Gut immunity in Lepidopteran insects

Gut immunity in Lepidopteran insects
Gut immunity in Lepidopteran insects

Gut immunity in Lepidopteran insects

Kai Wu a ,Bing Yang a ,Wuren Huang b ,Leonard Dobens c ,Hongsheng Song d ,**,Erjun Ling a ,*

a

Key Laboratory of Insect Developmental and Evolutionary Biology,Institute of Plant Physiology and Ecology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200032,China b

Environment and Plant Protection Institute,Chinese Academy of Tropical Agricultural Sciences,Haikou,Hainan 571101,China c

School of Biological Sciences,University of Missouri-Kansas City,5007Rockhill Road,Kansas City,MO 64110,USA d

College of Life Sciences,Shanghai University,Shanghai 200444,China

a r t i c l e i n f o

Article history:

Received 14September 2015Received in revised form 6February 2016

Accepted 6February 2016Available online xxx Keywords:Lepidoptera Gut

Bacteria

Microsporidia Virus

Immunity

a b s t r a c t

Lepidopteran insects constitute one of the largest fractions of animals on earth,but are considered pests in their relationship with man.Key to the success of this order of insects is its ability to digest food and absorb nutrition,which takes place in the midgut.Because environmental microorganisms can easily enter Lepidopteran guts during feeding,the innate immune response guards against pathogenic bacteria,virus and microsporidia that can be devoured with food.Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune re-sponses in the body cavity,which depend on the function of the fat body and hemocytes.Due to their relevance to agricultural production,studies of Lepidopteran insect midgut and immunity are receiving more attention,and here we summarize gut structures and functions,and discuss how these confer immunity against different microorganisms.It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future.

?2016Elsevier Ltd.All rights reserved.

1.Introduction

On earth,there are approximately 160,000species of Lepidop-teran insects,some of which act as agricultural pests,while others,such as the silkworm (Bombyx mori ),can be considered economi-cally important.Microorganisms introduced into the body cavities through wounds or infection induce hemocyte-involved

phagocytosis,encapsulation and nodule formation (cellular im-munity)and/or the expression of humoral proteins involved pro-tection (humoral immunity)(Hoffmann,2003;Lemaitre and Hoffmann,2007;Liu et al.,2013a;Strand,2008).In contrast,pathogenic microorganisms transferred into the gut with food activate gut immunity to protect insects (Dillon and Dillon,2004;Engel and Moran,2013;Lemaitre and Miguel-Aliaga,2013).Thus innate immunity is critical to protect insects from infection and to guarantee normal development (Hoffmann,2003;Lemaitre and Hoffmann,2007;Liu et al.,2013a;Strand,2008).Genomes of B.mori (Xia et al.,2004),Plutella xylostella (You et al.,2013)and Danaus plexippus (Zhan et al.,2011)have been decoded,and the detailed genetics of these Lepidopteran insects have proven helpful to understand their development,growth,immunity and prolifer-ation.Here we review Lepidopteran gut structure,function and their respective relationships to gut immunity.Understanding the fundamental molecular mechanisms of insect immunity will have important impacts on pest control (Hakim et al.,2010).

Abbreviations:GNBP,gram negative bacteria binding protein;20E,20-Hydroxyecdysone;CPV,cytoplasmic polyhedrosis virus;Bt,Bacillus thuringiensis ;CF,Cytophyaga/Flavobacteria ;ROS,reactive oxygen species;Imd,immune de ?-ciency;PO,phenoloxidase;DUOX,dual oxidase;NPV,nucleopolyhedrovirus;Bb,Bacillus bombysepticus ;DNV,densovirus;ODV,occlusion derived virus;BV,budded virus;JcDNV,Junonia coenia densovirus;BmDNV-1,B.mori densovirus type 1;DXV,Drosophila X virus;IE1,immediate early-1;BmSP-2,B.mori serine protease-2;BmtryP, B.mori alkaline trypsin protein;ESI,electrospray ionization;AcMNPV,Autographa californica multicapsid nucleopolyhedrovirus;CBD,chitin binding do-mains;PMP,peritrophic membrane proteins;TnGV,Trichoplusia ni granulosis virus;XcGV,Xestia c-nigrum granulovirus;ChiA,chitinase A;PPO,prophenoloxidase;AMP,antibacterial peptides.*Corresponding author.**Corresponding author.

E-mail addresses:hssong@https://www.360docs.net/doc/394394490.html, (H.Song),erjunling@https://www.360docs.net/doc/394394490.html, ,ejling@https://www.360docs.net/doc/394394490.html, (E.

Ling).

Contents lists available at ScienceDirect

Developmental and Comparative Immunology

jo urnal homepag e:https://www.360docs.net/doc/394394490.html,/locate/d

ci

https://www.360docs.net/doc/394394490.html,/10.1016/j.dci.2016.02.010

0145-305X/?2016Elsevier Ltd.All rights reserved.

Developmental and Comparative Immunology xxx (2016)1e

10

2.Lepidopteran gut

2.1.Structure of Lepidopteran gut

The Lepidopteran larval gut can be divided into three parts: foregut,midgut and hindgut(Chapman,1998)and the morphol-ogies of these three parts in a silkworm B.mori larva is shown in Fig.1A.The foregut,consisting of the pharynx esophagus,crop, proventriculus and cardiac valve,mixes ingested foods with?uids secreted from foregut tissue and salivary glands(Fig.1B).The midgut serves as the main place where food is digested and absorbed(Engel and Moran,2013;Lehane and Billingsley,1996; Lemaitre and Miguel-Aliaga,2013).The peritrophic membrane lines the midgut,which includes three cell types,the columnar cells,goblet cells and stem cells(Lehane,1997)(Fig.1C).The hindgut can be divided into the anterior intestine,composed of ileum and colon,and the posterior rectum(Chapman,1998).In the anterior intestine,the epidermal cells are large,and a layer of thick intima covers epidermal cells facing gut content(Fig.1D).In the posterior rectum of Lepidoptera,including the silkworm and tenebrionid beetles,there are many Malpighian tubules in the (Fig.1E),which enter the rectum and are buried beneath the membrane and muscular sheath.The Malpighian tubules perform the function of water and salt(mainly KCl)resorption from food residues before?nal secretion as feces(Klowden,2013).

Lepidopteran larval midguts including other insects secrete many enzymes required for food digestion(Engel and Moran,2013; Lehane and Billingsley,1996;Lemaitre and Miguel-Aliaga,2013).In the midgut of Helicoverpa armigera,enzymes that can digest proteins,carbohydrates and lipids were identi?ed through prote-omics analysis(Pauchet et al.,2008).Similar approaches were used to show that midguts produce key immunity proteins required for protection,including(1)Immune-related Hdd13,(2)Cyclophilin A and(3)Cyclophilin in B.mori(Zhang et al.,2011),and(4)Gram negative bacteria binding protein(GNBP),which is involved in recognition of Gram negative and positive bacteria and fungi (Pauchet et al.,2008).

2.2.Goblet cell

Lepidopteran goblet cells can be distinguished from other midgut cells by their large chalice-shaped central cavity(Billingsley and Lehane,1996;Moffett and Koch,1992b)(Fig.1C),which forms from an apical membrane invagination(Moffett and Koch,1992b). This class of cells distinguishes Lepidopteran gut morphology from other insects and may confer protection from pathogenic microbes these pests ingest.Goblet cells have very small nuclei located near to the basal membrane(Fig.1C)and a valve facing the lumen,which is narrow and interdigitated through microvilli in the end(Moffett and Koch,1992b).According to cell culture analysis in vitro,goblet cells are thought to differentiate from a source of stem cells (Tettamanti and Casartelli,2010).

So far we know very little on the function of goblet cell.The interior surface of goblet structure is covered with microvilli rich in mitochondria(Moffett and Koch,1992b)and vacuolar Ht-ATPase (Gomes et al.,2013;Levy et al.,2004)and functions to transport Ktfrom the hemolymph across the goblet cavity into the midgut lumen through the goblet valve(Moffett and Koch,1992a,b).

In

Fig.1.Structure of Bombyx mori larval gut.(A)Morphology of a gut dissected from a silkworm larva on day2of5th larval stage.The foregut(FG),midgut(MG)and hindgut(HG) are indicated.The inset shows the structure of foregut in detail and the white dotted line delineates the foregut from the midgut(MG).The foregut has an esophagus(es)and crop, which contains ingested mulberry leaf fragments.For comparison,the hindgut is divided into two parts:hindgut one(HG1)and hindgut two(HG2).The midgut is notably larger than the foregut and hindgut.(B)A longitudinal section showing the corresponding structure of the foregut and part of midgut after being stained by haematoxylin and eosin.In the crop of the foregut and midgut,mulberry leaf(ML)fragments can be observed.Proventriculus(PR)that connects the foregut and midgut is visible after tissue sectioning.Peritrophic matrix,the non-cellular structure(Lehane,1997),is invisible since it cannot be stained by haematoxylin and eosin.The arrowhead points to stomodeal valve(sv).(C)Structure of larval midgut.There are columnar cells(C)and goblet cells(G).The arrow indicates the basal lamina.Stem cells of midgut are very few on the5th larval stage.(D)Morphology of the hindgut one(HG1).This part of hindgut is composed of many large epidermal cells(EC)with thick intima(arrow-indicated)facing the feces(f).The outside is a lay of muscle(M) tissues.(E)Morphology of the hindgut two(HG2).There are many Malpighian tubules(MT)between the epidermal cells(EC)and the basal lamina(arrow-indicated).In(B e E),the tissue sections were stained using haematoxylin and eosin(Xu et al.,2012).

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

2

Anticarsia gemmatalis,the observation of excreted cellular compo-nents accumulated on the microvilli of the goblet cavity suggests a secretion function for this type of cell(Gomes et al.,2013).Thus goblet cells may regulate the ionic exchange between the gut and hemolymph and serve as a depot to transfer cell debris and metabolize gut constitutents(Gomes et al.,2013).Immuno-staining shows that the enzymes ecdysone oxidase and3-dehydroecdyson-3a-reductase accumulate in the goblet cavities of B.mori(Sun et al., 2012).Because these enzymes share an important role in the metabolism of the insect molting hormone20-Hydroxyecdysone (20E)(Riddiford,2012;Riddiford et al.,2000)and their expres-sion correlates with the ecdysteroid titer(Sun et al.,2012),it is interesting to consider whether goblet cells in Lepidopteran insect are involved in regulating20E levels in the midgut.

In the mammalian small intestine,there are four types of cells: goblet cells,absorptive cells,paneth cells,and enteroendocrine cells(Crosnier et al.,2006).Absorptive cells are very similar in appearance to Lepidopteran columnar cells,with both cell types exhibiting many microvilli on the side facing gut lumen(Crosnier et al.,2006).In addition,mammalian goblet cells closely resemble Lepidopteran goblet cells,with a large cavity inside the cell.Mucus secreted by mammalian goblet cells forms a liquid layer on the internal surface to lubricate and protect small intestinal cells from physical abrasion by foods and invading bacteria(Cone,2009)and extensive studies reveal that mucus is composed of mucin,a type of glycoprotein(Kim and Ho,2010;Rogers,2003),and key immunity-related proteins such as trefoil peptides,resistin like molecule b and Fc-g-binding protein(Herbert et al.,2009;Johansson et al.,2009; Taupin and Podolsky,2003).

A great deal of evidence shows that mammalian goblet cells have an important role in intestinal innate immunity defense(Kim and Ho,2010)and due to their similar morphology to mammalian goblet cells,it is quite natural to consider whether the Lepidopteran goblet cells have an immunity function as well.When H.armigera larvae were infected by cytoplasmic polyhedrosis virus(CPV), goblet cells degenerated and some microvillus-like cytoplasmic projections were left(Marzban et al.,2013).If Bacillus thuringiensis (Bt)toxin was fed to Lepidopteran larvae,goblet cells were specif-ically affected(Baines et al.,1997).From these limited studies,it appears that Lepidopteran goblet cells are affected directly or indirectly by pathogen infection.

2.3.Peritrophic membrane and protection

In most insects,there is an acellular structure called peritrophic membrane on the inner surface of midgut(Lehane,1997;Tellam, 1996;Umut et al.,2010).Lepidopteran peritrophic membranes are secreted by midgut epithelial cells(the cardia)and are composed of chitin and glycoproteins cross-linked to form the net-like membrane(Umut et al.,2010)with a thickness of about 0.5e1.0m m(Hegedus et al.,2009;Lehane,1997).The membrane functions as a semi-permeable barrier for transporting nutrients, water and minerals and protecting the midgut cells from both mechanic abrasion by foods and infection by microorganisms devoured with foods(Lehane,1997;Tellam,1996;Umut et al., 2010).Proteins associated with the peritrophic membrane (collectively referred to as peritrophic matrix)commonly include chitin binding domains(CBD)(Umut et al.,2010).More focused studies have identi?ed305peritrophic membrane proteins in B.mori(Zhong et al.,2012),while in H.armigera,41different pro-teins were identi?ed(Campbell et al.,2008).A genome-wide analysis and RNAseq assays of M.sexta midguts identi?ed the expression of17peritrophic membrane proteins(PMP)(Tetreau et al.,2015),and in Tribolium castaneum,RNAi knockdown of candidate peritrophic matrix proteins identi?ed genes essential for insect survival(Agrawal et al.,2014).

Evidence indicates that the peritrophic membrane protects in-sects from damage by bacteria toxin.In Lepidopteran larvae,peri-trophic membranes bind to Bt toxin Cry1A(Hayakawa et al.,2004; Rodrigo-Simon et al.,2006)to delay the contacting of Bt to the midgut cells,suggesting that the peritrophic membrane plays a key role in preventing bacterial toxins from damaging the gut.In Drosophila,the importance of Drosocrystallin(Dcy)protein to adult peritrophic membrane formation was demonstrated in loss-of-function mutants that exhibited thinned peritrophic membrane with increased permeability(Kuraishi et al.,2011).dcy mutant midgut cells had increased susceptibility to damage by both pore forming toxins secreted by Pseudomonas entomophila,and to oral infection(Kuraishi et al.,2011).

Peritrophic membranes of Lepidopterans also serve as a natural barrier to virus.In most Lepidopteran insects,the pore sizes of peritrophic membrane are approximately21e29nm(Barbehenn and Martin,1995)while the pore sizes of Calliphora eryth-rocephala peritrophic membrane are about3e4nm(Zimmermann and Mehlan,1976).Contrasted with the20e300nm sizes of most viruses(Arnone and Walling,2007),peritrophic membranes effectively inhibit viral penetration and infection.Nevertheless, viruses can break through this innate barrier by altering peritrophic membrane permeability or destroying its structure and three ex-amples can be cited:(1)the metalloprotease enhancin produced by TnGV(Trichoplusia ni granulosis virus)likely affects the perme-ability of peritrophic membranes(Peng et al.,1999);(2)enhancin produced by Mamestra con?gurata NPV selectively degraded the peritrophic membrane proteins(Toprak et al.,2012);and(3) enhancin from XcGV(Xestia c-nigrum granulovirus)broke down the peritrophic membrane to accelerate infection of S.Litrue(Guo et al.,2007).Similar to enhancin,the viral protein Chitinase A (ChiA)from AcMNPV disrupted the integrity of peritrophic mem-brane when expressed and fed to B.mori larvae,with a striking 100%mortality associated with the appearance of perforations on the peritrophic membrane(Rao et al.,2004),indicating that this viral protein serves to disrupt the gut barrier to facilitate infection.

The thickness of peritrophic membrane may affect virus infec-tion.The peritrophic membrane is more fragile in A.gemmatalis larvae susceptible to A.gemmatalis multicapsid nucleopolyhe-drovirus(AgMNPV)infection compared to membrane in resistant strains,due in part to lower chitin levels and more abundant non-solubilized vesicular materials(Levy et al.,2011).Lepidopteran Heliothis virescens https://www.360docs.net/doc/394394490.html,rvae fed on foliage had thicker peritrophic membrane associated with reduced baculoviral ef?cacy compared to those fed on the arti?cial diet(Plymale et al.,2008).Conversely, feeding calco?uor caused mechanical damage to peritrophic membrane,which in turn enhanced the susceptibility of Tricho-plusia ni to NPV(Wang and Granados,2000).

In summary,the acellular peritrophic membranes are important to prevent physical abrasion to the midgut cells and to permit nutrition and water to pass through the gut freely.Due to the small pore sizes,the Lepidopteran peritrophic membranes exclude most bacteria and virus,and effectively serves as the?rst line to defend the gut from invasive microorganisms.

3.Microbiota in the Lepidopteran gut

Midguts of Lepidopteran insects harbor large amount of microbiota consisting of both non-pathogenic and pathogenic bacteria devoured with food(Engel and Moran,2013).These commensal and symbiotic bacteria serve many important host functions,including decomposition of toxins and insecticides,de-fense against parasites and other pathogens,transfer of signals among individuals,and the production of nutrients to supplement

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

3

poor diet and help digestion(Dillon and Dillon,2004;Engel and Moran,2013).The power of Drosophila genetics has been used to reveal an elegant immunity system that can effectively distinguish commensal and symbiotic bacteria from pathogenic ones(Bae et al., 2010;Ha et al.,2009;Ryu et al.,2010).

Gene sequencing approaches can identify species-speci?c insect midgut microbiota mainly through16S rRNA(Woo et al.,2000). Bacteria isolated from the midguts of Spodoptera litura(Fab.)larvae were distinguished based on16S rRNA gene sequencing and include the microbiota Microbacterium arborescens(SL6),Entero-coccus casseli?avus(SL10)and Enterobacter cloacae(SL11)(Thakur et al.,2015).Midgut microbiota vary among species of Lepidop-tera so that in the oriental armyworm(Mythimna separata),bacteria such as Enterobacteriales,Cyanobacteria,Firmicute s,Actinobacteria, Gracilicutes and Proteobacteria were identi?ed via analysis of a16S rDNA clone library(He et al.,2013)while in Spodopter littoralis and H.armigera larva,midgut microbiota include Enterococci,Lactoba-cilli and Clostridia(Tang et al.,2012).Midgut microbiota vary by strain,too,with two insecticide(chlorpyrifos and?pronil)resistant lines of P.xylostella(L.)larvae having more Lactobacillales,Pseudo-monadales and Xanthomonadales in the midgut than susceptible lines(Xia et al.,2013).

Feeding can change the make-up of the Lepidopteran gut bac-teria community(Hammer et al.,2014;Liang et al.,2014;Sittenfeld et al.,2002).In B.mori fed on mulberry leaves,the midgut micro-biota are mainly Bacillus and Arcobacter(Liang et al.,2014).How-ever when fed on lettuce leaves in a bioregenerative life support system,Acinetobacter and Bacteroides predominate(Liang et al., 2014).The butter?y Heliconius erato has markedly distinct midgut microbiota among the leaf chewing,nectar-and pollen-feeding adults(Hammer et al.,2014).Although the reason for these dif-ferences is unclear,plant secondary metabolites that accompany food have been demonstrated to alter the midgut microbiota.For example,when Lepidopteran Acentria ephemerella larvae were fed on Myriophyllum spicatum,a freshwater angiosperm containing a signi?cant amount of tannins,levels of both Gram positive bacteria and Cytophyaga/Flavobacteria(CF)were reduced(Walenciak et al., 2002).Microbiota identi?ed in larvae living in the?eld are very different from those lines cultured in the laboratory(Belda et al., 2011;Hammer et al.,2014;Mason and Raffa,2014)and when larvae derived from the?eld and laboratory were fed under the same conditions,their microbiota became similar(Mason and Raffa,2014;Tang et al.,2012).

Lepidopteran midgut microbiota confer host protection in some circumstances.In some Lepidopteran insects,depletion of midgut microbiota increases the susceptibility of hosts to pathogenic infection.Photorhabdus temperata is associated with nematodes of the Heterorhabditidae family as symbiotic bacteria(Carneiro et al., 2008).However,after oral infection of P.temperata in Lepidop-teran Diatraea saccharalis larvae,90%of gut microbiota disappeared within2days(Carneiro et al.,2008)and the resulting midgut bacteria showed increase infectivity of the nematode symbiont. Lepidopteran gut microbiota are also crucial to decrease the dam-age caused by bacteria toxin.Puri?ed Bt toxin was pathogenic to the aseptically reared larvae(Raymond et al.,2009),however when bacteria Enterobacter sp.Mn2was fed to the germ-free P.xylostella larvae,reduced Bt toxicity was observed(Raymond et al.,2009). This result suggests that midgut microbiota protect Lepidopteran larvae from pathogen attack and consistent with this,levels of Lactobacillales in the midguts of P.xylostella(L.)were increased when larvae were treated with insecticides(Xia et al.,2013). Accordingly,enhanced immune activity increases the midgut microbiota load(Hernandez-Martinez et al.,2010)so that when Spodoptera exigua larvae with high immunity were speci?cally selected,they were found to have greater bacteria loads in the midguts along with an enhanced tolerance to Bt(Hernandez-Martinez et al.,2010),a tolerance that could be genetically trans-ferred to offspring.All these works demonstrate that the gut microbiota can indeed protect Lepidopteran insects from pathogen infection and toxin damage.

While in general Lepidopteran midgut microbiota are commensal to hosts,a commensal-to-pathogen switch is observed under some conditions.While Enterococcus faecalis is not associ-ated with infection in the midguts of M.sexta,injection into larval hemocoels rapidly leads to sepsis(Mason et al.,2011).Oral feeding of Bt toxin with E.faecalis enhanced larval mortality rate with E.faecalis detected in the hemolymph(Mason et al.,2011).In contrast,midgut sourced Gram-negative Enterobacter sp.NAB3 enhanced the susceptibility of several Lepidopteran larvae to B.thuringiensis toxin(Broderick et al.,2006,2009).Very interest-ingly,when the commensal bacteria E.cloacae were coated on caster leaves and fed to S.litura,E.cloacae dominated the popula-tion of the midgut bacteria in the resulting dead larvae(Thakur et al.,2015),suggesting that Lepidopteran midgut commensal bacteria may become pathogenic under some conditions.All together,the Lepidopteran midgut microbiota vary from species to species and between diets and symbiotic and commensal bacteria offer protection of the Lepidoptera.

4.Lepidopteran gut immunity against pathogenic bacteria, microsporidia and virus

The insect midgut makes?rst contact with pathogens including Gram positive and negative bacteria,fungi,virus and parasites.To support this?rst line of immunity defense,insects utilize anti-bacterial peptides and reactive oxygen species(ROS)to clean out gut pathogens and protect commensal microbiota(Bae et al.,2010; Ha et al.,2009;Ryu et al.,2010).Most bacteria enter the hemocoel through the wounds,while parasites and fungi can penetrate the integument and further infect in the hemocoel(Clarkson and Charnley,1996;Libersat et al.,2009).In contrast,viruses invade the hemocoel mainly via the gut(Tanada and Hess,1976;Tanada and Leutenegger,1970).Insects defend against Gram positive bac-teria and fungi using the Toll pathway,and utilize the immune de?ciency(Imd)pathway to target Gram negative bacteria (Hoffmann,2003;Lemaitre and Hoffmann,2007).To supplement these immune responses,melanization induced by activated phe-noloxidase(PO)physically isolates the invading pathogens(Ashida and Brey,1998;Lu et al.,2014).Viruses are targeted through RNAi, apoptosis and autophagy(Clem,2005;Nakamoto et al.,2012)and the JNK,JAK/STAT and p38pathways are also crucial to the insect innate immunity(Chen et al.,2010;Hoffmann,2003;Tanaka et al., 2008).The diverse immune responses insects use to actively defend against pathogens in gut are summarized below.

4.1.Bacteria

Lepidoptera mount immunity responses against both patho-genic bacteria and their toxins as evidenced by increases in expression of key immunity genes.When B.mori larvae were fed food carrying Gram positive(Staphylococcus aureus)and negative (Escherichia coli)bacteria,transcription of ceropin A,gloverin and lysozyme genes were up-regulated(Wu et al.,2010b).Glovorin2 and Glovorin3were up-regulated in the silkworm midguts when Pseudomonas aeruginosa were fed to the silkworm larvae(Zhang et al.,2015).Toll-9expression is up-regulated after oral feeding with different microorganisms,revealing the close relationship between Toll pathway signaling and midgut immunity(Wu et al., 2010a).Very interestingly,when LPS was fed,expression of Toll 9-1was down-regulated(Liu et al.,2013b).When B.mori larvae

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

4

were orally infected by P.aeruginosa and S.aureus separately,PGRP-C1,Serine protease precursor gene,and the30kD protease A pre-cursor gene were up-regulated in the larval midgut(Zhu and Lu, 2013).In gypsy moth Lymantria dispar,when larvae were orally infected by B.thuringiensis Kurstaki,several genes associated with digestion,development,binding proteins and immunity were broadly affected in the midguts(Sparks et al.,2013).The ingestion of Bt induced the up-regulation of antibacterial peptides and ly-sozymes in S.exigua larval midguts(Crava et al.,2015)and in the absence of any pathogen,sublethal doses of Bt toxin(CrylCa and Vip3Aa)induced a similar immunity response(Crava et al.,2015). Surprisingly,injection of soluble peptidoglycan into the silkworm larvae slightly up-regulated transcription of Cecropin A and B in the midgut(Yamano et al.,1994),indicating that in addition to their toxins,pathogen proteins can induce immune responses in the midguts of Lepidoptera.

In addition to anti-bacterial peptides,evidence from Drosophila indicates that ROS is an important means to defend against path-ogens(Ha et al.,2009;Kuraishi et al.,2013).In midguts of the fruit ?y,ROS is produced by the membrane associated dual oxidase (DUOX)under the control of p38pathway(Bae et al.,2010;Ha et al., 2009;Ryu et al.,2010).In B.mori,the expression of DUOX was up-regulated in larval midguts orally fed with E.coli and nucleopoly-hedrovirus(NPV)(Hu et al.,2013).Conversely,bacterial prolifera-tion in the larval midguts was increased when the DUOX gene was knocked out(Hu et al.,2013).In addition to DUOX,in B.mori, BmPrx5was found to degrade increasing levels of H2O2,to protect larvae from oxidative damage associated with pathogenic infection in the hemocoel and midguts(Zhang and Lu,2015).Therefore,ROS serves as an important immunity factor for Lepidopteran larvae to defend against bacteria.

In Lepidoptera,ingested microorganisms can also induce im-munity responses in hemocoel.When Galleria mellonella larvae were fed with non-pathogenic and pathogenic bacteria,the activity of lysozyme and PO in hemolymph increased and some antibac-terial proteins were also induced(Freitak et al.,2014).Further work indicates that the ingested bacteria can translocate from midgut into hemocoel,and in females these bacteria deposit with laid eggs to transmit offspring immunity(Freitak et al.,2014).When B.mori larvae were fed with Bacillus bombysepticus(Bb),host cellular and humoral immunities were triggered(Huang et al.,2009).Mean-while,several basal metabolic pathways were regulated and the genes of juvenile hormone synthesis and metabolism pathway were increased(Huang et al.,2009).Thus,immunity responses are not limited to the midgut after oral infection,and both hemocoel immunity and metabolism are also altered.

4.2.Microsporidia

Microsporidia are a group of fungi-like pathogens(V a vra and Larsson,1999)with a broad spectrum of hosts including humans (Didier et al.,2000).During the process of infection,each micro-sporidia cell extrudes a specialized polar tube to inject its spore content into the target cell(Xu and Weiss,2005).Microsporidia can spread by vertical transmission,exempli?ed by the midgut path-ogens Endoreticulatus schubergi and Nosema lymantriae in L.dispar larvae(Goertz and Hoch,2008),and can overwinter in the dead bodies of larvae as seen for the microsporidia Vairimorpha disparis which targets fat bodies(Goertz and Hoch,2008).

Most insect microsporidia are intestinal pathogens.Nosema bombycis is an important pathogen to B.mori,and it can also infect another Lepidopteran insect P.xylostella(Kermani et al.,2013). Histological observations demonstrated that Nosema infect the P.xylostella midgut epithelial cells resulting in marked vacuoliza-tion of the cytoplasm(Kermani et al.,2013).When B.mori larvae were orally infected by N.bombycis,the subtilism-like serine pro-tease NbSLP1was transcribed in the larval midgut(Dang et al., 2013).NbSLP1is localized at the two poles of spore and is likely involved in the polar tube extrusion process.Separate studies showed that oral infection of B.mori larvae with N.bombycis led to activation of the Toll and JAK/STAT pathways in the midguts,which probably induced the up-regulation of antimicrobial peptides to resist the invading microsporidia(Ma et al.,2013).Very interest-ingly,silkworm hemolymph melanization was also inhibited following microsporidia infection.While clearly an important pathogen to Lepidoptera,we still know very little about the ability of microsporidia to elicit an immunity response,and further work is warranted.

4.3.Virus

As a family of important pathogens,the interaction of virus and Lepidopteran insect has been extensively studied.Viruses that can infect Lepidopteran insects include Cytoplasmic polyhedrosis virus (CPV),Nucleopolyhedrovirus(NPV)and Densovirus(DNV).CPV virions are occluded by viral polyhedrin proteins to form the polyhedra(inclusion bodies)within the host midgut cell cytoplasm after infecting the Lepidopteran midguts(Ince et al.,2007).Lepi-dopteran NPV replicates in two forms,the occlusion derived virus (ODV)formed in the midgut cells and the budded virus(BV)pro-duced and released to induce systemic infection after midgut cell infection(Hou et al.,2013).These two viral sub-types can be distinguished by both their envelope proteins and their respective protein posttranslational modi?cations.During the progress of infection,viruses?rst break through the peritrophic membrane (Bao et al.,2013)and bind Lepidopteran midgut proteins to infect speci?c cell types(Bao et al.,2013).After infection,many protective antiviral proteins including small RNA are induced in the midgut to block the viral DNA replication and protect Lepidopteran insects (Asser-Kaiser et al.,2011).

Each virus spreads differently in Lepidoptera.In B.mor i larvae, the spreading of B.mori nucleopolyhedrovirus(BmNPV)infection from the midgut to hemocoel occurs via the tracheae(Rahman and Gopinathan,2004).Junonia coenia densovirus(JcDNV)is internal-ized via endocytosis by absorptive cells of Spodoptera frugiperda larvae and crosses the midguts through transcytosis(Wang et al., 2013).B.mori densovirus type1(BmDNV-1)proliferates in the nuclei of columnar cells(Ito et al.,2013)and kills larvae four days post oral infection,resulting in phenotypic changes in the midguts, changes that suggest the importance of virus-host interactions during infection.

In Drosophila,RNAi is a potent pathway to defend against virus (Sabin et al.,2010)and the activation of Toll pathway inhibited Drosophila X virus(DXV)(Zambon et al.,2005).In addition,auto-phagy and JAK/STAT signaling are involved in the antiviral process (Sabin et al.,2010).In B.mori larvae,Bmlipase-1,puri?ed from midgut juice,has strong antiviral activity against BmNPV(Ponnuvel et al.,2003),and midgut overexpression under the control of either midgut-speci?c promoter P2or baculoviral immediate early-1(IE1) promoter conferred signi?cant antiviral activity(Jiang et al.,2012, 2013).In the midgut, B.mori serine protease-2(BmSP-2) (Nakazawa et al.,2004)and alkaline trypsin protein(BmtryP)also showed strong antiviral activity against BmNPV(Ponnuvel et al., 2012),while plasma proteins including Hemolin,a Lepidopteran immunoglobulin protein produced by hemocytes and fat bodies upon viral injection,demonstrated antiviral activity in Chinese oak silkworm,Cecropia moth and M.sexta(Terenius,2008;Terenius et al.,2009).Hemolymph genes serpin-2,RFP,lipase,sp-2and NOX also exhibit anti-viral activity in B.mori(Chen et al.,2014). Taken together,these works indicate that Lepidoptera circulate key

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

5

proteins in the midgut juice and hemolymph that serve as potent antiviral factors.

Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV)expresses p35to inhibit host cell apoptosis(Clem,2005) and mutations in p35reduced AcMNPV infection activity to S.fru-giperda larvae(Clem and Miller,1994).Over-expression of apoptosis inhibitor Cp-iap in the mutant AcMNPV p35strain effectively rescued the infection activity,to almost the wild type levels(Clem and Miller,1994).These data support the notion that cell apoptosis is an important Lepidopteran host defense and sug-gests that some virus may speci?cally inhibit cell apoptosis to accelerate the speed of infection.

With the genome sequence resolved in some important Lepi-dopteran insects(Xia et al.,2004;You et al.,2013;Zhan et al.,2011), transcriptome and proteomics approaches have given important insights into immunity responses to midgut virus infection.Next generation sequencing of B.mori(Daizo)midguts following oral infection with cytoplasmic polyhedrosis virus(BmCPV)identi?ed 167up-regulated and141down-regulated genes,and among these were known immunity genes against BmCPV(Kolliopoulou et al., 2015).Among the genes up-regulated were the core RNAi genes Ago-2and Dcr-2,suggesting that the RNAi machinery probably responds to virus infection(Kolliopoulou et al.,2015).In an earlier study using BmCPV to orally infect the4008silkworm strain,there were649up-regulated and103down-regulated genes detected (Gao et al.,2014).Among a subset tested,the Calreticulin FK506-binding protein was concluded to induce calcium dependent apoptosis as a cellular antiviral response(Gao et al.,2014). Sequencing of small RNA libraries constructed from CPV-infected B.mori midguts identi?ed approximately58miRNAs showing dif-ferential expression between infected and normal midguts(Wu et al.,2013).The role of these miRNA and their targets in medi-ating antiviral immunity in B.mori deserves further work.Elec-trospray ionization(ESI)mass spectrometry assay of B.mori larval guts following oral BmNPV viral infection identi?ed many novel secreted proteins including HSP70,lipase-1and chlorophyllide A binding protein precursor(Hu et al.,2015).From these pioneering transcriptome and proteomics studies,a complex picture of the Lepidopteran gut immunity responses designed to defend against viral infection has emerged.

Extensive work to identify strain-speci?c differences in viral susceptibility and resistance in Lepidoptera has the potential to shed light on the mechanism of antiviral immunity.B.mori den-sovirus(BmDNV)causes lethality due to replication in the midgut columnar cells(Ito et al.,2013).In a B.mori virus resistant strain, positional cloning was used to identify a6-kb deletion in the ORF of the transmembrane protein,nsd-2(Ito et al.,2008).To demonstrate that nsd-2is a receptor for BmDNV-2,over-expression of the wild type nsd-2ORF in the deletion resistant strain made the transgenic individuals susceptible to BmDNV-2again(Ito et al.,2008).To broaden the understanding to the mechanism of strain-speci?c differences in viral effects,transcriptome and proteomics compar-isons have been used to identify key genes involved in antiviral activity.Up-regulation of heat shock70-kDa protein cognate,cy-tochrome P450,vacuolar ATP synthase subunit B,arginine kinase, vacuolar ATP synthase subunit D and glutathione S-transferase sigma occurred in the midguts of the silkworm resistant strains Qiufeng and the near isogenic line BC6,suggesting the potential immunity activity of both these genes against BmDNV(Chen et al., 2012).In another study,when the B.mori strains KN(resistant)and 306(susceptible)were simultaneously orally infected with BmNPV and subjected to subtractive hybridization(Bao et al.,2009),62 differentially expressed genes were identi?ed,and among the genes associated with midgut immunity against BmNPV infection in the KN strain were gloverin-3,gloverin-4,lebocin,serpin-5,arylphorin,promoting protein,cathepsin B and actin A3(Bao et al.,2009).Four resistant strains of B.mori(P50,A35,A40,A53) exhibited higher expression of antiviral proteins like lipase-1,Nox and serine protease-2compared to susceptible ones(Cheng et al., 2014).With new,powerful techniques to measure global tran-scriptome changes between susceptibile and resistant strains, important genes involved in antiviral infection can be identi?ed and their functions assayed directly.

4.4.Gut immunity on molting and metamorphosis stages

While Lepidopteran larva have active immunity against patho-gens in the midguts during feeding stage,the importance of im-mune activity during molting and metamorphosis stages when no foods are ingested is unclear.Studies in Lepidopteran and other species of insects indicate that immunity proteins expressed during the molting and wandering stages likely defend eclosing insects against potential infection from the gut microbiota due to signi?-cant remodeling of gut structures(Kim et al.,2014;Xu et al.,2012). Consistent with this,in Anopheles punctipennis(Say),Culex pipiens (L.)and Aedes aegypti(L.),microbiota in the midgut decreased signi?cantly from fourth instar to the?nal larval defecation(Moll et al.,2001).Levels of many immunity proteins increase in the Lepidopteran midguts,suggesting that these proteins probably serve to clean the microbiota during the wandering stage in prep-aration for metamorphosis.In B.mori,the immunity proteins lysozyme,b GRP2and TAK1were speci?cally expressed in the midguts during the wandering stage(Xu et al.,2012).In Riptortus-Burkholderia,the number of bene?cial symbionts decreased from the pre-molt to the inter-molt stages(Kim et al.,2014),which was explained in part by molting stage expression of immunity proteins such as C-type lysozyme and pyrrhocoricin-like antimicrobial peptide(Kim et al.,2014).In the midguts of mosquitoes,molting ?uids,probably ingested through the true mouth during the pro-cess of adult emergence contain many immunity proteins(Zhang et al.,2014),and are thought to be bactericidal during meta-morphosis(Moll et al.,2001).These limited studies suggest that the regulation of immunity and the role of immune defenses during molting and metamorphosis stages deserve further study.

5.Prophenoloxidase in the Lepidopteran gut

In insects,prophenoloxidase(PPO)is typically cleaved and activated into PO to induce melanization around pathogens and wounds(Lu et al.,2014).However,in the mosquito adult midguts, the ookinete stage of the malarial parasite Plasmodium is some-times melanized before traversing the midgut basal lamina and entering the hemocoel(Wang and Jacobs-Lorena,2013;Whitten et al.,2006).Likewise,in some Drosophila mutants,melanization occurs inside the hindguts as well(Chen et al.,2010;Seisenbacher et al.,2011).

The source of PO in the insect midgut was unclear(Ashida and Brey,1998).In the mosquito adult midguts,it is concluded that PO likely comes from hemolymph(Christophides et al.,2004;Osta et al.,2004;Whitten et al.,2006).Recent work shows PPOs are secreted into the foregut in Lepidoptera(Shao et al.,2012)where they are activated likely by a chymotrypsin-like enzyme to catalyze plant phenolics into intermediates to detoxify phenolics in the diet (Wu et al.,2015).In the hindgut of Lepidopteran phytophagous insects like B.mori,PPO is secreted to induce melanization of feces, by which to clean fecal microorganisms(Shao et al.,2012).A physical wound made in the Lepidopteran larval midgut by a needle induced melanization around the wound(Huang et al.,2016), however melanization was limited to the encapsulated hemocytes and no cells in the midgut were melanized directly.

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

6

These observations of melanization in Lepidopteran gut likely have broader implications.In Drosophila,larvae mutant for the p38 mitogen-activated protein kinase(MAPK)show immunode?ciency to microbes in?y food resulting in extensive melanization in the hindgut(Chen et al.,2010).Notably,the thickness of circular muscle ?bers was decreased in the hindguts of these p38b mutants(Chen et al.,2010).During chronic stress,the MAPK-activated protein ki-nase MK2associated with p38b can counteract the JNK-involved apoptosis in the enterocytes in Drosophila larvae(Seisenbacher et al.,2011).In MK2mutant larvae fed on diet containing high salt,hindgut tissue damage was increased and this damage was associated with melanization(Seisenbacher et al.,2011).In hon-eybees,the gut microbiota Frischella perrara colonizes a restricted niche in the hindgut to form a melanized scab(Engel et al.,2015), though it is unclear how this melanized scab is formed through hindgut PPO and how the colonized bacteria in the scab escape the toxicity of melanization.While it was unexpected to?nd PPO in the foregut and hindgut of insects(Shao et al.,2012;Wu et al.,2015), the functions of PPO in insect guts deserve further studies in the future.

6.Conclusions and perspectives

As the main site for digestion and nutrition absorption,the gut of Lepidopteran insect is the?rst line of defense against ingested pathogens.In Drosophila,oral pathogenic infections in the midguts induce cell proliferation,differentiation,apoptosis and autophagy to maintain midgut cell homeostasis(Buchon et al.,2010;Lemaitre and Miguel-Aliaga,2013).Comparatively,midgut responses to oral pathogenic infections in Lepidoptera are still poorly understood, and deserve efforts to elucidate their nature in the future.

Midgut microbiota likely offer the host protection but it is poorly understood how they are protected from antibacterial peptides (AMP)and other immunity proteins including increased ROS pro-duced in the midguts to pathogen infections(Engel and Moran, 2013).In Drosophila,the DUOX-dependent ROS and NF-k B depen-dent AMP system offer protection from pathogenic bacteria but do so without damaging the gut commensal microbiota(Bae et al., 2010;Ha et al.,2009;Ryu et al.,2010).Our limited knowledge of gut immunity in Lepidoptera will be improved by transcriptome and proteomic methods,and while it is not convenient to geneti-cally modify Lepidoptera as it is for Drosophila.Furthermore,RNAi is not so effective in all Lepidoptera insects(Terenius et al.,2011). With the improvement of CRISPR/Cas9and targeted genome edit-ing technology(Bolukbasi et al.,2015;Sander and Joung,2014).It offers a chance to genetically dissect pathways regulating Lepi-doptera gut immunity in the future.

Due to their impact on agriculture,it is urgent to better under-stand Lepidopteran gut immunity as a potential target for pest control with a goal of designing more effective and less harmful pesticides.The surprising similarities in morphology of Lepidop-teran goblet cells to mammalian goblet cells may make them a model to understand the general functions of this class of cells. Likewise,it may be possible to improve insect sericulture by creating transgenic silkworms with the enhanced gut immunity to defend against pathogens effectively.

Acknowledgments

This work was supported by the National Natural Science Foundation of China(31472043,31172147,31172151).

References

Agrawal,S.,Kelkenberg,M.,Begum,K.,Steinfeld,L.,Williams,C.E.,Kramer,K.J.,

Beeman,R.W.,Park,Y.,Muthukrishnan,S.,Merzendorfer,H.,2014.Two essen-tial peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.Insect Biochem.Mol.Biol.49,24e34.

Arnone,R.D.,Walling,J.P.,2007.Waterborne pathogens in urban watersheds.

J.Water Health5,149e162.

Ashida,M.,Brey,P.,1998.Recent advances on the research of the insect proph-enoloxidase cascade.In:Brey,P.,Hultmark,D.(Eds.),Molecular Mechanisms of Immune Responses in Insects.Chapman&Hall,London,pp.135e172.

Asser-Kaiser,S.,Radtke,P.,El-Salamouny,S.,Winstanley,D.,Jehle,J.A.,2011.Bacu-lovirus resistance in codling moth(Cydia pomonella L.)caused by early block of virus replication.Virology410,360e367.

Bae,Y.S.,Choi,M.K.,Lee,W.J.,2010.Dual oxidase in mucosal immunity and host-microbe homeostasis.Trends Immunol.31,278e287.

Baines, D.,Schwartz,J.L.,Sohi,S.,Dedes,J.,Pang, A.,https://www.360docs.net/doc/394394490.html,parison of the response of midgut epithelial cells and cell lines from lepidopteran larvae to CryIA toxins from Bacillus thuringiensis.J.Insect Physiol.43,823e831.

Bao,Y.Y.,Chen,L.B.,Wu,W.J.,Zhao,D.,Wang,Y.,Qin,X.,Zhang,C.X.,2013.Direct interactions between bidensovirus BmDNV-Z proteins and midgut proteins from the virus target Bombyx mori.FEBS J.280,939e949.

Bao,Y.Y.,Tang,X.D.,Lv,Z.Y.,Wang,X.Y.,Tian,C.H.,Xu,Y.P.,Zhang,C.X.,2009.Gene expression pro?ling of resistant and susceptible Bombyx mori strains reveals nucleopolyhedrovirus-associated variations in host gene transcript levels.Ge-nomics94,138e145.

Barbehenn,R.V.,Martin,M.M.,1995.Peritrophic envelope permeability in herbiv-orous insects.J.Insect Physiol.41,303e311.

Belda,E.,Pedrola,L.,Pereto,J.,Martinez-Blanch,J.F.,Montagud,A.,Navarro,E., Urchueguia,J.,Ramon,D.,Moya,A.,Porcar,M.,2011.Microbial diversity in the midguts of?eld and lab-reared populations of the European corn borer Ostrinia nubilalis.PLoS ONE6,e21751.

Billingsley,P.F.,Lehane,M.J.,1996.Structure and ultrastructure of the insect midgut.

In:Lehane,M.J.,Billingsley,P.F.(Eds.),Biology of the Insect Midgut.Chapman& Hall,London,pp.3e30.

Bolukbasi,M.F.,Gupta, A.,Wolfe,S.A.,2015.Creating and evaluating accurate CRISPR-Cas9scalpels for genomic surgery.Nat.methods13,41e50. Broderick,N.A.,Raffa,K.F.,Handelsman,J.,2006.Midgut bacteria required for Ba-cillus thuringiensis insecticidal activity.Proc.Natl.Acad.Sci.U.S. A.103, 15196e15199.

Broderick,N.A.,Robinson,C.J.,McMahon,M.D.,Holt,J.,Handelsman,J.,Raffa,K.F., 2009.Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera.BMC Biol.7,11.

Buchon,N.,Broderick,N.A.,Kuraishi,T.,Lemaitre, B.,2010.Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection.BMC Biol.8,152.

Campbell,P.M.,Cao, A.T.,Hines, E.R.,East,P.D.,Gordon,K.H.,2008.Proteomic analysis of the peritrophic matrix from the gut of the caterpillar,Helicoverpa armigera.Insect biochem.Mol.Biol.38,950e958.

Carneiro,C.N.,DaMatta,R.A.,Samuels,R.I.,Silva,C.P.,2008.Effects of entomopa-thogenic bacterium Photorhabdus temperata infection on the intestinal micro-biota of the sugarcane stalk borer Diatraea saccharalis(Lepidoptera: Crambidae).J.Invertebr.Pathol.99,87e91.

Chapman,R.F.,1998.Alimentary Canal,Digestion and Absorption,the Insects: Structure and Function,fourth ed.Cambridge University Press,New York, pp.38e68.

Chen,H.Q.,Yao,Q.,Bao,F.,Chen,K.P.,Liu,X.Y.,Li,J.,Wang,L.,https://www.360docs.net/doc/394394490.html,parative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis virus.Intervirology55,21e28.

Chen,J.,Xie,C.,Tian,L.,Hong,L.,Wu,X.,Han,J.,2010.Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi.Proc.

Natl.Acad.Sci.U.S.A.107,20774e20779.

Chen,K.P.,Huang,J.T.,Yao,Q.,2014.The Genes Associated with Anti-BmNPV in Bombyx mori,Model Organism Bombyx mori.Phoenix Science Press,Nanjing, pp.288e300.

Cheng,Y.,Wang,X.Y.,Du,C.,Gao,J.,Xu,J.P.,2014.Expression analysis of several antiviral related genes to BmNPV in different resistant strains of silkworm, Bombyx mori.J.Insect Sci.14.

Christophides,G.K.,Vlachou,D.,Kafatos,F.C.,https://www.360docs.net/doc/394394490.html,parative and functional genomics of the innate immune system in the malaria vector Anopheles gam-biae.Immunol.Rev.198,127e148.

Clarkson,J.M.,Charnley,A.K.,1996.New insights into the mechanisms of fungal pathogenesis in insects.Trends Microbiol.4,197e203.

Clem,R.J.,2005.The role of apoptosis in defense against baculovirus infection in insects.Curr.Top.Microbiol.Immunol.289,113e129.

Clem,R.J.,Miller,L.K.,1994.Control of programmed cell death by the baculovirus genes p35and iap.Mol.Cell.Biol.14,5212e5222.

Cone,R.A.,2009.Barrier properties of mucus.Adv.Drug Deliv.Rev.61,75e85. Crava, C.M.,Jakubowska, A.K.,Escriche, B.,Herrero,S.,Bel,Y.,2015.Dissimilar regulation of antimicrobial proteins in the midgut of Spodoptera exigua larvae Challenged with Bacillus thuringiensis toxins or baculovirus.PLoS ONE10, e0125991.

Crosnier,C.,Stamataki,D.,Lewis,J.,https://www.360docs.net/doc/394394490.html,anizing cell renewal in the intestine: stem cells,signals and combinatorial control.Nat.Rev.Genet.7,349e359. Dang,X.,Pan,G.,Li,T.,Lin,L.,Ma,Q.,Geng,L.,He,Y.,Zhou,Z.,2013.Characterization of a subtilisin-like protease with apical localization from microsporidian Nosema bombycis.J.Invertebr.Pathol.112,166e174.

Didier,E.S.,Didier,P.J.,Snowden,K.F.,Shadduck,J.A.,2000.Microsporidiosis in

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

7

mammals.Microbes Infect.2,709e720.

Dillon,R.J.,Dillon,V.M.,2004.The gut bacteria of insects:nonpathogenic in-teractions.Annu.Rev.Entomol.49,71e92.

Engel,P.,Bartlett,K.D.,Moran,N.A.,2015.The bacterium Frischella perrara causes scab formation in the gut of its honeybee host.MBio6e00193e00115. Engel,P.,Moran,N.A.,2013.The gut microbiota of insects-diversity in structure and function.FEMS Microbiol.Rev.37,699e735.

Freitak,D.,Schmidtberg,H.,Dickel,F.,Lochnit,G.,Vogel,H.,Vilcinskas,A.,2014.The maternal transfer of bacteria can mediate trans-generational immune priming in insects.Virulence5,547e554.

Gao,K.,Deng,X.Y.,Qian,H.Y.,Qin,G.,Guo,X.J.,2014.Digital gene expression analysis in the midgut of4008silkworm strain infected with cytoplasmic polyhedrosis virus.J.Invertebr.Pathol.115,8e13.

Goertz,D.,Hoch,G.,2008.Vertical transmission and overwintering of microsporidia in the gypsy moth,Lymantria dispar.J.Invertebr.Pathol.99,43e48.

Gomes,F.M.,Carvalho,D.B.,Machado,E.A.,Miranda,K.,2013.Ultrastructural and functional analysis of secretory goblet cells in the midgut of the lepidopteran Anticarsia gemmatalis.Cell Tissue Res.352,313e326.

Guo,H.F.,Fang,J.C.,Wang,J.P.,Zhong,W.F.,Liu,B.S.,2007.Interaction of Xestia c-nigrum Granulovirus with Peritrophic Matrix and spodoptera liture nuleopoly-hedrovirus in spodoptera litura.J.Econ.Entomol.100,20e25.

Ha,E.M.,Lee,K.A.,Seo,Y.Y.,Kim,S.H.,Lim,J.H.,Oh,B.H.,Kim,J.,Lee,W.J.,2009.

Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut.Nat.Immunol.10, 949e957.

Hakim,R.S.,Baldwin,K.,Smagghe,G.,2010.Regulation of midgut growth,devel-opment,and metamorphosis.Annu.Rev.Entomol.55,593e608.

Hammer,T.J.,McMillan,W.O.,Fierer,N.,2014.Metamorphosis of a butter?y-associated bacterial community.PLoS ONE9,e86995.

Hayakawa,T.,Shitomi,Y.,Miyamoto,K.,Hori,H.,2004.GalNAc pretreatment in-hibits trapping of Bacillus thuringiensis Cry1Ac on the peritrophic membrane of Bombyx mori.FEBS Lett.576,331e335.

He,C.,Nan,X.,Zhang,Z.,Li,M.,https://www.360docs.net/doc/394394490.html,position and diversity analysis of the gut bacterial community of the Oriental armyworm,Mythimna separata,deter-mined by culture-independent and culture-dependent techniques.J.Insect Sci.

13,165.

Hegedus,D.,Erlandson,M.,Gillott,C.,Toprak,U.,2009.New insights into peri-trophic matrix synthesis,architecture,and function.Annu.Rev.Entomol.54, 285e302.

Herbert, D.R.,Yang,J.Q.,Hogan,S.P.,Groschwitz,K.,Khodoun,M.,Munitz, A., Orekov,T.,Perkins,C.,Wang,Q.,Brombacher,F.,Urban Jr.,J.F.,Rothenberg,M.E., Finkelman,F.D.,2009.Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection.J.Exp.Med.206,2947e2957. Hernandez-Martinez,P.,Naseri, B.,Navarro-Cerrillo,G.,Escriche, B.,Ferre,J., Herrero,S.,2010.Increase in midgut microbiota load induces an apparent im-mune priming and increases tolerance to Bacillus thuringiensis.Environ.

Microbiol.12,2730e2737.

Hoffmann,J.A.,2003.The immune response of Drosophila.Nature426,33e38. Hou,D.H.,Zhang,L.K.,Deng,F.,Fang,W.,Wang,R.R.,Liu,X.J.,Guo,L.,Rayner,S., Chen,X.W.,Wang,H.L.,Hu,Z.H.,https://www.360docs.net/doc/394394490.html,parative proteomics reveal funda-mental structural and functional differences between the two progeny phe-notypes of a baculovirus.J.Virol.87,829e839.

Hu,X.,Yang,R.,Zhang,X.,Chen,L.,Xiang,X.,Gong,C.,Wu,X.,2013.Molecular cloning and functional characterization of the dual oxidase(BmDuox)gene from the silkworm Bombyx mori.PLoS ONE8,e70118.

Hu,X.,Zhu,M.,Wang,S.,Zhu,L.,Xue,R.,Cao,G.,Gong,C.,2015.Proteomics analysis of digestive juice from silkworm during Bombyx mori nucleopolyhedrovirus infection.Proteomics15,2691e2700.

Huang,L.,Cheng,T.,Xu,P.,Cheng,D.,Fang,T.,Xia,Q.,2009.A genome-wide survey for host response of silkworm,Bombyx mori during pathogen Bacillus bomb-yseptieus infection.PLoS ONE4,e8098.

Huang,W.,Zhang,J.,Yang,B.,Beerntsen,B.T.,Song,H.,Ling,E.,2016.DNA dupli-cation is essential for the repair of gastrointestinal perforation in the insect midgut.Sci.Rep.6,19142.

Ince,I.A.,Demir,I.,Demirbag,Z.,Nalcacioglu,R.,2007.A cytoplasmic polyhedrosis virus isolated from the pine processionary caterpillar,Thaumetopoea pity-ocampa.J.Microbiol.Biotechnol.17,632e637.

Ito,K.,Kidokoro,K.,Sezutsu,H.,Nohata,J.,Yamamoto,K.,Kobayashi,I.,Uchino,K., Kalyebi,A.,Eguchi,R.,Hara,W.,Tamura,T.,Katsuma,S.,Shimada,T.,Mita,K., Kadono-Okuda,K.,2008.Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus.Proc.

Natl.Acad.Sci.U.S.A.105,7523e7527.

Ito,K.,Kidokoro,K.,Shimura,S.,Katsuma,S.,Kadono-Okuda,K.,2013.Detailed investigation of the sequential pathological changes in silkworm larvae infected with Bombyx densovirus type1.J.Invertebr.Pathol.112,213e218.

Jiang,L.,Wang,G.,Cheng,T.,Yang,Q.,Jin,S.,Lu,G.,Wu,F.,Xiao,Y.,Xu,H.,Xia,Q., 2012.Resistance to Bombyx mori nucleopolyhedrovirus via overexpression of an endogenous antiviral gene in transgenic silkworms.Arch.Virol.157,1323e1328. Jiang,L.,Zhao,P.,Cheng,T.,Sun,Q.,Peng,Z.,Dang,Y.,Wu,X.,Wang,G.,Jin,S.,Lin,P., Xia,Q.,2013.A transgenic animal with antiviral properties that might inhibit multiple stages of infection.Antivir.Res.98,171e173.

Johansson,M.E.V.,Thomsson,K.A.,Hansson,G.C.,2009.Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component,the Muc2mucin,is strongly bound to the Fcgbp protein.J.Proteome Res.8, 3549e3557.Kermani,N.,Abu-Hassan,Z.A.,Dieng,H.,Ismail,N.F.,Attia,M.,Abd Ghani,I.,2013.

Pathogenicity of Nosema sp.(Microsporidia)in the diamondback moth,Plutella xylostella(Lepidoptera:Plutellidae).PLoS ONE8,e62884.

Kim,J.K.,Han,S.H.,Kim,C.H.,Jo,Y.H.,Futahashi,R.,Kikuchi,Y.,Fukatsu,T.,Lee,B.L., 2014.Molting-associated suppression of symbiont population and up-regulation of antimicrobial activity in the midgut symbiotic organ of the Rip-tortus-Burkholderia https://www.360docs.net/doc/394394490.html,p.Immunol.43,10e14.

Kim,Y.S.,Ho,S.B.,2010.Intestinal goblet cells and mucins in health and disease: recent insights and progress.Curr.Gastroenterol.Rep.12,319e330. Klowden,M.J.,2013.Physiological Systems in Insects,third ed.Academic Press. Kolliopoulou,A.,Van Nieuwerburgh,F.,Stravopodis,D.J.,Deforce,D.,Swevers,L., Smagghe,G.,2015.Transcriptome analysis of Bombyx mori larval midgut during persistent and pathogenic cytoplasmic polyhedrosis virus infection.PLoS ONE 10,e0121447.

Kuraishi,T.,Binggeli,O.,Opota,O.,Buchon,N.,Lemaitre,B.,2011.Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster.Proc.Natl.Acad.Sci.U.S. A.108, 15966e15971.

Kuraishi,T.,Hori, A.,Kurata,S.,2013.Host-microbe interactions in the gut of Drosophila melanogaster.Front.Physiol.4,375.

Lehane,M.J.,1997.Peritrophic matrix structure and function.Annu.Rev.Entomol.

42,525e550.

Lehane,M.J.,Billingsley,P.B.,1996.Biology of the Insect Midgut.Chapman&Hall, London.

Lemaitre,B.,Hoffmann,J.,2007.The host defense of Drosophila melanogaster.Annu.

Rev.Immunol.25,697e743.

Lemaitre,B.,Miguel-Aliaga,I.,2013.The digestive tract of Drosophila melanogaster.

Annu.Rev.Genet.47,377e404.

Levy,S.M.,Falleiros,A.M.,Gregorio,E.A.,Arrebola,N.R.,Toledo,L.A.,2004.The larval midgut of Anticarsia gemmatalis(Hubner)(Lepidoptera:Noctuidae):light and electron microscopy studies of the epithelial cells.Braz.J.Biol.64,633e638. Levy,S.M.,Falleiros,A.M.,Moscardi,F.,Gregorio,E.A.,2011.The role of peritrophic membrane in the resistance of Anticarsia gemmatalis larvae(Lepidoptera: Noctuidae)during the infection by its nucleopolyhedrovirus(AgMNPV).

Arthropod Struct.Dev.40,429e434.

Liang,X.,Fu,Y.,Tong,L.,Liu,H.,2014.Microbial shifts of the silkworm larval gut in response to lettuce leaf feeding.Appl.Microbiol.Biotechnol.98,3769e3776. Libersat,F.,Delago,A.,Gal,R.,2009.Manipulation of host behavior by parasitic insects and insect parasites.Annu.Rev.Entomol.54,189e207.

Liu,F.,Xu,Q.,Zhang,Q.,Lu,A.,Beerntsen,B.,Ling,E.,2013a.Hemocytes and he-matopoiesis in the silkworm.Bombyx Mori.Invertebr.Surviv.J.102e109. Liu,J.,Smagghe,G.,Swevers,L.,2013b.Transcriptional response of BmToll9-1and RNAi machinery genes to exogenous dsRNA in the midgut of Bombyx mori.

J.Insect Physiol.59,646e654.

Lu,A.,Zhang,Q.,Zhang,J.,Yang,B.,Wu,K.,Xie,W.,Luan,Y.X.,Ling,E.,2014.Insect prophenoloxidase:the view beyond immunity.Front.Physiol.5,252.

Ma,Z.,Li,C.,Pan,G.,Li,Z.,Han,B.,Xu,J.,Lan,X.,Chen,J.,Yang,D.,Chen,Q.,Sang,Q., Ji,X.,Li,T.,Long,M.,Zhou,Z.,2013.Genome-wide transcriptional response of silkworm(Bombyx mori)to infection by the microsporidian Nosema bombycis.

PLoS ONE8,e84137.

Marzban,R.,He,Q.,Zhang,Q.,Liu,X.X.,2013.Histopathology of cotton bollworm midgut infected with Helicoverpa armigera cytoplasmic polyhedrosis virus.Braz.

J.Microbiol.44,1231e1236.

Mason,C.J.,Raffa,K.F.,2014.Acquisition and structuring of midgut bacterial com-munities in gypsy moth(Lepidoptera:Erebidae)larvae.Environ.Entomol.43, 595e604.

Mason,K.L.,Stepien,T.A.,Blum,J.E.,Holt,J.F.,Labbe,N.H.,Rush,J.S.,Raffa,K.F., Handelsman,J.,2011.From commensal to pathogen:translocation of Entero-coccus faecalis from the midgut to the hemocoel of Manduca sexta.MBio2 e00065e00011.

Moffett,D.F.,Koch,A.,1992a.Driving forces and pathways for Htand Kttransport in insect midgut goblet cells.J.Exp.Biol.172,403e415.

Moffett, D.F.,Koch, A.,1992b.The insect goblet cell:a problem in functional cytoarchitecture.News Physiol.Sci.7,19e23.

Moll,R.M.,Romoser,W.S.,Modrzakowski,M.C.,Moncayo,A.C.,Lerdthusnee,K., 2001.Meconial peritrophic membranes and the fate of midgut bacteria during mosquito(Diptera:Culicidae)metamorphosis.J.Med.Entomol.38,29e32. Nakamoto,M.,Moy,R.H.,Xu,J.,Bambina,S.,Yasunaga,A.,Shelly,S.S.,Gold,B., Cherry,S.,2012.Virus recognition by Toll-7activates antiviral autophagy in Drosophila.Immunity36,658e667.

Nakazawa,H.,Tsuneishi,E.,Ponnuvel,K.M.,Furukawa,S.,Asaoka,A.,Tanaka,H., Ishibashi,J.,Yamakawa,M.,2004.Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus.Virology 321,154e162.

Osta,M.A.,Christophides,G.K.,Vlachou,D.,Kafatos,F.C.,2004.Innate immunity in the malaria vector Anopheles gambiae:comparative and functional genomics.

J.Exp.Biol.207,2551e2563.

Pauchet,Y.,Muck,A.,Svatos,A.,Heckel,D.G.,Preiss,S.,2008.Mapping the larval midgut lumen proteome of Helicoverpa armigera,a generalist herbivorous in-sect.J.Proteome Res.7,1629e1639.

Peng,J.,Zhong,J.,Granados,R.R.,1999.A baculovirus enhancin alters the perme-ability of a mucosal midgut peritrophic matrix from lepidoptern larvae.J.Insect Physiol.45,159e166.

Plymale,R.,Grove,M.J.,Cox-Foster,D.,Ostiguy,N.,Hoover,K.,2008.Plant-mediated alteration of the peritrophic matrix and baculovirus infection in lepidopteran

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

8

larvae.J.Insect Physiol.54,737e749.

Ponnuvel,K.M.,Nakazawa,H.,Furukawa,S.,Asaoka,A.,Ishibashi,J.,Tanaka,H., Yamakawa,M.,2003.A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus.J.Virol.77,10725e10729. Ponnuvel,K.M.,Nithya,K.,Sirigineedi,S.,Awasthi,A.K.,Yamakawa,M.,2012.In vitro antiviral activity of an alkaline trypsin from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus.Arch.Insect Biochem.Physiol.81,90e104. Rahman,M.M.,Gopinathan,K.P.,2004.Systemic and in vitro infection process of Bombyx mori nucleopolyhedrovirus.Virus Res.101,109e118.

Rao,R.,Fiandra,L.,Giordana,B.,de Eguileor,M.,Congiu,T.,Burlini,N.,Arciello,S., Corrado,G.,Pennacchio,F.,2004.AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae.Insect Biochem.

Mol.Biol.34,1205e1213.

Raymond,B.,Johnston,P.R.,Wright,D.J.,Ellis,R.J.,Crickmore,N.,Bonsall,M.B.,2009.

A mid-gut microbiota is not required for the pathogenicity of Bacillus thur-

ingiensis to diamondback moth larvae.Environ.Microbiol.11,2556e2563. Riddiford,L.M.,2012.How does juvenile hormone control insect metamorphosis and reproduction?https://www.360docs.net/doc/394394490.html,p.Endocrinol.179,477e484.

Riddiford,L.M.,Cherbas,P.,Truman,J.W.,2000.Ecdysone receptors and their bio-logical actions.Vitam.Horm.60,1e73.

Rodrigo-Simon,A.,de Maagd,R.A.,Avilla,C.,Bakker,P.L.,Molthoff,J.,Gonzalez-Zamora,J.E.,Ferre,J.,https://www.360docs.net/doc/394394490.html,ck of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea:a toxicological,histo-pathological,and biochemical analysis.Appl.Environ.Microbiol.72, 1595e1603.

Rogers,D.F.,2003.The airway goblet cell.Int.J.Biochem.Cell B35,1e6.

Ryu,J.H.,Ha,E.M.,Lee,W.J.,2010.Innate immunity and gut-microbe mutualism in https://www.360docs.net/doc/394394490.html,p.Immunol.34,369e376.

Sabin,L.R.,Hanna,S.L.,Cherry,S.,2010.Innate antiviral immunity in Drosophila.

Curr.Opin.Immunol.22,4e9.

Sander,J.D.,Joung,J.K.,2014.CRISPR-Cas systems for editing,regulating and tar-geting genomes.Nat.Biotechnol.32,347e355.

Seisenbacher,G.,Hafen,E.,Stocker,H.,2011.MK2-dependent p38b signalling pro-tects Drosophila hindgut enterocytes against JNK-induced apoptosis under chronic stress.PLOS Genet.7,e1002168.

Shao,Q.,Yang,B.,Xu,Q.,Li,X.,Lu,Z.,Wang,C.,Huang,Y.,Soderhall,K.,Ling,E.,2012.

Hindgut innate immunity and regulation of fecal microbiota through melani-zation in insects.J.Biol.Chem.287,14270e14279.

Sittenfeld,A.,Uribe-Lorio,L.,Mora,M.,Nielsen,V.,Arrieta,G.,Janzen,D.H.,2002.

Does a polyphagous caterpillar have the same gut microbiota when feeding on different species of food plants?Rev.Biol.Trop.50,547e560.

Sparks,M.E.,Blackburn,M.B.,Kuhar, D.,Gundersen-Rindal, D.E.,2013.Tran-scriptome of the Lymantria dispar(gypsy moth)larval midgut in response to infection by Bacillus thuringiensis.PLoS ONE8,e61190.

Strand,M.R.,2008.The insect cellular immune response.Insect Sci.15,1e14. Sun,W.,Shen,Y.H.,Qi,D.W.,Xiang,Z.H.,Zhang,Z.,2012.Molecular cloning and characterization of Ecdysone oxidase and3-dehydroecdysone-3alpha-reduc-tase involved in the ecdysone inactivation pathway of silkworm,Bombyx mori.

Int.J.Biol.Sci.8,125e138.

Tanada,Y.,Hess,R.T.,1976.Development of a nuclear polyhedrosis virus in midgut cells and penetration of the virus into the hemocoel of the armyworm,Pseu-daletia unipuncta.J.Invertebr.Pathol.28,67e76.

Tanada,Y.,Leutenegger,R.,1970.Multiplication of a granulosis virus in larval midgut cells of Trichoplusia ni and possible pathways of invasion into the he-mocoel.J.Ultrastruct.Res.30,589e600.

Tanaka,H.,Ishibashi,J.,Fujita,K.,Nakajima,Y.,Sagisaka,A.,Tomimoto,K.,Suzuki,N., Yoshiyama,M.,Kaneko,Y.,Iwasaki,T.,Sunagawa,T.,Yamaji,K.,Asaoka,A., Mita,K.,Yamakawa,M.,2008.A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori.Insect Biochem.Mol.Biol.

38,1087e1110.

Tang,X.,Freitak, D.,Vogel,H.,Ping,L.,Shao,Y.,Cordero, E.A.,Andersen,G., Westermann,M.,Heckel,D.G.,Boland,W.,https://www.360docs.net/doc/394394490.html,plexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae.PLoS ONE7, e36978.

Taupin,D.,Podolsky,D.K.,2003.Trefoil factors:initiators of mucosal healing.Nature reviews.Mol.cell Biol.4,721e732.

Tellam,R.L.,1996.The peritrophic matrix.In:Lehane,M.J.,Billingsley,P.F.(Eds.), Biology of the Insect Midgut.Springer Netherlands,London,pp.86e114. Terenius,O.,2008.Hemolin-A lepidopteran anti-viral defense factor?https://www.360docs.net/doc/394394490.html,p.

Immunol.32,311e316.

Terenius,O.,Papanicolaou, A.,Garbutt,J.S.,Eleftherianos,I.,Huvenne,H., Kanginakudru,S.,Albrechtsen,M.,An,C.,Aymeric,J.L.,Barthel,A.,Bebas,P., Bitra,K.,Bravo,A.,Chevalier, F.,Collinge,D.P.,Crava, C.M.,de Maagd,R.A., Duvic, B.,Erlandson,M.,Faye,I.,Felfoldi,G.,Fujiwara,H.,Futahashi,R., Gandhe,A.S.,Gatehouse,H.S.,Gatehouse,L.N.,Giebultowicz,J.M.,Gomez,I., Grimmelikhuijzen, C.J.,Groot, A.T.,Hauser, F.,Heckel, D.G.,Hegedus, D.D., Hrycaj,S.,Huang,L.,Hull,J.J.,Iatrou,K.,Iga,M.,Kanost,M.R.,Kotwica,J.,Li,C., Li,J.,Liu,J.,Lundmark,M.,Matsumoto,S.,Meyering-Vos,M.,Millichap,P.J., Monteiro,A.,Mrinal,N.,Niimi,T.,Nowara,D.,Ohnishi,A.,Oostra,V.,Ozaki,K., Papakonstantinou,M.,Popadic, A.,Rajam,M.V.,Saenko,S.,Simpson,R.M., Soberon,M.,Strand,M.R.,Tomita,S.,Toprak,U.,Wang,P.,Wee,C.W.,Whyard,S., Zhang,W.,Nagaraju,J.,Ffrench-Constant,R.H.,Herrero,S.,Gordon,K., Swevers,L.,Smagghe,G.,2011.RNA interference in Lepidoptera:an overview of successful and unsuccessful studies and implications for experimental design.

J.Insect Physiol.57,231e245.Terenius,O.,Popham,H.J.,Shelby,K.S.,2009.Bacterial,but not baculoviral in-fections stimulate Hemolin expression in noctuid https://www.360docs.net/doc/394394490.html,p.Immunol.

33,1176e1185.

Tetreau,G.,Dittmer,N.T.,Cao,X.,Agrawal,S.,Chen,Y.R.,Muthukrishnan,S., Haobo,J.,Blissard,G.W.,Kanost,M.R.,Wang,P.,2015.Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peri-trophin A-type chitin-binding domains in insects.Insect biochem.Mol.Biol.62, 127e141.

Tettamanti,G.,Casartelli,M.,2010.Lepidopteran midgut stem cells in culture:a new tool for cell biology and physiological studies.In:DW,R.,QN,M.(Eds.), Pluripotent Stem Cells.Nova Science Publishers,New York,pp.173e184. Thakur,A.,Dhammi,P.,Saini,H.S.,Kaur,S.,2015.Pathogenicity of bacteria isolated from gut of Spodoptera litura(Lepidoptera:Noctuidae)and?tness costs of in-sect associated with consumption of bacteria.J.Invertebr.Pathol.127,38e46. Toprak,U.,Harris,S.,Baldwin, D.,Theilmann, D.,Gillott, C.,Hegedus, D.D., Erlandson,M.A.,2012.Role of enhancin in Mamestra con?gurata nucleopoly-hedrovirus virulence:selective degradation of host peritrophic matrix proteins.

J.Gen.Virol.93,744e753.

Umut,T.,Martin, E.,Dwayne, D.H.,2010.Peritrophic matrix proteins.Trends Entomol.6,23e51.

V a vra,J.,Larsson,J.,1999.Structure of the microsporidia.In:Wittner,M.,Weiss,L.M.

(Eds.),The Microsporidia and Microsporidiosis.ASM Press,Washington,DC., pp.7e84

Walenciak,O.,Zwisler,W.,Gros,E.M.,2002.In?uence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella.J.Chem.

Ecol.28,2045e2056.

Wang,P.,Granados,R.R.,2000.Calco?uor disrupts the midgut defense system in insects.Insect biochem.Mol.Biol.30,135e143.

Wang,S.,Jacobs-Lorena,M.,2013.Genetic approaches to interfere with malaria transmission by vector mosquitoes.Trends Biotechnol.31,185e193.

Wang,Y.,Gosselin Grenet,A.S.,Castelli,I.,Cermenati,G.,Ravallec,M.,Fiandra,L., Debaisieux,S.,Multeau,C.,Lautredou,N.,Dupressoir,T.,Li,Y.,Casartelli,M., Ogliastro,M.,2013.Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function.J.Virol.87,12380e12391.

Whitten,M.M.,Shiao,S.H.,Levashina,E.A.,2006.Mosquito midguts and malaria: cell biology,compartmentalization and immunology.Parasite Immunol.28, 121e130.

Woo,P.C.,Leung,P.K.,Leung,K.W.,Yuen,K.Y.,2000.Identi?cation by16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient.Mol.Pathol.53,211e215.

Wu,K.,Zhang,J.,Zhang,Q.,Zhu,S.,Shao,Q.,Clark,K.D.,Liu,Y.,Ling,E.,2015.Plant phenolics are detoxi?ed by prophenoloxidase in the insect gut.Sci.Rep.5, 16823.

Wu,P.,Han,S.,Chen,T.,Qin,G.,Li,L.,Guo,X.,2013.Involvement of microRNAs in infection of silkworm with Bombyx mori cytoplasmic polyhedrosis virus (BmCPV).PLoS ONE8,e68209.

Wu,S.,Zhang,X.,Chen,X.,Cao,P.,Beerntsen,B.T.,Ling,E.,2010a.BmToll9,an Arthropod conservative Toll,is likely involved in the local gut immune response in the silkworm,Bombyx https://www.360docs.net/doc/394394490.html,p.Immunol.34,93e96.

Wu,S.,Zhang,X.,He,Y.,Shuai,J.,Chen,X.,Ling,E.,2010b.Expression of antimi-crobial peptide genes in Bombyx mori gut modulated by oral bacterial infection and https://www.360docs.net/doc/394394490.html,p.Immunol.34,1191e1198.

Xia,Q.,Zhou,Z.,Lu,C.,Cheng,D.,Dai,F.,Li,B.,Zhao,P.,Zha,X.,Cheng,T.,Chai,C., Pan,G.,Xu,J.,Liu,C.,Lin,Y.,Qian,J.,Hou,Y.,Wu,Z.,Li,G.,Pan,M.,Li,C.,Shen,Y., Lan,X.,Yuan,L.,Li,T.,Xu,H.,Yang,G.,Wan,Y.,Zhu,Y.,Yu,M.,Shen,W.,Wu,D., Xiang,Z.,Yu,J.,Wang,J.,Li,R.,Shi,J.,Li,H.,Li,G.,Su,J.,Wang,X.,Li,G.,Zhang,Z., Wu,Q.,Li,J.,Zhang,Q.,Wei,N.,Xu,J.,Sun,H.,Dong,L.,Liu,D.,Zhao,S.,Zhao,X., Meng,Q.,Lan,F.,Huang,X.,Li,Y.,Fang,L.,Li,C.,Li,D.,Sun,Y.,Zhang,Z.,Yang,Z., Huang,Y.,Xi,Y.,Qi,Q.,He,D.,Huang,H.,Zhang,X.,Wang,Z.,Li,W.,Cao,Y., Yu,Y.,Yu,H.,Li,J.,Ye,J.,Chen,H.,Zhou,Y.,Liu,B.,Wang,J.,Ye,J.,Ji,H.,Li,S.,Ni,P., Zhang,J.,Zhang,Y.,Zheng,H.,Mao, B.,Wang,W.,Ye, C.,Li,S.,Wang,J., Wong,G.K.,Yang,H.,Biology Analysis,G.,2004.A draft sequence for the genome of the domesticated silkworm(Bombyx mori).Science306,1937e1940. Xia,X.,Zheng,D.,Zhong,H.,Qin,B.,Gurr,G.M.,Vasseur,L.,Lin,H.,Bai,J.,He,W., You,M.,2013.DNA sequencing reveals the midgut microbiota of diamondback moth,Plutella xylostella(L.)and a possible relationship with insecticide resis-tance.PLoS ONE8,e68852.

Xu,Q.,Lu,A.,Xiao,G.,Yang,B.,Zhang,J.,Li,X.,Guan,J.,Shao,Q.,Beerntsen,B.T., Zhang,P.,Wang,C.,Ling,E.,2012.Transcriptional pro?ling of midgut immunity response and degeneration in the wandering silkworm,Bombyx mori.PLoS ONE 7,e43769.

Xu,Y.,Weiss,L.M.,2005.The microsporidian polar tube:a highly specialised in-vasion organelle.Int.J.Parasitol.35,941e953.

Yamano,Y.,Matsumoto,M.,Inoue,K.,Kawabata,T.,Morishima,I.,1994.Cloning of cDNAs for cecropins A and B,and expression of the genes in the silkworm, Bombyx mori.Biosci.Biotechnol.Biochem.58,1476e1478.

You,M.,Yue,Z.,He,W.,Yang,X.,Yang,G.,Xie,M.,Zhan,D.,Baxter,S.W.,Vasseur,L., Gurr,G.M.,Douglas,C.J.,Bai,J.,Wang,P.,Cui,K.,Huang,S.,Li,X.,Zhou,Q.,Wu,Z., Chen,Q.,Liu,C.,Wang,B.,Li,X.,Xu,X.,Lu,C.,Hu,M.,Davey,J.W.,Smith,S.M., Chen,M.,Xia,X.,Tang,W.,Ke,F.,Zheng,D.,Hu,Y.,Song,F.,You,Y.,Ma,X., Peng,L.,Zheng,Y.,Liang,Y.,Chen,Y.,Yu,L.,Zhang,Y.,Liu,Y.,Li,G.,Fang,L.,Li,J., Zhou,X.,Luo,Y.,Gou, C.,Wang,J.,Wang,J.,Yang,H.,Wang,J.,2013.

A heterozygous moth genome provides insights into herbivory and detoxi?-

cation.Nat.Genet.45,220e225.

Zambon,R.A.,Nandakumar,M.,Vakharia,V.N.,Wu,L.P.,2005.The Toll pathway is

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

9

important for an antiviral response in Drosophila.Proc.Natl.Acad.Sci.U.S.A.

102,7257e7262.

Zhan,S.,Merlin,C.,Boore,J.L.,Reppert,S.M.,2011.The monarch butter?y genome yields insights into long-distance migration.Cell147,1171e1185.

Zhang,J.,Lu,A.,Kong,L.,Zhang,Q.,Ling,E.,2014.Functional analysis of insect molting?uid proteins on the protection and regulation of ecdysis.J.Biol.Chem.

289,35891e35906.

Zhang,L.,Lu,Z.,2015.Expression,puri?cation and characterization of an atypical2-Cys peroxiredoxin from the silkworm,Bombyx mori.Insect Mol.Biol.24, 203e212.

Zhang,L.,Wang,Y.W.,Lu,Z.Q.,2015.Midgut immune responses induced by bac-terial infection in the silkworm,Bombyx mori.J.Zhejiang Univ.Sci.B16,

875e882.

Zhang,S.,Xu,Y.,Fu,Q.,Jia,L.,Xiang,Z.,He,N.,2011.Proteomic analysis of larval midgut from the silkworm(Bombyx mori).Comp.Funct.Genomics2011, 876064.

Zhong,X.,Zhang,L.,Zou,Y.,Yi,Q.,Zhao,P.,Xia,Q.,Xiang,Z.,2012.Shotgun analysis on the peritrophic membrane of the silkworm Bombyx mori.BMB Rep.45, 665e670.

Zhu,Y.,Lu,Z.,2013.Identi?cation of differentially expressed genes in the larval midgut of the silkworm(Bombyx mori)after bacterial infection.Acta Entomol.

Sin.56,505e511.

Zimmermann,U.,Mehlan,D.,1976.Water transport across peritrophic membranes of calliphora erythrocephala-VⅡ.Comp.Biochem.Phisiol55,119e126.

K.Wu et al./Developmental and Comparative Immunology xxx(2016)1e10

10

材料期刊排名及影响因子

【自然科学】材料期刊排名及影响因子 Nature 自然31.434 Science 科学28.103 Nature Material 自然(材料)23.132 Nature Nanotechnology 自然(纳米技术)20.571 Progress in Materials Science 材料科学进展18.132 Nature Physics 自然(物理)16.821 Progress in Polymer Science 聚合物科学进展16.819 Surface Science Reports 表面科学报告12.808 Materials Science & Engineering R-reports 材料科学与工程报告12.619 Angewandte Chemie-International Edition 应用化学国际版10.879 Nano Letters 纳米快报10.371 Advanced Materials 先进材料8.191 Journal of the American Chemical Society 美国化学会志8.091 Annual Review of Materials Research 材料研究年度评论7.947 Physical Review Letters 物理评论快报7.180 Advanced Functional Materials 先进功能材料 6.808 Advances in Polymer Science 聚合物科学发展 6.802 Biomaterials 生物材料 6.646 Small 微观? 6.525 Progress in Surface Science 表面科学进展 5.429 Chemical Communications 化学通信 5.34 MRS Bulletin 材料研究学会(美国)公 告 5.290 Chemistry of Materials 材料化学 5.046 Advances in Catalysis 先进催化 4.812 Journal of Materials Chemistry 材料化学杂志 4.646 Carbon 碳 4.373 Crystal Growth & Design 晶体生长与设计 4.215 Electrochemistry Communications 电化学通讯 4.194 The Journal of Physical Chemistry B 物理化学杂志,B辑:材 料、表面、界面与生物物 理 4.189 Inorganic Chemistry 有机化学 4.147 Langmuir 朗缪尔 4.097 Physical Chemistry Chemical Physics 物理化学 4.064 International Journal of Plasticity 塑性国际杂志 3.875 Acta Materialia 材料学报 3.729 Applied Physics Letters 应用物理快报 3.726 Journal of power sources 电源技术 3.477 Journal of the Mechanics and Physics of Solids 固体力学与固体物理学 杂志 3.467

国内科技期刊影响因子排名

排名代码期刊名称总被引频次影响因子 1 G190 世界华人消化杂志5249 2.924 2 G275 WORLD J OF GASTROENTEROLOG 1908 2.633 3 G147 中华结核和呼吸杂志2333 1.54 4 G654 护理研究1074 1.506 5 G170 中华心血管病杂志2022 1.444 6 G231 中华肝脏病杂志1131 1.44 7 G136 中华传染病杂志893 1.435 8 G152 中华流行病学杂志1400 1.293 9 G174 中华检验医学杂志1121 1.278 10 G138 中华儿科杂志2396 1.252 11 G272 中国实用外科杂志2499 1.229

12 G143 中华骨科杂志2821 1.184 13 G168 中华消化杂志1448 1.174 14 G194 中华医院感染学杂志1849 1.169 15 G591 中华医院管理杂志1420 1.152 16 G146 中华护理杂志2441 1.125 17 G900 中华烧伤杂志431 1.105 18 G156 中华内科杂志2193 1.092 19 G197 中华神经科杂志1616 1.044 20 G316 解放军护理杂志827 1.023 21 G161 中华肾脏病杂志845 1.022 22 G160 中华神经外科杂志1387 1.017 23 G116 中国危重病急救医学1378 1.017

24 G137 中华创伤杂志1252 1.011 25 G249 骨与关节损伤杂志734 1.004 26 G305 中国实用护理杂志1533 0.967 27 G299 中国临床康复3306 0.931 28 G140 中华放射学杂志2494 0.926 29 G142 中华妇产科杂志1982 0.902 30 G159 中华精神科杂志421 0.881 31 G192 中国脊柱脊髓杂志712 0.863 32 G155 中华内分泌代谢杂志890 0.858 33 G179 中华肿瘤杂志1427 0.84 34 G176 中华医学杂志2719 0.827 35 G985 中国艾滋病性病393 0.798

2015年SCI影响因子报告

汤森路透:2015年SCI影响因子报告!(TOP1000) 6月18日,备受关注的汤森路透《SCI期刊分析报告》新鲜出炉。该报告涵盖了来自82个国家的237个大类的11149本期刊。本年度有272本杂志第一次被收录;与去年相比,53%的杂志影响因子增加。Ca-Cancer J Clin、NEJM以及CHEM REV再次包揽了榜单的前三甲,影响因子分别为115.84、55.873、46.568。 与去年相比,排在前十名的杂志中出现两位新成员,一个是排在第5位的NATURE REVIEWS DRUG DISCOVERY,影响因子41.908,去年该杂志排在第11位,影响因子为37.231;另一个是排在第9位的NATURE REVIEWS MOLECULAR CELL BIOLOGY,影响因子为37.806,去年排在第12位,影响因子为36.458。 备受瞩目的《柳叶刀》杂志今年排到了第4位,影响因子45.217,较去年上升了4个名次(去年影响因子39.207)。Nature、Science、Cell分别排在第7、16和20位,对应的影响因子为41.456、33.611、32.242。与去年相比,Nature下降了2个名次、Science上升了1个名次、Cell下降了4个名次。 此外,今年Nature杂志有两个子刊排在了主刊的前面,除了上述前十的新成员NATURE REVIEWS DRUG DISCOVERY,还有排在第6的NATURE BIOTECHNOLOGY,影响因子为41.514,该杂志去年排在榜单的第9位,影响因子为39.08。 影响因子在一定程度上是一本杂志质量高低的标准之一,并且能够带来科学以外太多的东西:教职、基金申请、学术影响力等。尽管很多学者批评过杂志影响因子,但是取消或者改革不是短时间就能实现的事情。以下列举排在前1000位的杂志最新的影响因子: Full Journal Title Rank Total Cites Journal Impact Factor CA-A CANCER JOURNAL FOR CLINICIANS 1 18,594 115.84 NEW ENGLAND JOURNAL OF MEDICINE 2 268,652 55.873 CHEMICAL REVIEWS 3 137,600 46.568 LANCET 4 185,361 45.217 NATURE REVIEWS DRUG DISCOVERY 5 23,811 41.908 NATURE BIOTECHNOLOGY 6 45,986 41.514 NATURE 7 617,363 41.456 Annual Review of Immunology 8 16,750 39.327 NATURE REVIEWS MOLECULAR CELL BIOLOGY 9 35,928 37.806 NATURE REVIEWS CANCER 10 39,868 37.4 NATURE REVIEWS GENETICS 11 29,388 36.978 NATURE MATERIALS 12 64,622 36.503

期刊影响因子的“含金量

这一业务包括了世界知名的科技文献检索系统“科学引文索引”(简称SCI)以及定期发布的《期刊引证报告》其中的期刊影响因子是一本学术期刊影响力的重要参考。这是一个以标准衡 量的世界。既然吃饭都有米其林餐厅评级作为参考,更何况严谨的学术科研成果…… 期刊 影响因子的“含金量” ■今日视点期刊影响因子长久以来被学术界视为一个重要的科研水平 参考指标。在一本影响因子高的期刊发表论文,科研人员的科研能力和成果也更容易获得认同。然而,部分科学家已对这一指标能否真正反映单篇论文乃至作者学术水平提出质疑,加 上每年发布这一指标的汤森路透公司在本月早些时候宣布把相关业务转售给两家投资公司, 影响因子未来能否继续维持其“影响力”令人存疑。广泛影响根据汤森路透发布的信息,该 公司已同意将旗下知识产权与科学业务作价35.5亿美元出售给私募股权公司Onex和霸菱亚 洲投资。这一业务包括了世界知名的科技文献检索系统“科学引文索引”(简称SCI)以及定 期发布的《期刊引证报告》,其中的期刊影响因子是一本学术期刊影响力的重要参考。新 华社记者就此事咨询了汤森路透,该公司一位发言人说,这一交易预计今年晚些时候完成, 在此之前该公司还会继续拥有并运营这项业务,“我们将在不影响这项业务开展和质量的前提下完成交易”。帝国理工学院教授史蒂芬·柯里接受记者采访时说,他对汤森路透用来计算期 刊影响因子所使用的数据是否可靠本来就有一定顾虑,“我不确定汤森路透的这次交易是否产生影响,但这项业务的接盘方如果未来能够保证这方面的透明度也是一件好事”。影响因子 的计算方法通常是以某一刊物在前两年发表的论文在当年被引用的总次数,除以该刊物前两 年发表论文的总数,得出该刊物当年的影响因子数值。理论上,一种刊物的影响因子越高, 影响力越大,所发表论文传播范围也更广。鉴于全球每个科研领域中都有大量专业期刊,如 果有一个可靠的指标能告诉研究人员哪个期刊影响力更大,他们就能更高效地选择在一个高 质量平台上发表科研成果。但这又引申出一个现象,即许多科研机构、高校甚至学术同行越 来越依赖影响因子来评判一篇论文甚至作者本身的科研水平,进而影响他们的职称评定和获 取科研项目资助等机会。业内争议这种过度依赖影响因子的做法引起不少业内争议。来自 帝国理工学院、皇家学会等科研机构学者以及《自然》《科学》等期刊出版方的高级编辑, 合作撰写了一份报告分析其中弊端,并提出相关改进方案。这篇报告已在近期被分享到一个 公开的预印本服务器上供同行审阅。报告分析了包括《自然》《科学》在内11份学术期刊 在2013年至2014年间所刊发论文被引用次数的分布情况,这些数据也被用来计算2015年相关刊物的影响因子。报告作者发现,多数论文被引用次数都达不到发表它们的期刊的影响 因子数值水平,比如《自然》在这期间所刊发论文中的74.8%在2015年获得的引用次数就低于这本期刊当年影响因子所显示的水平,《科学》的情况也类似。报告说,这主要是因为这 些期刊中有一小部分论文被引用次数非常高,导致影响因子在均值计算过程中出现偏差。 报告详细描述了如何更准确地计算出期刊所刊发论文被引用次数的分布状况,并呼吁各家期 刊将这些基础数据公布出来,减少学术界对影响因子的过度依赖。史蒂芬·柯里是报告作者 之一,他告诉记者:“我们想强调期刊影响因子的局限性,让那些评估科研成果水平的人将目光聚焦在论文本身。”他还鼓励大学等科研机构签署《关于研究评价的旧金山宣言》,这一宣言就指出学术界不应该过度依赖影响因子。他说,依赖影响因子来评价一个研究人员以及 他所撰写论文的科研水平是一个“危险的倾向”,这会导致很多问题,包括增加学术造假动机,鼓励研究人员跟风追逐抓眼球的科研成果以及抑制创新等。未来趋势目前,部分科研期刊 出版方已在这方面做出改变。就在汤森路透宣布出售知识产权与科学业务没多久,美国微生 物学会就公开表示,将不会在该协会期刊网站上公布影响因子。英国皇家学会以及欧洲分子

中国大陆中文期刊影响因子总排名

中国大陆中文期刊影响因子总排名排名代码期刊名称影响因子总被引频次 1R039电网技术2.857 5080FALSEFALSETRUE 2E309岩石学报2.649 2279FALSEFALSETRUE 3A113实验技术与管理2.587 1393FALSEFALSETRUE 4R040中国电机工程学报2.537 8127FALSEFALSETRUE 5E124中国沙漠2.455 2504FALSEFALSETRUE 6X031中国公路学报2.444 1239FALSEFALSETRUE 7H046PEDOSPHERE2.331 734FALSEFALSETRUE 8E010地质学报2.326 1651FALSEFALSETRUE 9E305地理学报2.302 3164FALSEFALSETRUE 10E139地质科学2.212 2187FALSEFALSETRUE 11A108中国科学D2.062 2760FALSEFALSETRUE 12A115实验室研究与探索2.026 1366FALSEFALSETRUE 13E146大地构造与成矿学1.906 548FALSEFALSETRUE 14G146中华护理杂志1.861 5805FALSEFALSETRUE 15H012土壤学报1.840 2670FALSEFALSETRUE 16E005高原气象1.715 1749FALSEFALSETRUE 17M102新型炭材料1.714 705FALSEFALSETRUE 18Z012自然资源学报1.675 1926FALSEFALSETRUE 19G138中华儿科杂志1.652 3413FALSEFALSETRUE 20F049生物多样性1.639 1077FALSEFALSETRUE 21E153地球物理学报1.634 2518FALSEFALSETRUE 22E008海洋与湖沼1.631 1574FALSEFALSETRUE 23F009植物生态学报1.590 2636FALSEFALSETRUE 24E654中国地质1.576 658FALSEFALSETRUE 25E001气象学报1.559 1935FALSEFALSETRUE 26E310地理研究1.556 1499FALSEFALSETRUE 27L031石油勘探与开发1.512 2205FALSEFALSETRUE 28E009地质论评1.495 1512FALSEFALSETRUE 29X672交通运输工程学报1.491 618TRUETRUETRUE

各大期刊影响因子

各学科SCI影响因子介绍:只做参考TOP JOURNAL 1、SCI 期刊分层方案。 2、超一流期刊影响因子 NA TURE 30.979 SCIENCE 29.162 3、一级学科顶级期刊综合版目录 a. NATURE 子系列(约26 种) 期刊名称影响因子(IF) NAT REV MOL CELL BIO 35.041 NAT REV CANCER 33.954 NAT MED 30.550 NAT IMMUNOL 28.180 NAT REV NEUROSCI 27.007 NAT REV IMMUNOL 26.957 NAT GENET 26.494 NAT REV GENET 25.664 NAT CELL BIOL 20.268 NAT REV DRUG DISCOV 17.732 NAT BIOTECHNOL 17.721 NAT NEUROSCI 15.141 NAT STRUCT BIOL 11.579 NAT MA TER 10.778 NAT REV MICROBIOL NAT METHODS NAT CHEM BIO NAT PHYSICS NCP CARDIOV ASCULAR MEDICINE NCP GASTROENTEROLOGY & HEPATOLOGY NCP ONCOLOGY NCP UROLOGY NCP ENDOCRINOLOGY & METABOLISM NCP NEPHROLOGY NCP NEUROLOGY NCP RHEMATOLOGY 3 b. 影响因子大于20 的期刊(根据03 年影响因子,去除SCIENCE、NATURE、NATURE 系列,则为13 种) 期刊名称影响因子(IF) ANNU REV IMMUNOL 52.28 ANNU REV BIOCHEM 37.65 PHYSIOL REV 36.83 NEW ENGL J MED 34.83 CA-CANCER J CLIN 33.06

期刊及影响因子

2010年SCI收录主要刊登植物化学的期刊及影响因子 2010,SCI收录,植物化学,期刊, 1. Phytochemistry(植物化学)Impact Factor: 3.104 (所标注IF皆为2009年的)The International Journal of Plant Chemistry, Plant Biochemistry and Molecular Biology. ISSN: 0031-9422 https://www.360docs.net/doc/394394490.html,/wps/find ... /authorinstructions 2. Phytomedicine(植物医学),Impact Factor: 2.174 International Journal of Phytotherapy and Phytopharmacology ISSN: 0944-7113 https://www.360docs.net/doc/394394490.html,/wps/find ... /authorinstructions 3. Phytochemistry Letters(植物化学快报),Impact Factor: 0.957 ISSN: 1874-3900 https://www.360docs.net/doc/394394490.html,/wps/find ... ription#description 4. Fitoterapia(药用植物),Impact Factor: 1.363 The Journal for the Study of Medicinal Plants ISSN: 0367-326X 创刊年:1934 出版地:荷兰 1. Science Citation Index Expanded https://www.360docs.net/doc/394394490.html,/wps/find ... ription#description 5. Phytochemical Analysisis(植物化学分析), Impact Factor: 1.744 phytochemistry, natural product, herbal, plant biochemistry, plant extract, plant product https://www.360docs.net/doc/394394490.html,/journal/10.1002/(ISSN)1099-1565/ 6. Chemistry & Biodiversity(化学与生物多样性), impact factor: 1.926 biologically relevant chemistry https://www.360docs.net/doc/394394490.html,/journal/10.1002/(ISSN)1612-1880 7. Planta Medica(植物药), Impact Factor:2.037 Journal of Medicinal Plant and Natural Product Research ISSN 0032-0943 http://www.thieme.de/fz/plantamedica-imprint.html

简评新出的材料类期刊影响因子

1. Nature 系列:Nature 自带贵族基因,Nature Energy 第一年就坐上了research 类文章的头把交椅,只能说有个好爹真好啊。Nature review Materials 同样影响因子超高,不过综述类期刊看影响因子本身意义也不大,也就看个热闹吧。Nature Commun.的影响因子稍显颓势,但仍然是大牛们才能灌的期刊,有些期刊真不是你有钱就搞定的。预计NC影响因子很难有大的突破了,基本就在10-13左右波动了。另外Nature最近也出了Communications XXX 如Commun. Chemistry 等,定位在NC和Scientfic reports 之间,Nature编辑团队加持,大概是ChemComm的水平,目前文章质量不如ChemComm,但是长远看影响因子也能到8左右,可以投资。 2. Wiley系列:AEM一越和正刊AM平起平坐了,再运作一下A EM估计称之为AM子刊都不合适了。AFM影响因子小幅增长,只能说中规中矩,反倒是.的影响因子一下到了,可以说AS这个期刊的创建现在最受影响的应该是AFM了,预计AS影响因子将会在明年反超AFM,AFM的地位稍显尴尬。Small的影响因子也突飞猛进到了以上,值得期待,AFM的地位更尴尬了。Wiley其他子刊影响因子都基本在7以下,基本可以看做是AM系列高端期刊的回收站,但这些回收站的地位还是高于其他几个数据库回收站的地位的,属于专业领域较为受认可的高质量期刊,算不上顶级期刊,期待他们成为Small这样的基本可以歇歇了。化学类期

刊Wiley表现平平,基本没有什么突破,预计将和ACS的差距逐步拉大,Wiley需要有所改变。 3. ACS系列:JACS地位无需用影响因子来证明,不在讨论之列。ACS Nano的势头依旧良好,其他老期刊表现中规中矩,ACS Ca tal势头较猛,强势甩开曾经的老大哥J. Catal. ACS AMI比较稳定达到了8,不过收刊量太大,认可度现在不高,搞了分刊,有效与否有待观察。ACS Energy Letters首个影响因子破10,完全是意料之中,不过喜欢偏理论和机理,在能源类期刊中走了一条不寻常的路。ACS Sustainable Chem. Eng.收文量大了之后影响因子小幅增加,预计影响力将更进一步扩大,超越ChemSusChem指日可待。ACS Central Science 当年吹得太猛,本来是要和Nature C hemistry PK的,但几年了我也未能有幸在茫茫文章中读到该期刊的论文,影响力是个大问题。ACS Omega 和Scientific Reports 一样,都是不要求创新性的OA期刊,基本所有稿件都来自于AC S AMI等期刊的转投,另一个Scientfic reports无疑了。 4. RSC系列:EES影响因子常规操作,Mater. Horizons势头良好,抢不了AM的稿源,但是可以抢抢AFM的稿源,建议大家投AFM的可以考虑这个期刊。Nanoscale Horizons首个影响因子没有破10 不过8-9已经超过我之前的预期了,目测要抢Material H orizons的风头,很有可能成为RSC除了EES的首选,JMCA 了,

化学、期刊影响因子

化学和药学类期刊影响因子一览 影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。该指标是相对统计值,可克服大小期刊由于载文量不同所带来的偏差。一般来说,影响因子越大,其学术影响力也越大。 Chemistry 次序期刊名影响因子 1 CHEMICAL REVIEWS 20.220 2 ACCOUNTS OF CHEMICAL RESEARCH 12.880 3 ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 8.029 4 JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA 6.229 5 CHEMICAL SOCIETY REVIEWS 5.936 6 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 5.725 7 CHEMISTRY-A EUROPEAN JOURNAL 5.153 8 TOPICS IN CURRENT CHEMISTRY 4.397 9 CHEMICAL COMMUNICATIONS 3.407 10 CHEMICAL RESEARCH IN TOXICOLOGY 3.336 11 JOURNAL OF COMPUTATIONAL CHEMISTRY 2.861 12 JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2.609 13 PHARMACEUTICAL RESEARCH 2.530 14 HELVETICA CHIMICA ACTA 2.463 15 BIOCONJUGATE CHEMISTRY 2.269 16 ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2.238 17 MARINE CHEMISTRY 1.967 18 JOURNAL OF CONTROLLED RELEASE 1.894 19 NEW JOURNAL OF CHEMISTRY 1.797 20 JOURNAL OF PHARMACEUTICAL SCIENCES 1.764 21 PURE AND APPLIED CHEMISTRY 1.677 22 JOURNAL OF NATURAL PRODUCTS 1.641 23 COMPUTERS & CHEMISTRY 1.566 24 CHEMISTRY LETTERS 1.546 25 SUPRAMOLECULAR CHEMISTRY 1.404 26 ENANTIOMER 1.388 27 REVIEWS ON HETEROATOM CHEMISTRY 1.349 28 BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1.338 29 ACTA CHEMICA SCANDINAVICA 1.257 30 CHEMICO-BIOLOGICAL INTERACTIONS 1.197 31 INFLAMMATION RESEARCH 1.141 32 CHEMICAL & PHARMACEUTICAL BULLETIN 1.135 33 USPEKHI KHIMII 1.099 34 CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE 1.092 35 CHIMIA 1.058

期刊影响因子的解说

期刊影响因子的解说 影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。即某期刊前两年发表的 论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。 影响因子(ImPact Factor)是1972年由E·加菲尔德提出的,现已成为 国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标影响因子是一个相 对统计量. 简介 例如,某期刊2005年影响因子的计算 本刊2004年的文章在2005年的被引次数: 48 ; 本刊2004年的发文量: 187 本刊2003年的文章在2005年的被引次数: 128 ; 本刊2003年的发文量: 154 本刊2003-2004的文章在2005年的被引次数总计: 48+128=176 本刊2003-2004年的发文量总计: 187+154=341 本刊2005年的影响因子:0.5161 = 176÷341 意义 该指标是相对统计值,可克服大小期刊由于载文量不同所带来的偏差。 一般来说,影响因子越大,其学术影响力也越大。 影响因子(Impact factor,缩写IF)是指某一期刊的文章在特定年份 或时期被引用的频率,是衡量学术期刊影响力的一个重要指标,由美国科学 情报研究所(ISI)创始人尤金·加菲得(Eugene Garfield)在1960年代创立,其后为文献计量学的发展带来了一系列重大革新。 自1975年以来,每年定期发布于“期刊引用报告”(Journal Citation Reports)。 计算方法 影响因子是以年为单位进行计算的。以1992年的某一期刊影响因子为例,IF(1992年) = A / B 其中, A = 该期刊1990年至1991年所有文章在1992年中被引用的次数; B = 该期刊1990年至1991年所有文章数。 影响 许多著名学术期刊会在其网站上注明期刊的影响因子,以表明在对应学 科的影响力。如,美国化学会志、Oncogene等。 中国大陆各大高校(如清华大学、南开大学、吉林大学、哈尔滨工业大学、浙江大学、上海大学)都以学术期刊的影响因子作为评判研究生毕业的 主要标准。 影响因子的产生 在1998年,美国科技信息研究所所长尤金·加菲尔德(Eugene Garfield)博士在《科学家》(The Scientists)杂志中叙述了影响因子的产生过程。说 明他最初提出影响因子的目的是为《现刊目次,Current Contents》评估和

期刊影响因子

环境污染与防治:复合影响因子:1.163 综合影响因子:0.676 水资源保护:复合影响因子:1.177 综合影响因子:0.716 中国环境监测:复合影响因子:0.972 综合影响因子:0.753 工业水处理:复合影响因子:0.784 综合影响因子:0.497 水处理技术:复合影响因子:1.132 综合影响因子:0.686 给水排水:复合影响因子:0.536 综合影响因子:0.337 净水技术:复合影响因子:0.711 综合影响因子:0.522 四川环境:复合影响因子:0.595 综合影响因子:0.347 环境工程学报:复合影响因子:1.159 综合影响因子:0.718 清华大学学报(自然科学版):复合影响因子:0.916 综合影响因子:0.494环境与健康杂志:复合影响因子:0.545 综合影响因子:0.418 生态环境 生态环境学报:复合影响因子:1.715 综合影响因子:1.094 生态学杂志:复合影响因子:1.804 综合影响因子:1.201 化学进展:复合影响因子:1.498 综合影响因子:0.908 环境保护科学:复合影响因子:0.743 综合影响因子:0.433 同济大学学报(自然科学版):复合影响因子:1.019 综合影响因子:0.586中国给水排水:复合影响因子:0.923 综合影响因子:0.609 环境科学:复合影响因子:1.717 综合影响因子:1.159 中国环境科学:复合影响因子:2.349 综合影响因子:1.725 环境科学学报:复合影响因子:1.722 综合影响因子:1.165 环境科学研究:复合影响因子:1.862 综合影响因子:1.273 环境化学:复合影响因子:0.950 综合影响因子:0.673

影响因子5-10所有期刊,

可以直接复制到pubmed的过滤器中哦 "NAT REV ENDOCRINOL "[journal]or"MOL ASPECTS MED "[journal]or"LASER PHYS LETT "[journal]or"MOL ASPECTS MED "[journal]or"J AM CHEM SOC "[journal]or"BLOOD "[journal]or"ADV MICROB PHYSIOL "[journal]or"ADV MICROB PHYSIOL "[journal]or"ANNU REV PHYTOPATHOL "[journal]or"CURR OPIN CHEM BIOL "[journal]or"CURR OPIN CHEM BIOL "[journal]or"NAT PROD REP "[journal]or"P NATL ACAD SCI USA "[journal]or"J AM SOC NEPHROL "[journal]or"CURR BIOL "[journal]or"CURR BIOL "[journal]or"BIOTECHNOL ADV "[journal]or"BIOTECHNOL ADV "[journal]or"ENERG ENVIRON SCI "[journal]or"ENERG ENVIRON SCI "[journal]or"ENERG ENVIRON SCI "[journal]or"LEUKEMIA "[journal]or"LEUKEMIA "[journal]or"DRUG RESIST UPDATE "[journal]or"CURR OPIN IMMUNOL "[journal]or"CIRC RES "[journal]or"CIRC RES "[journal]or"CIRC RES "[journal]or"CRIT REV SOLID STA TE "[journal]or"CRIT REV SOLID STA TE "[journal]or"BRAIN "[journal]or"BRAIN "[journal]or"PROG RETIN EYE RES "[journal]or"ANNU REV NUTR "[journal]or"CURR OPIN STRUC BIOL "[journal]or"CURR OPIN STRUC BIOL "[journal]or"CSH PERSPECT BIOL "[journal]or"BEHA V BRAIN SCI "[journal]or"BEHA V BRAIN SCI "[journal]or"BBA-REV CANCER "[journal]or"BBA-REV CANCER "[journal]or"BBA-REV CANCER "[journal]or"PROG INORG CHEM "[journal]or"ACTA NEUROPATHOL "[journal]or"ACTA NEUROPA THOL "[journal]or"ACTA NEUROPATHOL "[journal]or"CURR OPIN PLANT BIOL "[journal]or"J HEPATOL "[journal]or"HUM REPROD UPDATE "[journal]or"HUM REPROD UPDA TE "[journal]or"EMBO J "[journal]or"EMBO J "[journal]or"CLIN INFECT DIS "[journal]or"CLIN INFECT DIS "[journal]or"TRENDS BIOTECHNOL "[journal]or"PLOS PATHOG "[journal]or"PLOS PA THOG "[journal]or"PLOS PATHOG "[journal]or"FRONT ECOL ENVIRON "[journal]or"FRONT ECOL ENVIRON "[journal]or"ANNU REV CLIN PSYCHO "[journal]or"BIOL REV "[journal]or"BIOL REV "[journal]or"ANNU REV ANAL CHEM "[journal]or"ANNU REV ANAL CHEM "[journal]or"GENOME BIOL "[journal]or"GENOME BIOL "[journal]or"GENOME BIOL "[journal]or"PLANT CELL "[journal]or"PLANT CELL "[journal]or"PROG NEUROBIOL "[journal]or"CELL DEATH DIFFER "[journal]or"CELL DEATH DIFFER "[journal]or"NAT REV CARDIOL "[journal]or"SCHIZOPHRENIA BULL "[journal]or"ANN RHEUM DIS "[journal]or"PLOS GENET "[journal]or"NEUROSCI BIOBEHA V R "[journal]or"PROG SURF SCI "[journal]or"PROG SURF SCI "[journal]or"PHARMACOL THERAPEUT "[journal]or"EUR UROL "[journal]or"ANTIOXID REDOX SIGN "[journal]or"ANTIOXID REDOX SIGN "[journal]or"NAT REV RHEUMATOL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"NEUROLOGY "[journal]or"DIABETES "[journal]or"BIOL PSYCHIAT "[journal]or"BIOL PSYCHIAT "[journal]or"CAN MED ASSOC J "[journal]or"CAN MED ASSOC J "[journal]or"CELL RES "[journal]or"ADV COLLOID INTERFAC "[journal]or"TRENDS ENDOCRIN MET "[journal]or"NAT REV GASTRO HEPAT "[journal]or"DIABETES CARE "[journal]or"CURR OPIN GENET DEV "[journal]or"CURR OPIN GENET DEV "[journal]or"CURR OPIN COLLOID IN "[journal]or"NAT CLIN PRACT ONCOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"PHYSIOLOGY "[journal]or"CURR OPIN MICROBIOL "[journal]or"TRENDS

医学期刊影响因子排名

NO. 期刊名称名称缩写参考中文名字影响因子 1 CA: A Cancer Journal for Clinicians CA Cancer J Clin 癌 74.575 ↑ 2 New England Journal of Medicine N Engl J Med 新英格兰医学杂志 50.017 ↓ 3 Annual Review of Immunology Annu Rev Immunol 免疫学年评 41.059 ↓ 4 Nature Reviews Molecular Cell Biology Nat Rev Mol Cell Biol 自然评论:分子细胞生物学 35.423 ↑ 5 Physiological Reviews Physiol Rev 生理学评论 35 ↑ 6 JAMA JAMA 美国医学会志 31.718 ↑ 7 Nature Nature 自然 31.434 ↑ 8 Cell Cell 细胞 31.253 ↑ 9 Nature Reviews Cancer Nat Rev Cancer 自然评论:癌症 30.762 ↑ 10 Nature Genetics Nat Genet 自然遗传学 30.259 ↑ 11 Annual Review of Biochemistry Annu Rev Biochem 生物化学年评 30.016 ↓ 12 Nature Reviews Immunology Nat Rev Immunol 自然评论:免疫学 30.006 ↑ 13 Nature Reviews Drug Discovery Nat Rev Drug Discov 自然评论:药物发 现 28.69 ↑ 14 Lancet Lancet 柳叶刀 28.409 ↓ 15 Science Science 科学 28.103 ↑ 16 Nature Medicine Nat Med 自然医学 27.553 ↑ 17 Annual Review of Neuroscience Annu Rev Neurosci 神经科学年评 26.405 ↑ 18 Nature Reviews Neuroscience Nat Rev Neurosci 自然评论:神经科学 25.94 ↑

全球SCI收录材料期刊影响因子排名

全球SCI收录材料期刊影响因子排名 Nature自然31.434 Science科学28.103 Nature Material自然(材料)23.132 Nature Nanotechnology自然(纳米技术)20.571 Progress in Materials Science材料科学进展18.132 Nature Physics自然(物理)16.821 Progress in Polymer Science聚合物科学进展16.819 Surface Science Reports表面科学报告12.808 Materials Science & Engineering R-reports材料科学与工程报告12.619 Angewandte Chemie-International Edition应用化学国际版10.879 Nano Letters纳米快报10.371 Advanced Materials先进材料8.191 Journal of the American Chemical Society美国化学会志8.091 Annual Review of Materials Research材料研究年度评论7.947 Physical Review Letters物理评论快报7.180 Advanced Functional Materials先进功能材料6.808 Advances in Polymer Science聚合物科学发展6.802 Biomaterials生物材料6.646 Small微观?6.525 Progress in Surface Science表面科学进展5.429 Chemical Communications化学通信5.34 MRS Bulletin材料研究学会(美国)公告5.290 Chemistry of Materials材料化学5.046 Advances in Catalysis先进催化4.812 Journal of Materials Chemistry材料化学杂志4.646 Carbon碳4.373 Crystal Growth & Design晶体生长与设计4.215 Electrochemistry Communications电化学通讯4.194 The Journal of Physical Chemistry B物理化学杂志,B辑:材料、表面、界面与生物物理4.189 Inorganic Chemistry无机化学4.147 Langmuir朗缪尔4.097 Physical Chemistry Chemical Physics物理化学4.064 International Journal of Plasticity塑性国际杂志3.875 Acta Materialia材料学报3.729 Applied Physics Letters应用物理快报3.726 Journal of power sources电源技术3.477 Journal of the Mechanics and Physics of Solids固体力学与固体物理学杂志3.467 International Materials Reviews国际材料评论3.462 Nanotechnology纳米技术3.446 Journal of Applied Crystallography应用结晶学3.212 Microscopy and Microanalysis 2.992

相关文档
最新文档