,b 0. 4.在直角坐标系中,将直线y=-3x+2向下平移风易俗个 单位后,所得直线的解析式为 。 5.如图一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该函数的表达式为 。 6.已知,y=(m-1)x-2的图象经过一三四象限,那么m 的取值范围是否 。 7.函数y=-5x+2与x 轴的交点是 ,与y 轴的交点是 。 8.直线y=2x-6与两坐标轴围成的三角形面积是 。 9.一次函数y=2x-6与y=-x+3的图象交于点P ,则P 点的坐标为了 。 ~ 10.如图,直线y=kx+b (k <0)与x 轴交于(3,0),则关于x 的不等式kx+b >0的解集为 . 11.已知函数y=x+b 和y=ax+3的图象交于点P ,则不等式x+b >ax+3的确解集为 。 12.点A (-5,y 1)和B (-2,y 2)是直线y=2 1 x 上的两点,则y 1与y 2

的大小关系 。 13.点P 1(x 1,y 1)与点P 2(x 2,y 2)是一次函数y=-4x+3图象上的两个点,且x 1<x 2则y 1与y 2的大小关系 。 14.一次函数y=(2m-6)x+5 中,y 随x 的增大而减小,则m 的取值范围是 。 15.直线y=kx+b 经过点A (-2,0)和y 轴正半轴上的一 点B ,若△ABO 的面积为什么,则b 的值为 。 16.如图,直线AB 对应的函数关系式是 。 17.函数量y=ax 与函数y=3 2 x+b 的图象如图所示,则x,y 的方程组0 323ax y y x b -=?? -=?的解是( ) " 18.已知,一次函数y=kx+b 的图象,当x <0时,y 的取值范围是 。 y x x 题

(完整版)对数函数图像及其性质题型归纳,推荐文档

对数函数及其性质题型总结 1.对数函数的概念 (1)定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的特征: 特征Error! 判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征. 比如函数y =log 7x 是对数函数,而函数y =-3log 4x 和y =log x 2均不是对数函数,其原因是不符合对数函数解析式的特点. 【例1-1】函数f (x )=(a 2-a +1)log (a +1) x 是对数函数,则实数a =__________. (1)图象与性质 a >10<a <1 图 象 (1)定义域{x |x >0} (2)值域{y |y R } ∈(3)当x =1时,y =0,即过定点(1,0) (4)当x >1时,y >0;当0<x <1时,y <0(4)当x >1时,y <0;当 0<x <1时,y >0 性质 (5)在(0,+∞)上是增函数(5)在(0,+∞)上是减函数性质(6)底数与真数位于1的同侧函数值大于0,位于1的俩侧函数值小于0 性质(7)直线x =1的右侧底大图低 谈重点 对对数函数图象与性质的理解 对数函数的图象恒在y 轴右侧,其单调性取决于底数.a >1时,函数单调递增;0<a <1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用. 题型一:定义域的求解 求下列函数的定义域. 例1、(1)y =log 5(1-x ); (2)y =log (2x -1)(5x -4); (3). y =在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y =log a f (x )的定义域时,应首先保证f (x )>0. 题型二:对数值域问题 对数型函数的值域的求解

考研---基本初等函数知识汇总-必看

一、三角公式总表 ⒈L 弧长=αR=n πR 180 S 扇=21L R=21R 2 α=3602R n ?π ⒉正弦定理: A a sin =B b sin =C c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= ⒋S ⊿=21a a h ?=21ab C sin =21bc A sin =21ac B sin = R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =x y = θ θ cos sin =θθsec sin ? ②θθθθθcsc cos sin cos ?== =y x ctg ③θθθtg r y ?==cos sin ④θθθθcsc cos 1sec ?== =tg x r ⑤θθθctg r x ?== sin cos ⑥θθθθsec sin 1csc ?== =ctg y r ⑵倒数关系:1sec cos csc sin =?=?=?θθθθθθctg tg ⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22?θθθ++=+b a b a (其中辅助角?与点(a,b )在同一象限,且 a b tg = ?) ⒍函数y=++?)sin(?ωx A k 的图象及性质:(0,0>>A ω) 振幅A ,周期T= ω π 2, 频率f=T 1, 相位?ω+?x ,初相? ⒎五点作图法:令?ω+x 依次为ππ ππ 2,2 3,,2 0 求出x 与y , 依点()y x ,作图 ⒏诱导公试

对数极对数函数题型总结

对数极对数函数题型总结 例题讲解 一、利用对数恒等式化简求值 1.求值: 2.求的值(a,b,c∈R+,且不等于1,N>0) 二、积、商、幂的对数 3.求值 (1)(2)lg2·lg50+(lg5)2(3)lg25+lg2·lg50+(lg2)2 4.已知3a=5b=c,,求c的值. 5.设a、b、c为正数,且满足a2+b2=c2.求证:. 6.已知:a2+b2=7ab,a>0,b>0. 求证:. 三、换底公式的运用 7.(1)已知log x y=a,用a表示; (2)已知log a x=m,log b x=n,log c x=p,求log abc x. 8.求值:(1);(2);(3). 9. 10. 11.四、对数运算法则的应用 12.9.求值 13.(1) log89·log2732 14.(2)

15.(3) 16.(4)(log2125+log425+log85)(log1258+log254+log52) 17. 18.10.求值: 19. 11.已知:log23=a,log37=b,求:log4256=? 五、函数的定义域、值域 求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用. 12. 求下列函数的定义域. (1) y=(2) y=ln(a x-k·2x)(a>0且a11,k?R). 13.函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域. 六、函数图象问题 七、14.作出下列函数的图象: 八、(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx. 九、 七、对数函数的单调性及其应用 利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值. 15.已知则() A.B.C.D.

(完整word版)excel函数的说明及其详细的解释

excel 函数的说明及其详细的解释 数据库和清单管理函数 AVERAGE返回选定数据库项的平均值 DCOUNT计算数据库中包含数字的单元格的个数 DCOUNTA计算数据库中非空单元格的个数 DGET从数据库中提取满足指定条件的单个记录 DMAX返回选定数据库项中的最大值 DMIN返回选定数据库项中的最小值 DPRODUCT乘以特定字段(此字段中的记录为数据库中满足指定条件的记录)中的值 DSTDEV根据数据库中选定项的示例估算标准偏差 DSTDEVP根据数据库中选定项的样本总体计算标准偏差 DSUM对数据库中满足条件的记录的字段列中的数字求和 DVAR根据数据库中选定项的示例估算方差 DVARP根据数据库中选定项的样本总体计算方差 GETPIVOTDATA 返回存储在数据透视表中的数据

日期和时间函数 DATE返回特定时间的系列数 DATEDIF计算两个日期之间的年、月、日数 DATEVALUE 将文本格式的日期转换为系列数 DAY 将系列数转换为月份中的日 DAYS360按每年360 天计算两个日期之间的天数 EDATE返回在开始日期之前或之后指定月数的某个日期的系列数 EOMONTH返回指定月份数之前或之后某月的最后一天的系列数 HOUR将系列数转换为小时 MINUTE将系列数转换为分钟 MONTH将系列数转换为月 NETWORKDAYS 返回两个日期之间的完整工作日数 NOW 返回当前日期和时间的系列数 SECOND将系列数转换为秒 TIME返回特定时间的系列数 TIMEVALUE将文本格式的时间转换为系列数 TODAY返回当天日期的系列数 WEEKDAY将系列数转换为星期 WORKDAY返回指定工作日数之前或之后某日期的系列数YEAR 将系列数转换为年

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 三、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质

(完整版)一次函数专项练习题

一次函数专项练习题 题型一、点的坐标 方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0; 若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限; 2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________; 3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A , B 关于原点对称,则a=_______,b=_________; 4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。 题型二、关于点的距离的问题 方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示; 任意两点(,),(,)A A B B A x y B x y 的距离为22()()A B A B x x y y -+-; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为 A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为 22A A x y + 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 4、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ????- ? ???? ?,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。 ☆A 与B 成正比例 A=kB(k ≠0) 1、当k_____________时, ()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数; 3、当m_____________时,()21445m y m x x +=-+-是一次函数; 4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________; 题型四、函数图像及其性质 方法: ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度; b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。 ☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。 当 时,两直线垂直。 当 时,两直线相交。 当 时,两直线交于y 轴上同一点。 ☆特殊直线方程: X 轴 : 直线 Y 轴 : 直线 与X 轴平行的直线 与Y 轴平行的直线 一、 三象限角平分线 二、四象限角平分线 1、对于函数y =5x+6,y 的值随x 值的减小而___________。 2、对于函数1223 y x =-, y 的值随x 值的________而增大。 3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__。4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。 5、直线y=kx+b 经过第一、二、四象限,则直线y=-bx+k 经过第____象限。 6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。 7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式 方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。 ☆ 已知是直线或一次函数可以设y=kx+b (k ≠0); ☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。 1、若函数y=3x+b 经过点(2,-6),求函数的解析式。 2、直线y=kx+b 的图像经过A (3,4)和点B (2,7), 4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。6、已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。 7、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。8、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。 5、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值的范围是-11≤y ≤9,求此函数的解析式。 题型六、平移 方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。 1. 直线y=5x-3向左平移2个单位得到直线 。 2. 直线y=-x-2向右平移2个单位得到直线 3. 直线y=21x 向右平移2个单位得到直线 4. 直线y=22 3+-x 向左平移2个单位得到直线 5. 直线y=2x+1向上平移4个单位得到直线 6. 直线y=-3x+5向下平移6个单位得到直线

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

Excel函数名称解释大全..

Excel函数大全 数据库和清单管理函数 DAVERAGE 返回选定数据库项的平均值 DCOUNT 计算数据库中包含数字的单元格的个数 DCOUNTA 计算数据库中非空单元格的个数 DGET 从数据库中提取满足指定条件的单个记录 DMAX 返回选定数据库项中的最大值 DMIN 返回选定数据库项中的最小值 DPRODUCT 乘以特定字段(此字段中的记录为数据库中满足指定条件的记录)中的值 DSTDEV 根据数据库中选定项的示例估算标准偏差 DSTDEVP 根据数据库中选定项的样本总体计算标准偏差 DSUM 对数据库中满足条件的记录的字段列中的数字求和 DVAR 根据数据库中选定项的示例估算方差 DVARP 根据数据库中选定项的样本总体计算方差 GETPIVOTDATA 返回存储在数据透视表中的数据 日期和时间函数 DATE 返回特定时间的系列数 DATEDIF 计算两个日期之间的年、月、日数 DATEVALUE 将文本格式的日期转换为系列数 DAY 将系列数转换为月份中的日 DAYS360 按每年 360 天计算两个日期之间的天数 EDATE 返回在开始日期之前或之后指定月数的某个日期的系列数 EOMONTH 返回指定月份数之前或之后某月的最后一天的系列数 HOUR 将系列数转换为小时 MINUTE 将系列数转换为分钟

MONTH 将系列数转换为月 NETWORKDAYS 返回两个日期之间的完整工作日数 NOW 返回当前日期和时间的系列数 SECOND 将系列数转换为秒 TIME 返回特定时间的系列数 TIMEVALUE 将文本格式的时间转换为系列数 TODAY 返回当天日期的系列数 WEEKDAY 将系列数转换为星期 WORKDAY 返回指定工作日数之前或之后某日期的系列数 YEAR 将系列数转换为年 YEARFRAC 返回代表 start_date(开始日期)和 end_date(结束日期)之间天数的以年为单位的分数 DDE 和外部函数 CALL 调用动态链接库(DLL)或代码源中的过程 REGISTER.ID 返回已注册的指定 DLL 或代码源的注册 ID SQL.REQUEST 连接外部数据源,并从工作表中运行查询,然后将结果作为数组返回,而无需进行宏编程。 有关 CALL 和 REGISTER 函数的其他信息 工程函数 BESSELI 返回经过修改的贝塞尔函数 In(x) BESSELJ 返回贝塞尔函数 Jn(x) BESSELK 返回经过修改的贝塞尔函数 Kn(x) BESSELY 返回贝塞尔函数 Yn(x) xlfctBIN2DEC BIN2DEC 将二进制数转换为十进制数 BIN2HEX 将二进制数转换为十六进制数 BIN2OCT 将二进制数转换为八进制数 COMPLEX 将实系数和虚系数转换为复数 CONVERT 将一种度量单位制中的数字转换为另一种度量单位制

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

对数与对数函数-知识点与题型归纳

对数与对数函数-知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般 对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数 函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数 (a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27 注意: 知识点一对数及对数的运算性质 1.对数的概念 2

3 一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N =log a M -log a N ; ③log a M n =n log a M (n ∈R); ④log a m M n =n m log a M . (2)对数的性质 ①a log aN =N ;②log a a N =N (a >0,且a ≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =log a d . 注意:(补充)特殊结论:log 10,log 1a a a ==

Excel常用的函数计算公式大全(一看就会)

EXCEL的常用计算公式大全 一、单组数据加减乘除运算: ①单组数据求加和公式:=(A1+B1) 举例:单元格A1:B1区域依次输入了数据10和5,计算:在C1中输入 =A1+B1 后点击键盘“Enter(确定)”键后,该单元格就自动显示10与5的和15。 ②单组数据求减差公式:=(A1-B1) 举例:在C1中输入 =A1-B1 即求10与5的差值5,电脑操作方法同上; ③单组数据求乘法公式:=(A1*B1) 举例:在C1中输入 =A1*B1 即求10与5的积值50,电脑操作方法同上; ④单组数据求乘法公式:=(A1/B1) 举例:在C1中输入 =A1/B1 即求10与5的商值2,电脑操作方法同上; ⑤其它应用: 在D1中输入 =A1^3 即求5的立方(三次方); 在E1中输入 =B1^(1/3)即求10的立方根 小结:在单元格输入的含等号的运算式,Excel中称之为公式,都是数学里面的基本运算,只不过在计算机上有的运算符号发生了改变——“×”与“*”同、“÷”与“/”同、“^”与“乘方”相同,开方作为乘方的逆运算,把乘方中和指数使用成分数就成了数的开方运算。这些符号是按住电脑键盘“Shift”键同时按住键盘第二排相对应的数字符号即可显示。如果同一列的其它单元格都需利用刚才的公式计算,只需要先用鼠标左键点击一下刚才已做好公式的单元格,将鼠标移至该单元格的右下角,带出现十字符号提示时,开始按住鼠标左键不动一直沿着该单元格依次往下拉到你需要的某行同一列的单元格下即可,即可完成公司自动复制,自动计算。 二、多组数据加减乘除运算: ①多组数据求加和公式:(常用) 举例说明:=SUM(A1:A10),表示同一列纵向从A1到A10的所有数据相加; =SUM(A1:J1),表示不同列横向从A1到J1的所有第一行数据相加; ②多组数据求乘积公式:(较常用) 举例说明:=PRODUCT(A1:J1)表示不同列从A1到J1的所有第一行数据相乘; =PRODUCT(A1:A10)表示同列从A1到A10的所有的该列数据相乘; ③多组数据求相减公式:(很少用) 举例说明:=A1-SUM(A2:A10)表示同一列纵向从A1到A10的所有该列数据相减; =A1-SUM(B1:J1)表示不同列横向从A1到J1的所有第一行数据相减; ④多组数据求除商公式:(极少用) 举例说明:=A1/PRODUCT(B1:J1)表示不同列从A1到J1的所有第一行数据相除; =A1/PRODUCT(A2:A10)表示同列从A1到A10的所有的该列数据相除; 三、其它应用函数代表: ①平均函数 =AVERAGE(:);②最大值函数 =MAX (:);③最小值函数 =MIN (:); ④统计函数 =COUNTIF(:):举例:Countif ( A1:B5,”>60”) 说明:统计分数大于60分的人数,注意,条件要加双引号,在英文状态下输入。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质 一、常值函数(也称常数函数) y =C (其中C 为常数); α 1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时

在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1) 当1>a 时函数为单调 增,当10<

x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 .当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; .当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界] 1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b =,那么数b 叫做以a 为底N 的对数, f x x x x g ? ? ?=1)(

相关文档
最新文档