光谱能量分布对大豆胚尖再生体系的影响

光谱能量分布对大豆胚尖再生体系的影响
光谱能量分布对大豆胚尖再生体系的影响

制动能量回收技术现状及发展趋势

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:汽车技术现状及发展趋势教师:贺岩松姓名:赵金龙学号:20110702218 专业:车辆工程类别:学术 上课时间:2011年11月至2011年11月 考生成绩: 阅卷评语: 阅卷教师(签名) 重庆大学研究生院制

再生制动技术现状及发展趋势 摘要 随着新能源危机的加剧,混合动力汽车和纯电动汽车已经成为新一代汽车的发展方向,而再生制动技术作为混合动力汽车和电动汽车的一向重要节能技术,已经得到越来越大的重视。再生制动技术使汽车在制动过程中将一部分动能转化为电能并储存在储能装置中,实现了制动减速时的能量再利用。本文对再生制动的工作原理、技术发展现状进行了详细的阐述,并提出日后的发展趋势。 关键词:制动能量;制动能量回收;发展现状 Regenerative Braking Technology Status and Development Trends ABSTRACT With the new energy crisis intensifies, hybrid vehicles and pure electric vehicles has become the new direction of next generation car, and regenerative brakingtechnology as an important energy-saving technology for hybrid vehicles and electric cars has been paid more and more attention.During braking, part of the kinetic energywill be turn into electrical energy by regenerative braking technology so that we can achieve the energy re-use when the car speed is brakingdeceleration .In this paper, regenerative braking technology works and research status has been elaborated in detail and proposed the future development trend. Key words:Braking energy; Energy regeneration and use; Research status

制动能量回馈系统协调控制

制动能量回馈系统协调控制 张俊智,张鹏君,陆欣,陈鑫 清华大学汽车安全与节能国家重点实验室,北京,100084 【摘要】本文为混合动力电动汽车设计了分层控制的制动能量回馈系统,该分层结构主要包括驾驶员意图识别、能量管理和元件协调控制三个部分。分层控制结构的采用,将复杂的制动能量回馈系统简化为若干部分,降低了控制难度,为研究提供了便利。所设计的系统已在一款串联混合动力客车上实现,并根据中国城市公交循环工况进行了道路测试。 【关键词】混合动力电动汽车,制动能量回馈系统,分层控制结构,协调控制 Coordinated Control for Regenerative Braking System Zhang Junzhi, Zhang Pengjun, Luxin, Chen Xin State Key Lab. of Automotive Energy and Safety, Tsinghua University, Beijing, China, 100084 Abstract: This paper presents a design of regenerative braking system(RBS) for hybrid electric vehicles using hierarchical control structure and method. The hierarchical model is mainly composed of three modules for driver intent identification, energy management and coordinated control based on components control. As a consequence, RBS, a complicated hybrid dynamic system, is successfully decomposed by several simple modules. The control system and strategies are carried out on a typical serial HEV bus, and tested on road based china typical urban cycle.. Key words: hybrid electric vehicles, regenerative braking system, hierarchical control structure, coordinated control 1 介绍 车辆的动能通过制动能量回馈系统可转化为其它形式能量储存起来,并进一步用于车辆驱动。研究显示,在城市驾驶循环中,发动机发出能量的大约1/3至1/2被制动过程所消耗[1,2]。因此,回馈制动是车辆提高燃油经济性并降低排放的有效方法,有助于缓解能源危机和环境污染。

地铁车辆再生制动能量利用方案

地铁车辆再生制动能量利用方案 摘要:目前,节能减排已成为我国的基本国策,建设低碳型交通基础设施、推广应用低碳型交通运输装备是城市轨道交通建设者责任。地铁由于站间距比较短,制动频繁、列车起动,考虑各钟车型、站距、编组、发车间隔等差异,列车电制动时产生的再生能量可达到牵引能量的40%以上。充分利用列车再生能量将节约大量能量,产生效益可观,为节能减排做出贡献。西安市地铁已经运营1、2号线,在建3、4、5、6号线,如何在保证线路运行安全的前提下,提高供电水平,同时为城市节能减排做出贡献,是我们必须考虑的问题。 关键词:轨道交通;列车制动;能量回馈 1 传统列车车载制动电阻方案存在的问题 目前国内外城市轨道交通动车组列车均采用VVVF牵引/制动系统,采用交流电机驱动列车,制动系统普遍采用空气制动和电制动混合的形式。列车在运行时,牵引系统将电能转为机械能,使机车启动加速;在制动时,一部分采用电制动,将机械能转为电能使列车制动,另一部分采用空气制动,通过刹车闸瓦与车轮踏面摩擦而产生制动使列车减速。传统列车上设置了车载制动电阻。当列车制动时,首先采用再生制动方式,列车电机从电动机状态转换为发电机状态,将机械能转换为电能返回到牵引网系统,返回到牵引网系统的能量部分被相邻列车吸收,由于线路的行车密度等多种因素,很大部分能量不能被回馈,此时大量电能量得不到释放,将会使系统供电网电压

急剧上升,为此列车上设置了制动电阻,将这部分能量通过电阻变成热能吸收,稳定系统电压。电阻所转化的热能,车站环控专业通过隧道活塞风、车站轨顶排风和车站轨底排风,将热量排出车站外。 车载制动电阻使用虽然方便,但也有缺点:(1)列车制动电阻吸收再生制动能量转换为热能白白消耗了,没有起到节能减排作用。(2)列车制动电阻吸收再生制动能量转换为热能散于隧道内,虽然部分可以通过隧道活塞风排出隧道,但还有部分遗留在隧道,这部分热量使隧道温升逐步上升;(3)列车制动电阻重量大,列车运行时,不仅没有节能,还增加列车牵引能耗。(4)制动电阻体积大,而且考虑制动电阻散热需在列车上安装通风设备,这样会使列车底部其他设备安装布局困难;(5)制动电阻发热会对车体底板形成烘烤效应,有引发火灾危险。(6)列车采用车空气制动,增加闸瓦的损耗,加大车辆维修工作量,提高了运营成本,摩擦闸瓦产生大量金属粉尘,造成环境污染。 2 国内外现状 在国外城市轨道交通运输系统中,再生制动能量吸收技术发展历程主要有车载电阻耗能式、逆变回馈式、超级电容储能式以及飞轮储能式吸收等。其中最先发展的车载电阻耗能式因其可靠、结构简单等优点应用最为广泛,相对较少的是能量回馈式和能量存储式的应用。国外轨道交通研究制动能量吸收技术较早,已有成熟产品,而国内在这方面的研究刚起步,使用车载电阻耗能式较多,不能够很好的把再生制动能量充分利用起来。 图1 2.1 车载电阻耗能型吸收

纯电动汽车制动能量回收技术

纯电动汽车制动能量回 收技术 Document number:PBGCG-0857-BTDO-0089-PTT1998

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过

改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式

笼型异步电动机能量回馈制动控制

收稿日期:1997205204 笼型异步电动机能量回馈制动控制 徐国忠 诸 静 (浙江大学,杭州 310027) 涂筱烈 (安徽医科大学) 徐惠国 (合肥第二十六中学) 【摘要】本文分析了变频器实现异步电动机回馈制动的原理,提出了一种新颖的能量回馈控制方法和能量回馈电路,该方法具有能量回馈效率高、控制简单且不易发生逆变失败等优点,有效地抑制电动机制动时直流侧泵升电压。实验结果验证了该方法的正确性和有效性。 【关键词】变频调速,异步电动机,回馈制动,泵升电压抑制,能量控制 1 引 言 近年来,国内外对变频器的研究和应用取得飞速的进步,尤其是通用变频器在工业生产中得到了广泛的应用。当变频器驱动异步电动机在制动或者下放位能性负载过程中,电动机处于再生制动状态,传动系统中的机械能通过电动机转换成电能,变频器中续流二极管将这种能量回馈到变频器直流侧电容C 中,使直流侧电压升高,产生泵升电压。特别是要求快速起、制动和频繁正、反转的调速系统,短时间内有很大的能量回馈,在电容上产生很高的泵升电压,若不及时释放这部分能量,则势必会引起变频器过压保护动作或造成主回路大功率器件的过压损坏。对这种泵升能量的处理方法基本上有两种:(1)耗散到直流侧与电容器并联的“制动电阻”中,(2)通过能量回馈电路使之回馈到交流电网中。前一种方式比较简单,但经过电阻耗散能量,不仅浪费了能源,有时也会产生某些副作用[2],后一种方式虽然结构较为复杂,但提高了能源的利用率,尤其是对频繁起制动或长期带位能性负载下放的系统,会产生显著的节电效果。本文提出了一种新颖的能量回馈 控制方案并设计了相应的电路,实验结果验证了该方法的正确性和有效性。 2 能量回馈控制策略和能量回 馈电路设计 211 能量回馈控制策略 带能量回馈电路的变频器主电路结构如 图1所示。能量回馈控制的工作原理是利用二只GTR T 7、T 8 和六只晶闸管等组成能量回 图1 带能量回馈电路变频器主电路结构图 馈电路,制动时,控制GTR T 1~T 6按一定下降频率给电机供电,使之工作在再生制动状态,驱动T 7、T 8和晶闸管逆变桥,如果满足逆变条件,则把直流侧泵升能量直接回馈给电网,确保在整个制动过程中,直流侧电压在安全范围内。 对于普通晶闸管逆变桥,如果依自然换

纯电动汽车制动能量回收技术

纯电动汽车制动能量回收技术 电动汽车制动能量回收技术是利用汽车在踩动刹车进行减速时将制动效能转变为电能储存并回收到电池当中,摩擦能量没有被浪费掉而是变相扩充了电池的容量,增加了纯电动汽车的续航里程,并且减少了刹车系统耗材的磨损。 电动汽车在“新能源”话题备受瞩目的今日已经不是个陌生词语,但是电动汽车的历史比大多数人想像得要长很多。1896年还推出了为电动车换电的服务,也就是我们今天所说的“充电桩”的雏形[仇建华,张珍,电动汽车制动能量回收方式设计[J].上海汽 车.2012,12.];在十九世纪末二十世纪初的交通大变革中,电动汽车作为一种新型事物快速成长但又迅速陨落。有社会环境的影响也有自身条件的限制。 目前常见的纯电动汽车,其动力电池组、电池变换器和电动机之间为电气连接,电动机、减速器和车轮之间为机械连接。 纯电动汽车制动能量回收技术研究背景 ?动车从登上历史的舞台开始,续航性能如何提升一直是人们争议很大的点。从根本上来说,续航能力可以通过改进蓄能和驱动方式来提高,除此之外,制动能量回收也是重要的方式之一。 制动能量回收,简单来说,就是把电动汽车的电机组中无用的部分、不需要的部分,甚至有害的惯性转动带来的动能转化为电能,并返回给蓄电池,与此同时产生制动力矩,使电动机快速停止惯性转动,这整个过程也就成为再生制动过程[叶永贞,纯电动汽车

制动能量回收系统研究[D].山东:青岛理工大学,2013.]。 电动汽车发展至今,已有大部分安装了类似装置以节约制动能,经过研究发现,在行驶路况频繁变化的路段,制动能量回收技术可以增加20%左右的续驶里程。 制动能量回收方法 制动能量回收方法有常见三种: 飞轮蓄能。特点:①结构简单;②无法大量蓄能。 液压蓄能。特点:①简便、可大量蓄能;②可靠性高。 蓄电池储能。特点:①无法大量蓄能②成本太高。 电动汽车制动能量回收系统的结构 无独立发电机的制动能量回收系统。①前轮驱动制动能量回收系统;②全轮驱动能量回收制动系统。有独立发电机的制动能量回收系统。 系统传动方式 液压混合动力系统的系统传动方式有四种:串联式;并联式;混联式;轮边式。 串联式混合动力驱动系统。串联式混合动力驱动系统,动力源有:发动机和高压蓄能器。 这种方式只适合整车质量小、车速不能过高的小型公交车等。 并联式混合动力驱动系统。并联式混合动力驱动系统动力源是发动机和高压蓄能器。但并联式车辆在制动能量再生系统不工作或出故障时可以由发动机单独直接驱动车辆。 并联式系统的驱动路线有两条,一条是由发动机传给变速器,

浅谈中压能馈型再生制动电能利用装置

浅谈中压能馈型再生制动电能利用装置 摘要:中压能馈型再生制动电能利用装置(以下简称“中压能馈装置”)基于我国“十一五”科研成果,不仅能将城市轨道交通电动列车制动时产生的能量回收至交流电网,还能为列车提供部分牵引能量,抑制直流压降,节省能源。本文主要对中压能馈装置的工作原理进行介绍,并对其经济性和实用性进行讨论。。 关键词:轨道交通;能量回馈;再生利用 0引言 城市轨道交通系统,基于各方面需求,具有车站数量多、站间距短、运行速度高等特点,随之而来的是列车频繁启停,短时间内提速或刹车。当列车启动出站时,需要电网提供大量的电能,而进站制动时,则会产生大量的可再生电能。 基于城市轨道交通这些特点,能馈装置应运而生,回收列车制动多余能量至电网,作为牵引启动的电能补充,节约能源,降低地铁运行成本。 1 工作原理 在地铁列车刹车制动阶段,制动产生的能量流向直流侧,使直流母线电压升高,能馈装置检测到直流母线电压高于起始运行电压时线性输出功率,检测到母线电压达到满载运行电压时输出有功目标值,检测到母线电压降低至停止电压时输出停止。 在地铁列车牵引启动阶段,直流母线电压降低,能馈装置检测到直流母线电压低于设定电压(牵引值)时从电网吸收能量,为地铁启动提供部分能量,从而降低直流母线的电流应力,抑制直流母线电压下降。 当能馈装置检测到直流母线电压处于上述二者之间时,则保持待机状态。 中压能馈型再生制动电能利用装置的一次系统结构主要包括能馈变压器、滤波装置、双向变流器、正负极隔离开关等部分,如图1所示。 图1 中压能馈装置一次结构 1.1滤波器 滤波器设置在能馈变压器二次侧与双向变流器之间,起到减小交流电谐波的作用。 1.2 双向变流器 能馈装置中的双向变流器,包括中压交流电网至直流母线侧的整流器和直流母线至交流电网的逆变器。 能馈装置的关键结构是双向变流器,而双向变流器的核心是大功率逆变器,是在脉宽调制基础上发展来的一种功率变换装置,其主电路可看成是一台三相逆变器与一个交流电感。 逆变器采用脉宽调制技术,在其交流侧输出幅值和相位可控的三相交流电、、,通过控制输出电压、、实现对交流电流、、的控制,其中交流电感在逆变器与电网之间起缓冲作用。图2所示为设备逆变时工作流程示意图,能馈装置其功能的实现以交流电流控制为基础。 图2 逆变工作流程 2经济性与实用性 目前,国内外再生制动能量吸收装置主要有电阻耗能型、电容储能型、飞轮储

城市轨道交通再生制动能量回收系统研究

华东理工大学 毕业设计(论文) 题目城市轨道交通再生制动能量 回收系统研究 学院华东理工大学 专业电气自动化 年级 2016 学号 26140118 姓名 导师 定稿日期: 2016年 11月12 日

摘要 城市轨道交通作为一种运量大、速度快、污染少、舒适性好的交通工具,很有力的缓解大中型城市乘车难、环境污染及交通拥堵等难题。近年来我国着力发展城市轻轨和地铁,本文主要以地铁作为研究对象。城市轨道交通站间距离短、运行密度高,机车频繁制动吋产生相当可观的再生能量,将产生的能量得以利用,不仅节约能源、保护环境同时降低电压利于机车安全运行。再生制动产生的能量得以利用是本文研究的重点,提出逆变电阻混合型再生制动能量吸收方案。本课题以建立地铁再生制动及能量吸收仿真平台为目的,利用仿真软件建立机车运行制动模型及混合型能量吸收模型。首先,分析和总结几种城市轨道交通车辆制动方案的优缺点,重点研究馈能型再生制动方案的基本原理及主要技术问题,提出逆变电阻混合型再生制动能量吸收方案。然后基于电阻制动原理,结合逆变并网电阻制动方案进行建模、仿真分析,并对再生制动产生功率及电流进行粗略的计算。 关键词:再生制动;逆变并网;电阻制动 Abstract

As a large capacity, fast speed, less pollution and comfortable transportation, urban rail transit effectively alleviate the transportation pressure of the large and medium-sized city, environmental pollution and traffic congestion . In recent years, China began to develop the light rail transit and subway. The subway stations has shorter distance and locomotive has haig density running. During locomotive frequently braking, it produced considerable regeneration energy. Reasonable utilization of the regeneration energy not only save energy, protect environment but also reduce the regeneration energy not only save energy, protect environment but also reduce the voltage grade for the locomotive’s safety operation. This paper is the focus on utilization of the regeneration energy, and The inverter-resistance hybrid method is propose. This topic is purposed to build Metreo regenerative braking and inverter-resistance hybrid energy absorption model by simulation software. Firstly, the urban rail transit power supply system has been introduced. Several vehicle braking scheme has been summarized and analyzed for their advantages and disadvantages. The inverter-resistance hybrid of regenerative braking energy absorption solution has been purposed. Secondly, combined with inver and resistance braking scheme, the model was built analyze and the power and current ofregenerative braking was computd.

电动汽车能量回馈的整车控制(1)

2005005 电动汽车能量回馈的整车控制 张 毅,杨 林,朱建新,冒晓建,卓 斌 (上海交通大学汽车电子研究所,上海 200030) [摘要] 以4种典型循环工况为例对电动汽车进行能量分析,设计了基于常规汽车制动系统的整车能量回馈控制方式,研究了控制策略,完成了车辆道路试验与标定优化。试验表明,整车能量回馈控制方式与控制策略安全、可靠,且柔顺性良好;利用能量回馈技术,蓄电池能量消耗可减少10%,能有效延长电动汽车的一次充电续驶里程。 关键词:电动汽车,能量回馈,控制策略 The Control Strategy of Energy Regeneration for Electric Vehicle Zhang Yi,Yang Lin,Zhu Jianxin,Mao Xiaojian&Zhuo Bin Instit ute of A utomotive Elect ronic Technology,S hanghai Jiaotong U niversity,S hanghai200030 [Abstract] The energy consumption in four typical vehicle testing cycles(FTP,HWEFT,ECE2EUDC and J P1015)is analyzed for EV.Based on the traditional vehicle braking system,a new regenerative braking scheme and its control strategy are designed.The road testing,calibration and optimization are performed.T est results show that the control scheme and strategy is safe,https://www.360docs.net/doc/344633189.html,ing the regenerating scheme,the energy consumption of battery can re2 duce by10percent and the driving range of EV in one charge can increase effectively. K eyw ords:Electric vehicle,E nergy regeneration,Control strategy 原稿收到日期为2003年12月29日,修改稿收到日期为2004年3月8日。 1 前言 电动汽车采用了新型的汽车动力,如何充分提 高车辆行驶能量效率,进而延长车辆续驶里程,是电 动汽车需要解决的一个关键问题。能量回馈是解决 该问题的主要技术措施。 能量回馈包括车辆制动能量回馈与车辆滑行能 量回馈两种。此时,驱动电机按发电机运行,将车辆 行驶动能转化为电能,可以起到3个作用:辅助制 动;回收能量给动力蓄电池充电,从而延长车辆续驶 里程;在车辆有供热需求时,直接利用这部分电能供 热取暖。 能量回馈制动与电动汽车其它电气制动方式 (主要有能耗制动、反接制动[1])比较,无须改变系 统硬件结构,回馈电流可柔性控制,可使制动效果与 能量回收效果综合最佳。因此,能量回馈是最适合 电动汽车的电气制动方式,其关键是能量回馈的过 程控制。电动汽车的能量回馈控制由整车控制与电 机控制交互作用而实现,作者在电动汽车制动能量 分析的基础上,设计一种能量回馈的整车控制方式, 并进行相应控制策略的研究。 2 制动能量分析 为了进行电动汽车能量回馈控制,需首先探明 其在各种用途中的制动能量回馈潜力。作者分别以 美国F TP工况、高速公路HFET工况、欧洲城市循 环ECE2EUDC工况和日本J P10154种循环工况为 例,进行制动能量的分析。 4种循环工况的驱动与制动能量如图1所示, 可见在这4种循环工况中,制动能量都占了不小的 比例,其中J P1015工况为2517%,ECE2EUDC工况 为18%,HFET工况为6%,F TP为25%。 回馈能量还与制动方式和回馈系统各环节的效 率因子有关[2]。电动汽车的制动方式包括:电气制2005年(第27卷)第1期 汽 车 工 程 Automotive Engineering 2005(Vol.27)No.1

列车再生制动能量回收的方法及分析

列车再生制动能量回收的方法及分析 城市轨道交通是耗电大户。而如何高效利用电能是目前城市轨道交通节能技术的关键问题。车辆在运行过程中,由于站间距一般较短,因此要求起动加速度和制动减速度比较大,并具有良好的起动和制动性能。城轨交通供电系统一直采用二极管整流技术实现交流电源到直流牵引电源的转换,特别是采取24脉波整流技术后,与电网的谐波兼容问题得到较好地解决。该技术虽然可以较好地满足车辆牵引取流的需求,但是此类系统存在以下问题: (1)只能实现能量的单向流动,对于需要频繁起动和制动的地铁、轻轨等交通工具,制动能量的回收有着很大的潜力。车辆再生制动产生的反馈能量一般为牵引能量的30%甚至更多。而这些再生能量除了按一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其它相邻列车吸收利用外,剩余部分将主要被车辆的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。如果在一列地铁列车刹车时附近没有其他列车加速运行,那它所回馈的电能中只有30%~50%能被再次利用(尤其是在低电压、高电流的网络系统里)。如果当列车发车的间隔大于10 min时,再生制动能量被相邻列车吸收重新利用的概率几乎为零。 (2)由于制动电阻的发热引发站台和地下隧道热量积累、温度上升,某些城轨系统隧道温度高达50℃,不得不加大通风设备的容量,造成严重的二次能耗; (3)对于车载制动电阻模式制动电阻增加车体自重造成的电能消耗十分可观; (4)牵引网上同时在线运行的车辆有十几对甚至几十对,负荷的变化造成牵引网压波动严重,不利于车辆平稳、可靠运行。可见车辆的制动能量至今还是一种没有被很好地开发利用的能量。 目前,在我国大力提倡节能降耗的形势下,城轨供电系统的发展进度已滞后列车车辆技术的发展,多个待建的城市轨道线路,如无锡、苏州、长沙、西安、深圳和广州等多条线路,都提出了对现有牵引供电系统进行技术改造的需求或者是寻求更好的储能装置去回收这些多余的再生能量。再生制动能量循环利用主要有储能和逆变两种方式:储能所采用的技术主要有蓄电池储能、电容储能、飞轮储能3种;而能量回馈所采用的技术主要是逆变至中压网络和低压网络两类。 首先介绍储能型回收装置 (1)蓄电池储能 蓄电池储能系统如图所示,该装置是将制动能量吸收到电池介质中,当供电区间有列车需要取流时,再将所储存的能量释放出去,由于蓄电池本身的特点充放电电流小,瞬间不能大功率充放电,所以该装置体积较大电池处于频繁充放电状态将影响其使用寿命,储能容量相对较少。

电动汽车制动能量回收控制策略的研究

摘要:电动汽车的驱动电机运行在再生发电状态时,既可以提供制动力,又可以给电池充电回收车体动能,从而延长电动车续驶里程。对制动模式进行了分类,并详细探讨了中轻度刹车时制动能量回收的机制和影响因素。提出了制动能量回收的最优控制策略,给出了仿真模型及结果,最后基于仿真模型及XL型纯电动车对控制算法的效果进行了评价。关键词:制动能量回收电动汽车镍氢电池Simulink模型电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。1制动模式电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。1.1急刹车急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。1.2中轻度刹车中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。1.3汽车长下坡时的刹车汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。2制动能量回收的约束条件实用的能量回收系统应满足以下要求:(1)满足刹车的安全要求,符合驾驶员的刹车习惯。刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。(2)考虑驱动电机的发电工作特性和输出能力。电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。(3)确保电池组在充电过程中的安全,防止过充。电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。由以上分析可得能量回收的约束条件:(1)根据电池放电深度的不同,电池可接受的最大充电电流。(2)电池可接受的最大充电时间。(3)能量回收停止时电机的转速及与此相对应的充电电流值。本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。3制动能量回收控制算法3.1制动过程分析经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程

车辆制动能量回收

低碳世博,能源再利用—— 基于超级电容的城市轨道车辆制动能量回收 1 概述 由于城市轨道车辆具有运量大、速度快、安全、准点、保护环境、节约能源和用地等特点,世界各国普遍认识到,解决城市交通问题的根本出路在于优先发展以轨道交通为骨干的城市公共交通系统。随着我国经济的高速发展、城市化进程的不断加快,城市轨道交通将在我国城市公共交通运输中占有越来越越重要的地位。到目前为止我国已有北京、上海、广州、深圳、武汉等城市已经运行,截至2009年9月,我国有27个城市正在筹备建设城市轨道交通,其中22个城市的轨道交通建设规划已经获得国务院批复。至2015年,北京、上海、广州、深圳等22个城市将建设79条轨道交通线路,总长度为2259.84公里,计划总投资8820.03亿元。 城市轨道交通列车的特点就是线路的站间距短,列车运行时频繁地起动、制动,基本上在列车达到最高速时很快就会制动。目前,我国地铁列车大都采用接触网/轨直流供电, 牵引系统大都是变压变频的交流传动系统。列车牵引时从电网吸收能量,制动时采用反馈制动把制动能量反馈回电网, 根据经验,地铁再生制动产生的能量除了一定比例(一般为20%~80%,根据列车运行密度和区间距离的不同而异)被其他相邻列车吸收利用外,剩余部分将主要被列车的吸收电阻以发热的方式消耗掉或被线路上的吸收装置吸收。当列车发车密度较低时,再生能量被其他车辆吸收的概率将大大降低。资料表明,当列车发车间隔大于10 min 时,再生制动能量被吸收的概率几乎为零,此时绝大部分制动能量将被车辆吸收电阻吸收,变成热能并向四外散发,这必将使隧道和站内的温度升高。目前国内城市轨道交通在地面采用电阻能耗吸收装置处理列车运行过程中的再生能量,这不仅浪费能量,而且也增加了站内空调通风装置的负担,并使城轨建设费用和运行费用增加。如能将这部分能量储存再利用,这些问题将迎刃而解。 2 可行性分析 城市轨道交通车辆制动能量是否具有回收的可行性,需要对制动能量进行合理计算,并根据其大小确定制动能量是否具有实际回收价值。现以一列上海轨道交通2号线6节车辆编组为例(4节动车,2节拖车),设轨道车辆的制动初速度为70km/h (V1) ,制动末速度为8km/h (V2),M为车辆和载客质量,则利用公式(1)计算电制动能量。(1)

再生制动能量吸收装置在郑州地铁中的应用

再生制动能量吸收装置在郑州地铁中的应用 发表时间:2017-08-24T17:31:24.060Z 来源:《基层建设》2017年第12期作者:屈文涛 [导读] 摘要:对再生制动能量吸收装置的基本工作原理和类型进行介绍,并且对再生制动能量吸收装置在郑州地铁中的应用、节能情况进行介绍,提出建议。 郑州市轨道交通有限公司运营分公司河南郑州 450000 摘要:对再生制动能量吸收装置的基本工作原理和类型进行介绍,并且对再生制动能量吸收装置在郑州地铁中的应用、节能情况进行介绍,提出建议。 关键词:再生制动能量吸收装置节能应用 Abstract:The basic working principle of regenerative braking energy absorption devices and introduces the types,and the regenerative braking energy absorption devices in the application of zhengzhou subway,introduces the energy-saving situation,Suggestions are put forward. Keywords:regenerative braking the energy absorption equipment energy savingapplication 在城市轨道交通系统中,由于公交化的运输模式决定了城市轨道交通具有列车运行密度大、站间距小、起停频繁的特点。目前轨道交通普遍采用的VVVF动车组列车,制动模式为电气制动(再生制动/电阻制动)+空气制动(盘形制动/轮对踏面制动)互补的形式,即在列车正常运行过程中以电气制动为主,辅之以空气制动。 传统的列车电阻是将制动电阻装设在车辆底部,列车制动时产生的电能通过车辆上制动电阻发热消耗或空气制动消耗,浪费了大量电能,产生的大量热量还会散发在隧道内,在大运量、高密度的运行条件下,使隧道温度升高,提高了对通风系统的要求。 随着科技的进步和社会的发展,人们在节约能源、减少排放、环境保护方面意识逐渐增强,在城市轨道交通系统中,对有效利用城市轨道电动车组再生制动所产生的电能以减少城市轨道交通运营的用电量,同时改善城市轨道交通公共场所的环境是非常重要的。因此在牵引供电系统中对再生制动所产生的电能进行吸收、储存和再利用,具有很大的意义,本文主要研究再生制动能量吸收装置类型,以及在郑州地铁的应用和节能情况分析。 1再生制动能量吸收装置的工作原理 当地铁列车电气制动时,会产生一定的电能,使接触网电压升高,当检测到电压升高至再生制动能量吸收装置整定值时,装置自动启动吸收功能,将多余的电能吸收,保证接触网电压持续稳定。 当地铁列车牵引运行时,会消耗电能,使接触网电压降低,当检测到电压低于再生制动能量吸收装置返回值时,装置自动停止吸收功能,转为待机状态,为下一次电能吸收做准备。 如此再生制动能量吸收装置在地铁列车频繁牵引、制动过程中,通过电能吸收功能,时刻保证接触网电压维持在稳定状态,为地铁列车供电提供优质电能。 2 电能吸收类型 电能吸收类型主要包括制动电阻型、电容储能型、飞轮储能型和逆变回馈型四种方式。 2.1制动电阻型 制动电阻型再生电能吸收装置制动能量吸收装置由制动控制柜和制动电阻柜构成,采用斩波器和吸收电阻配合,当地铁列车电气制动时,由电气制动产生的能量不能被其它列车或用电设备消耗掉,则会抬高直流母线电压,当直流母线电压升高达到制动电阻型再生电能吸收装置,装置启动,通过电阻发热,将多余能量消耗掉,从而维持直流母线电压。 2.2电容储能型 电容储能型再生电能吸收装置主要通过超级电容将列车电气制动时产生的多余能量储存至超级电容,当列车启动或加速时,超级电容释放能量,供列车使用。 2.3飞轮储能型 飞轮储能型再生电能吸收装置主要是通过电动机将列车电气制动时产生的多余能量转换成飞轮转动的动能储存,当列车启动或加速时,再通过发电机将飞轮储存的动能转化为电能输出供列车使用。 2.4逆变回馈型 逆变回馈型再生电能吸收装置不仅能够将列车电气制动时产生的多余能量反馈至交流电网,避免了列车再生制动能量在电阻上的白白消耗,节约能源;还能为列车提供牵引能量,减小直流网压下降。此外,由于其功率因数任意可调,还能用于实现对交流中压电网的无功补偿。 根据回馈方式不同,逆变回馈型再生电能吸收装置又分为电阻+逆变和全逆变两类。 3郑州地铁再生制动能量吸收装置应用情况 目前郑州地铁使用的再生制动能量吸收装置主要有电阻耗能型、电阻+逆变型和全逆变型三种类型。 3.1电阻耗能型 郑州地铁1号线一期工程、2号线一期工程采用的是电阻耗能型,其优点是技术成熟、运用广泛,控制简单且直观,功能稳定,运行可靠。而且郑州地铁为了降低列车重量、提高列车动能,减少列车投资,降低隧道内温度,已将制动电阻地面化,所有电阻模块设置在地面电阻室内。缺点主要就是耗能,对列车电气制动产生的电能不能再利用,与节能相违背。 3.2电阻+逆变型 电阻+逆变型主要应用于郑州地铁1号线一期和2号线一期工程的技改项目, 该类型再生制动能量吸收装置与制动电阻并联使用,逆变回馈装置优先运行,电阻作为后备使用。逆变回馈装置直流侧通过直流小车与直流母线相连,交流侧通过隔离变压器与变电所既有整流变压器低压侧相连。当直流母线电压超过回馈整定值时,逆变器启动并从直流母线吸收电流,将列车电气制动产生的能量逆变成工频交流电通过整流变压器回馈至35KV系统。其优点能量再利用,利用率高,节能效果明显;其能量直接回馈到供电系统负荷容量较大的35kV中压环网,不需要储能元件;交流进线接到整流变压器低压侧,不需要加装35KV开

制动工况对对电动汽车制动回收能量影响的分析3

制动工况对电动汽车制动能量回收影响分析 前言 随着能源和环境问题日益突出,电动汽车已成为替代传统内燃机汽车的最佳选择。受限于当前技术条件,电动汽车续驶里程普遍较短,电动汽车节能技术成为电动汽车研究的重要方面,其中再生制动作为电动汽车节能主要手段,受到国内外学者广泛关注[1-2]。设计阶段的电动汽车结构和动力系统设计、运行阶段的控制策略和制动工况等都是影响再生制动能量回收效果的因素[3]。 目前,制动工况方面的分析研究,多集中对制动工况进行解耦,分别研究制动初速度和制动强度对制动回收能量效果的影响[4-6],并未综合分析制动工况各因素影响能量回收效果之间的耦合关系,或分析制动强度与制动初始速度对能量回收效果贡献大小。 制动工况分为两种,单次制动工况和循环制动工况[7],循环制动工况多用在试验条件下对电动车性能测试,日常驾驶中更多应用的是单次制动工况。单次制动工况为本文研究工况,其影响因素包含两个方面:制动强度(z )和制动初速度。 本文以较为普遍的集中电机前轴驱动电动汽车为研究对象,采用制动稳定性较好的理想制动力分配策略,利用Matlab/Simulink 与Isight 建立联合仿真平台,对由制动初速度和制动强度组成的连续设计空间进行试验设计(DOE)。采用最优拉丁超立方设计(Optimal latin hypercube design ,OptLHD)对连续设计空间进行采样,分析制动回收能量与制动初速度和制动强度之间的关系,分析制动工况对制动能量回收的主效应和交互效应,和影响制动能量回收的主次因素。 1制动能量回收影响因素分析 再生制动时受各种阻力损耗、摩擦制动器消耗、电机和电池工作特性和效率、相关部件工作效率等方面的影响,未能将制动动能完全转化为电能存储在蓄电池中。综上各方面将主要因素分为一下三类: (1)影响制动总能量的因素,制动总能量计算公式为()222 1e s v v m E -=(式中,E 为制动总能量,kJ ;m 为电动车整备质量,kg ;s v 和e v 分别为为车辆制动初始和终止速度,1s m -?),得出影响因素主要是制动初速度、电动汽车整备质量等。 (2)影响可回收能量的因素,如制动强度、车辆结构(滚动阻力消耗、空气阻力消耗等)、制动力分配策略(摩擦制动损耗)等。 (3)影响再生制动回收能量的因素,如驱动系统布置、电机和电池工作特性、传动系统特性、各部件及传递线路损耗、控制器损耗等。 以上影响因素主要归为四个方面:车辆结构、动力系统结构、制动工况、制动控制策略,在设计阶段车辆结构、动力系统结构和控制策略确定后,制动工况成为可根据驾驶员主观操纵的影响再生制动能量回收效果的唯一因素。 2仿真模型与验证 2.1理想再生制动力分配策略 本文采用文献[8]中制定的理想制动力分配策略。理想再生制动力分配策略可以保证前后轴制动力得到合理分配,制动稳定性好,该策略包含制动力在前后轴的分配及在电机制动力与摩擦制动力之间的分配两部分。分配电机制动力和摩擦制动力时要优先利用电机制动力,不足部分再由摩擦制动力补充。 2.2建立仿真模型 使用MATLAB/Simulink 建立整车、电机、电池和控制策略等模型,整车参数如表1所示。

相关文档
最新文档