LED的电学、热学及光学特性研究

LED的电学、热学及光学特性研究
LED的电学、热学及光学特性研究

LED的电学、热学及光学特性研究

摘要

led的发光性能不仅和其电学特性相关,还受其结温影响。因此,通过实际测试和仿真工具来研究其散热性能及热管理方法在LED 的设计过程中十分重要。本文对LED 的电学、热学及光学特性进行了协同研

究。

在仿真方面,完成了一个板级系统的电-热仿真;在测试方面,讨论了一个热-光联合测试系统的应用。

1. 简介

众所周知,LED的有效光辐射(发光度和/或辐射通量)严重受其结温影响(如图一所示,数据来源于

Lumileds Luxeon DS25 的性能数据表)。

(点击图片查看原图)

图1:一组从绿光到蓝光以及白光的LED 有效光辐射随结温的变化关系

单颗LED 封装通常被称为一级LED,而多颗LED 芯片装配在同一个金属基板上的LED 组件通常被称为二级LED。当二级LED 对光的均匀性要求很高时,结温对LED 发光效率的影响这个问题将十分突出[1]。

文献[2]中提到,可以利用一级LED 的电、热、光协同模型来预测二级LED 的电学、热学及光学特性。

前提是需要对LED 的散热环境进行准确建模。

本文第2 节中我将讨论怎样通过实测利用结构函数来获取LED 封装的热模型,并将简单描述一下我们用来进行测试的一种新型测试系统。第3 节中,首先我们回顾了电-热仿真工具的原理,然后将此原理扩展应用到板级的热仿真以帮助优化封装结构的简化热模型。在文章的最后我们将介绍一个应用实例。

2. 建立LED 封装的简化热模型

关于半导体封装元器件的简化热模型(CTMs)的建立,学术界已经进行了超过10 年的讨论。现在,对于建立封装元器件特别是IC 封装的独立于边界条件的稳态简化热模型(CTMs),大家普遍认同D EL PHI 近似处理方法[3][4][5]。为了研究元器件的瞬态散热性能,我们需要对CTM 进行扩展,扩展后的模型称之为瞬态简化热模型(DCTMs)。欧盟通过PROFIT 项目[7]制定了建立元器件DCTM 的方法,并且同时扩展了热仿真工具[6]的功能以便能够对DCTM 模型进行仿真计算。

当CTM 应用在特定的边界条件下或者封装元器件自身仅有一条结-环境的热流路径,则可以用NID(热阻网

络自定义)方法[8]来对元件进行建模。

2.1 直接利用测试结果建立LED 封装的模型

仔细研究一个典型的LED 封装及其典型的应用环境(图2),我们会发现,LED 芯片产生的热量基本上是通过一条单一的热流路径:芯片-散热块-MCPCB 基板,流出LED 封装的。

图2:二级LED 中的结-环境热流路径:LED 封装用胶固定于MCPCB 上

对于稳态建模来说,封装的散热特性可以通过thJC R ,即结-壳热阻来准确描述,结-壳热阻指的是从LED 芯片到其自身封装散热块表面之间的热阻。对于一级LED 来说,此热阻值可用热瞬态测试仪器按照

双接触面法[9]进行测试来得到。

图3 和图4 所示的是thJC R 的另外一种测试方法。这种方法用两步测试完成了对一个二级LED 组件

的测试工作,这两步的测试条件分别为:

第一种条件——直接把MCPCB 安装到冷板上

第二种条件——在MCPCB 与冷板之间添加一层很薄的塑料薄层

图4:微分结构函数:安装于MCPCB 的1W 红光LED(点击图片查看原图)

由于铜和胶的导热系数不一样,从结构函数曲线上即可方便的读出thJC R 的值。同时,由于在第二种条件下加入的薄层材料会让测试曲线发生分离,通过分离点即可很方便的分辨出结-板之间的热阻值。如

果需要建立LED 封装的瞬态热模型,则需要用一条合适的热阻特性曲线来代替固定的thJC R 热阻值来描述结-壳热流路径的散热特性。从热瞬态测试得出的结构函数可帮助实现瞬态热模型的建立。积分形式的结构函数即是一个完整的热阻热容网络图,这些热阻热容值准确的描述了结-环境热流路径的散热特性。对积分结构函数进行阶梯近似即可得到热流路径上不同物理结构的折算热阻和热容值。(在文献[8]中提到的基于NID 的模型生成方法,是在时间常数上进行的离散化。)

这种方法已经被成功用于生成堆叠芯片的模型生成[10]。这种封装中通常会有多条热流路径,当附加在封装表面的边界条件不同时,则不能把生成的阶梯型RC 模型认为是独立于边界条件的模型。

对于LED 来说,封装内部仅有一条热流路径,则阶梯型RC 模型可以作为描述LED 封装热性能的一种

非常合适的模型。

下图所示为LED 在不同的实际散热环境下测得的结构函数图形,从图中可以看出,LED 的热模型是独立于边界条件的,改变测试环境(在我们的例子中:插入了塑料薄层材料)并不会影响描述封装内部详细散热性能的那部分结构函数。文献[11]中同样提到,改变一级LED 的热沉的表面接触特性并不会对热流路径上位于其之前的部分产生影响。因此,图3 所示的、在热流进入MCPCB 之前的一段热流路径的阶梯状模型,是适合于当我们做类似于图2 所示的二级LED 或者类似于图8 所示的LED 组件的板级热分析时,用来模拟单个LED 封装的散热热性的。文献[11]中还提到了封装级LED 的更详细的建模方法。

2.2 LED 的热-光协同测试

半导体器件的热瞬态测试基于的是电学的测试方法[12]。常规元器件的热阻(或者瞬态时的热阻特性曲线)可以用测得的元器件温升和输入的电能来计算得到。但是对于大功率LED来说,这个方法并不适合,这是因为输入总电能的10~40%会转变为有效的可见光输出。也正是因为这样,我们在利用直接测试的方法去建立LED 封装的热模型时都需要把有效的可见光输出的能量去掉。为此,我们设计了一套如图5 所示的测试系统,用它可以实现LED 封装的热-光协同测试。

(点击图片查看原图)

图5:连接到T3Ster 热瞬态测试仪的一套光测量系统(LED 安装于一个热电制冷片上)

(点击图片查看原图)

图6:不同偏压电流下1W 红光LED 的发光量随壳温(实线)以及结温(虚线)的变化曲线

被测元件固定于一个热电制冷片上,而热电制冷片安装在一个满足CIE[13]规范和推荐设置的积分球中。在进行光测量时,热电制冷片可保证LED 的温度稳定,而在进行热测试时,它就是LED 的散热冷板。在热和电的条件都不变的前提下对LED 或LED 组件进行光测试,我们可以得到在特定情况下的LED 发光

功率(如图6 所示)。

当所有的光测量完成后,我们将被测LED 关掉,并用MicReD 公司的T3Ster 仪器对其进行瞬态冷却过程测量。在用T3Ster 进行测量时,我们使用与测试二极管时相同的测试仪器设置。热瞬态测试可以给出热阻值,所以元器件的结温可以通过热电制冷片的温度反推计算出来。

根据瞬态冷却曲线,并同时考虑元件的有效光能输出,我们可以计算出被测元件的热阻特性曲线。而热阻特性曲线又可以被转换成结构函数曲线,从结构函数中即可用前面讨论的方法得到LED 封装的CTM 模

型。

3. 板级电-热仿真

3.1 用同步迭代法进行电-热封闭仿真的原理

我们用同步迭代法[14][15]进行处在电路中的半导体元件的电-热仿真。

对于安装于基板上的有源半导体器件来说(如大型芯片上的晶体管或者MCPCB 上的LED),其热简化模型的边界条件独立性十分重要,这就要求其基板与元件自身的接触面以及基板与散热环境之间的关系这两个条件应该尽量接近实际应用情况。基于边界条件的基板模型可根据实际应用环境来确定。然后,包含

元件和基板的热阻网络就可以和电路一起用同步迭代法进行协同求解了。我们用半导体元件的电-热模型把电、热两种网络协同起来:每个元件都用一个热节点来代替(如图7)。

元器件的发热量通过热节点来驱动整个热网络模型。元件的电参数与其温度有关,可根据热网络模型的计算结果推算出来。利用电压与电阻之间的关系以及温差与热阻之间的关系,电和热的网络可进行联立

迭代求解,并可以给出一组封闭解[16][17]。

3.2 基板的简化热模型

对于任何基于同步迭代法进行电-热协同仿真的仿真工具来说,最核心的问题都是怎样生成并高效处理与与散热边界条件相关的基板的动态简化热模型。在处理这个问题时,可以把热网络模型看成是一个有N 个端口的网络,对于其中任何一个端口来说,它都对应某个半导体元器件(如图7)。这个N 端口模型通过N 个驱动点的阻力特征来描述给定半导体元器件到环境的热阻特征,同时,用Nx(N-1)传热热阻来描述

同一块基板上不同元器件之间的耦合热阻。

NID 方法用的是时间或者频域响应来生成简化热模型[8][18]。用一个快速的热仿真工具[19]对响应曲线进行计算,即可得到用NxN 表示的、涵盖所有时间常数范围的基板热特性曲线。然后把时间常数转换成RC,即可用RC 的组合得到一个阶梯状热阻网络(阶梯数目的多少可根据需要的精度来确定),这个热阻网络即可和电网络一起用高效的计算方法进行仿真计算[20]。

图7:安装于一个用N-Port 方法建立的基板简化热模型上的二极管的电-热模型示意图

3.3 板级扩展

热仿真计算器会对回路中每一个热源进行热时间常数的自动计算。对于芯片级的IC 来说这种计算方

法非常适用。

当器件的电性能与温度的相关性不大时我们可以使用“仅进行热仿真计算”模式。热仿真计算器现在是可以直接使用半导体封装的DCTM 模型的。通过对DCTM 及PWB 的详细模型一起进行仿真计算,我们就

能得到元件以及基板的温度[6]。

在进行电-热协同仿真时,通常不仅想了解温度变化的情况,同时还想了解温度对电波形的瞬态影响。我们近期对仪器的功能进行了扩展,扩展后的仪器适用于用来生成固定于任何基板上的半导体元件的用于电-热仿真的DCTM 模型[21]。对于基板的N 端口网络模型来说,可以用和芯片的网络模型相同的方法来计

算得到。在用DCTM 建立封装自身的模型时,其N 端口网络模型还应该同时考虑到管脚结构形式对模型的

影响。

将DCTM 模型放到到元件管脚对应的基板位置以及元件自身电-热模型的结对应的位置之间,然后即可

用电-热仿真工具进行求解计算。

4. 不同结构LED 的模型

对于LED 来说,其发热功率应该等于总输入功率减去有效发光功率,这个热量才是应该附加给封装简

化热模型的功率值:

heat el opt P = P ? P

在我们前面的研究工作中提到,对于有些LED,它们有可能存在一个由串联电阻产生的固定热损耗[2]。

因此,总发热量应该等于结和串联电阻发热量之和:

heat D opt R P = P ? P + P

其中D P 为总输入电功率, R P 为串联电阻的发热量。这个参数的确定方法很简单:2.2 节中我们曾讨论了用协同测量的方法确定opt P ,用同样的电路连接方式也可以测出串联电阻的发热量值。

串联电阻的位置可能跟结的位置非常接近,也可能离得非常远,通过这个特征我们可以把LED 的热模型分为热电阻型和冷电阻型两类。它们的区别在于,对于热电阻型来说,串联电阻产生的热量会和结产生的热量一起沿着结-管脚的热流路径流动,而对于冷电阻型来说,热则沿着不同的路径流动。在建立LED 的

电-热仿真模型时,一定要注意到这个不同点。

5. 应用实例

我们研究了如图8 所示的RGB LED 模块。模块中的三个LED 采用的都是标准封装。甚至在此例中绿

光LED 和蓝光LED 的结的结构都是非常相似的。

图8:研究对象LED 模块

5.1 测试

我们不但进行了单独的热瞬态测试还进行了热-光协同测试。热瞬态测试在JEDEC 标准静态测试箱和附加冷板两种不同的条件下进行。图9 显示的是在冷板(Gdriv_CP)上和在静态测试箱(Gdriv)中测得的绿光LED 在驱动点附近的热阻特征。在图中可以看到在什么温度下以及在热阻值是多少时,热流路径产生分离。这个测试结果验证了我们前面的论述:在LED 封装内部可以假设热沿着唯一的通道从结流向其热

沉。

图中同样可以读出在静止空气中的对流热阻。在使用冷板时,对流的作用可以忽略不计。GtoR 和GtoB 是用绿光LED 做加热驱动时测量的红光LED 和蓝光LED 特性曲线。

(点击图片查看原图)

图9:在静态测试箱和冷板两种条件下测得的LED 模块的热阻特性曲线(用绿光LED 做加热热源,同

时测量了三个LED)

我们还在积分球中进行了LED 发光效率的测试。发现绿光LED 的发光效率会随着冷板温度的升高而下

降,这与图6 显示的情况类似。

LED 封装的DCTM 模型可通过2.1 节中讲到的流程来生成,此模型可用于LED 的板级热仿真分析。对于用于电-热仿真工具的LED 模型,模型中的电模型部分用的是标准化的LED 电模型,其参数应根据实际

LED元件的特性参数来确定。

5.2 仿真

我们建立了这个包含三个LED 封装的LED 模块的热模型:用3*3mm 的方块来代替实际器件圆型的管脚,在笛卡尔坐标系中即可建立LED 模块的近似几何模型。如下图所示的考尔型RC 网络模型即是我们用

来描述LED 封装的DCTM 模型。

把三个LED 封装安装在面积为30*30mm^2、厚度为2.5mm 的铝基板上构成我们研究的LED 模块。通过把模块安装到冷板上进行测试,我们已经得到了模块的热模型。为了验证模型的准确性,我们在静态测试箱这个环境下对LED 模块进行了仿真分析,而前面我们也已经完成了静态测试箱环境下的测试工作。通过

仿真与实测的对比即可验证模型的准确性。

图10:用绿光LED 做加热热源时,处于静态测试箱中的三个LED 的热阻特性曲线

(点击图片查看原图)

图11:绿光LED 做加热热源时,表示处于静态测试箱中的LED 模块驱动点的热阻特征的时间常数的

实测结果(上)和仿真结果(下)

从图10 中我们可以看出仿真得出的热阻特性曲线和图9 中所示的实测曲线非常相近。仿真同样也准确预测了绿光LED 与其他两颗LED 之间的热延迟现象:蓝光和红光LED 的结温在1s 以后才开始升高。从图11 中表征驱动点的热阻特性的时间常数来看,测试结果和仿真结果也是高度吻合的。

从图9 同时可以看出,表示封装内部各组分的时间常数应该位于10s 以内。10s 以外的时间常数表示的是LED 封装外的散热环境(静态测试箱中的MCPCB)。

6.小结

本文讨论了不同结构下LED 以及LED 组件的测试和仿真技术。在测试中,我们成功的应用了一种热-光协同测试方法,用这种方法可以分辨出在LED 工作时真正起到加热LED 结的热量的大小。同样的测试设置,还可用来测LED 的发光效率以及它的一些基本电学参数,这是因为这些参数都是其结温的函数。同时介绍了一种利用热瞬态测试结果直接生成LED 的CTM 简化热模型的方法。

文中成功的把芯片级的电-热协同仿真方法推广到了板级仿真。在进行板级仿真时,成功的应用了LED封装

的CTM 模型。

材料的电学性能测试

材料科学实验讲义 (一级实验指导书) 东华大学材料科学与工程中心实验室汇编 2009年7月

一、实验目的 按照导电性能区分,不同种类的材料都可以分为导体、半导体和绝缘体三大类。区分标准一般以106Ω?cm和1012Ω?cm为基准,电阻率低于106Ω?cm称为导体,高于1012Ω?cm称为绝缘体,介于两者之间的称为半导体。然而,在实际中材料导电性的区分又往往随应用领域的不同而不同,材料导电性能的界定是十分模糊的。就高分子材料而言,通常是以电阻率1012Ω?cm为界限,在此界限以上的通常称为绝缘体的高分子材料,电阻率小于106Ω?cm称为导电高分子材料,电阻率为106 ~1012Ω?cm常称为抗静电高分子。通常高分子材料都是优良的绝缘材料。 通过本实验应达到以下目的: 1、了解高分子材料的导电原理,掌握实验操作技能。 2、测定高分子材料的电阻并计算电阻率。 3、分析工艺条件与测试条件对电阻的影响。 二、实验原理 1、电阻与电阻率 材料的电阻可分为体积电阻(R v)与表面电阻(R s),相应的存在体积电阻率与表面电阻率。 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。 体积电阻率:在绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。 表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。 体积电阻和表面电阻的试验都受下列因素影响:施加电压的大小和时间;电极的性质和尺寸;在试样处理和测试过程中周围大气条件和试样的温度、湿度。高阻测量一般可以利用欧姆定律来实现,即R=V/I。如果一直稳定通过电阻的电流,那么测出电阻两端的电压,就可以算出R的值。同样,给被测电阻施加一个已知电压,测出流过电阻的电流,也可以算出R的值。问题是R值很大时,用恒流测压法,被测电压V=RI将很大。若I=1μA,R=1012Ω,要测的电压V=106V。用加压测流法,V是已知的,要测的电流I=V/R将很小。因为处理弱电流难度相对小些,我们采用加压测流法,主要误差来源是微弱电流的测量。 2、导电高分子材料的分类

塑料的一些光学特性如透光率、雾度、折射率等知识

塑料的光学特征包括两类: 一类为传递特性,包括光的透过、反射、散射及折射等;另一类为光的转换特性,包括光的吸收、光热、光化、光电及光致变色等。 常用可表征光的传递特性指标有透光率、雾度、折射率、双折射及色散等。在上述指标中,透光率和雾度两个指标主要表征材料的透光性,而折射率、双折射及色散三个指标主要用于表征材料的透光质量。一种好的透明性材料,要求上述性能指标优异且均衡。 1.透光率(Tt) 透光率是表征树脂透明程度的一个最重要性能指标。一种树脂的透光率越高,其透明性就越好。 塑料制品透明的条件有两个: 一为制品是非结晶体;二为虽部分结晶但颗粒细小,小于可见光波长范围,不妨碍太阳光光谱中可见光和近红外光的透过。 任何一种透明材料的透光率都达不到100%,即使是透明性最好的光学玻璃的透光率一般也难以超过95%。 造成人射光通量在媒体中损失的主要原因有如下几个方面。 (1)光的反射即入射光进入聚合物表面而返回的光通量。反射光通量占光在透过媒体时损失的大部分。 衡量光的反射程度可用反射率?表征,反射率可通过其折射率(n)进行计算,两者关系如下。 例如,PMMA的折射率n= 1.492,则其R经计算为 3.9%说明PMMA的反射光比较小,透光率大,透明性好。

(2)光的吸收入射到聚合物上的光通量既没有透过也没有反射部分的光通量即为光的吸收。优良的透明塑料光的吸收很小。 光线吸收的大小取决于聚合物本身的结构,主要指分子链上原子基团与化学键的性质。 例如,含有双键(冗键)的聚合物易于吸收可见光而产生能级的转移。 还以PMMA为例,其透光率一般为93%,反射率为 3.9%,则其余 3.1%即为光的吸收与光的散射两者之和。 (3)光的散射即光线入射到聚合物表面,既没有透过也没有反射和吸收的一部分光通量,其占有比重比较小。 造成光散射的原因有: 制品表面粗糙不平,聚合物内部结构不均匀如分子量分布不均匀、无序相与结晶相共存等。 结晶聚合物的散射比较严重,只有结晶聚合物的晶体颗粒小于可见光波长时,才能像非晶聚合物那样不引起散射,光线全部透过,提高透明度。如P E、PP等结晶聚合物只有用快速冷却的方法才可得到低结晶度、晶体颗粒细的制品,取得一定的透明性;但对有些结晶塑料品种而言,要想控制太低的结晶度很困难,总有部分光被散射,造成薄膜的半透明。另外,通过拉伸的方法可使结去晶颗粒变细,并使透明度迅速提高,如可使BOPP膜的透明性迅迅速提高。只有TPX塑料比较特殊,其结晶颗粒比较小,无论结晶度大小,制品都透明。 2.雾度 雾度又称为浊度,它可衡量透明或半透明材料不清晰或混浊的程度,是表征散射的指标。雾度的产生是由于材料内部或外部表面光散射造成的云雾状或混浊的外观。雾度的定义为材料散射光通量与透过材料光通量之比的百分数。

型材散热器热特性分析

收稿日期:2001209212 基金项目:国家部委科技预研基金资助项目(J161313) 作者简介:韩 宁(19712),男,讲师,西安电子科技大学博士研究生. 型材散热器热特性分析 韩 宁1,余墨娟2,赵 殳1,徐国华1 (11西安电子科技大学机电工程学院,陕西西安 710071;21信息产业部电子第三研究所,北京 100015) 摘要:采用数值方法对型材散射器的三维流场及温度场进行了分析计算.对流项的离散采取了一阶迎风格式,用SIMPLEC 算法在交错网格上进行迭代计算.流场中气体和固体区域采用了整体求解方法.在此基础上,定量分析了结构因素对散热器热阻的影响.实验数据表明了该算法的有效性.关键词:散热器;热分析;数值方法 中图分类号:TK1; 文献标识码:A 文章编号:100122400(2002)0420551205 Thermal 2characteristicanalysisoftheplatefinheatsink HAN Ning 1,YU Mo 2juan 2,ZHAO Dun 2shu 1,XU Guo 2hua 1 (1.SchoolofElectromechanicalEng.,XidianUniv.,Xi ′an 710071,China; 2.TheThirdResearchInst.ofMII,Beijing  100015,China ) Abstract: Thethree 2dimensionalvelocityfieldandtemperaturefieldoftheplatefinheatsinkarecalculatedby numericalmethods.Theupwinddifferenceschemeisusedtodealwiththediscretizationoftheconvection 2diffusion term.Thepressure 2velocitycouplingistreatedwiththeSIMPLECalgorithmusingastaggeredgridsystem.Thesame setofmomentumandenergyequationsaresolvedforthesolidandfluidregions.Therelationbetweenthermal resistancesandsinkstructureisnumericallyanalyzedonthisbasis.Finally,experimentalresultsshowthatthe algorithmiseffective. KeyWords: platefinheatsink;thermalanalysis;numericalmethods 虽然型材散热器已有了相应的国家标准(GB742312287),但其中的自然对流和强迫风冷条件下的热阻关系曲线均为实验数据整理所得,与实际应用有一定误差.在散热器的数值热分析方面,Tuckerman 和Pease 在忽略了肋片中沿流体流动方向的导热后,建立了散热器准二维肋模型[1],Samalam 则获得了该模型的一个级数形式的精确解[2].Harpole 和Eninger 运用多孔介质流动中的Darcy 定律建立并求解了散热器二维传热模型[3].在国内,喻世平和辛明道对微通道结构的散热器进行了实验研究[4].上述二维或准二维模型在等壁温或等热流密度情况下能给出比较满意的计算结果,但当实际散热器不满足上述条件时,会引起较大误差.此外,如果不考虑固体肋片对流场的三维扰动作用,也会影响计算精度.笔者采用数值传热学的基本理论和方 法,直接对型材散热器的三维稳态流场和温度场进行了数值模拟,得出了一些有益的结论. 1 数值热分析原理 对于不可压缩流体,在三维欧拉空间中,取一任意形状的封闭体(称为控制容积),将质量守恒定律、动量守恒定律和能量守恒定律用于该控制容积后,可以得到微分型的流体流动控制方程: 连续方程 ?V =0 , (1) 2002年8月第29卷 第4期   西安电子科技大学学报(自然科学版) JOURNAL OF XIDIAN UNIVERSITY   Aug.2002 Vol.29 No.4

第八章纺织材料热、电、光学性质

第八章纺织材料热、电、光学性质 思考题及难点: 1.导热与保暖 2.玻璃化温度、流动温度 3.极限氧指数 4.双折射 5.静电现象及消除途径 第一节热学性质 (1) 一、比热 (1) 二、导热 (1) 三、热对纺织材料的影响 (1) 第二节光学性质 (3) 一、反射与光泽 (3) 二、折射与双折射 (3) 三、耐光性 (3) 第三节电学性质 (3) 一、介电系数ε (3) 二、纺织材料电阻 (3) 三、静电 (4) 第一节热学性质 一、比热 质量为1克的纺织材料温度变化1℃所吸收或放出的热量。 二、导热 导热系数:材料厚度为1m,表面之间温差为1℃,1h通过1m2材料所传导的热量焦耳数。 影响保暖性因素: ⑴静止空气层的厚度越大,保暖性越好 ⑵导热系数越小,保暖性越好 ⑶纺材吸湿后,保暖性下降 三、热对纺织材料的影响 (一)力学三态:玻璃态、高弹态、粘流态 1.玻璃态:温度较低,大分子的运动动能远远低于分子间结合力,大分子里面的链节、基团都不能运动,只能在平均位置上振动,因此弹性模量很高,变形能力很小,纤维坚硬,类似玻璃,故称玻璃态

2.高弹态:温度超过玻璃化温度以上,纤维的弹性模量突然下降,纤维受较小的力作用就发生很大的变形当外力解除后,链段的运动使大分子发生卷缩,变形逐渐恢复,在温度变形曲线上出现平台区,称为高弹态。 3.粘流态:温度超过粘流温度以后,链段的运动不仅使分子链的构象发生变化,而且通链段的相跃迁,使整个分子链相互滑动。宏观表现为合成纤维在外力作用下发生粘性流动,称为粘流态。 (二)热转变温度:有明显热塑性特征的纤维,玻璃态、高弹态、粘流态之间发生转变涉及纤维性质显著变化时的温度 1.玻璃化温度( Tg ):玻璃态向高弹态转变的温度(二级转变温度) 2.粘流温度(T f ):高弹态向粘流态转变的温度(一级转变温度) 3.熔点:晶体发生熔化时的温度 4.分解点:高聚物发生分解时的温度 (三)耐热性 纺材在高温作用下一定时间之后,保持其物理机械性能的性质。 指标:剩余强度率=(热作用之后的强度/原强度)×100% (四)合成纤维的热收缩与热定型 1.合成纤维热收缩:合纤受热后发生尺寸收缩的现象 1).原因:合纤在后加工受到牵伸,存在着内应力,由于玻璃态的约束,无法恢复,一旦温度升高,解除玻璃态约束,由于内应力而大量回缩。 2).指标:热收缩率=收缩量/原来长度×100% 3).加热介质:热空气、热水、蒸汽,根据加热介质的不同,热收缩率也分为相应的热空气收缩率、沸水收缩率、饱和蒸汽收缩率 2.热定型 1).定义: 温度低于软化点高于玻璃化温度,解除玻璃态约束,在材料宏观长度保持不变或再给以拉伸的情况下,分子间力重建或调整至低位能的过程,只要以后的处理温度不超过玻璃化温度,材料的尺寸基本保持不变,这一性能称为热塑性,这一加工称为热定型。 2).影响因素: 温度、时间 (五)纺材燃烧性能 1.极限氧指数(LOI) 将材料点燃在氧、氮大气中,维持材料燃烧所需要的最低含氧量的体积百分比 LOI=[V氧/(V氧+V氮)]×100% 2.分类:易燃、可燃、难燃、不燃 3.提高纺织材料难燃性途径 1).进行阻燃处理 2)..制造难燃纤维 (六)熔孔性 定义:涤纶和锦纶等合成纤维织物,在穿用过程中接触到烟灰的火星、电焊火花、砂轮火花等热体时,在织物上形成孔洞的性能。

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

功率半导体模块电、热特性分析及应用

功率半导体模块电、热特性分析及应用 功率半导体器件是电力电子变流器的核心部件,本文分析了功率半导体模块封装设计和电路参数对模块寄生电感、散热性能和开关特性的影响,对功率半导体封装设计和电路应用提出改进。本文首先总结了近年来电力电子技术新应用对功率半导体器件提出的需求,并针对本文的研究工作,归纳了功率半导体模块的关键问题及研究现状,包括功率半导体模块低寄生电感设计、模块散热设计、功率模块布局寄生电感和热模型、压接式封装以及混合功率模块的振荡问题。目前传统功率模块结构的IGBT模块仍是主流产品,本文着重分析布局设计对寄生电感和芯片热耦合的影响。目前在模块布局设计中,为评估布局寄生电感和芯片热耦合,采用有限元分析的方法,设计过程较复杂。 本文建立了简化的IGBT模块寄生电感和芯片散热评估方法,并应用于半桥和T型三电平IGBT模块布局设计。通过有限元仿真和样品测试验证了评估方法的有效性。将模块样品应用于多能源应急电源系统,验证了模块在系统中可连续稳定运行。压接式器件在大功率应用场合获得了关注,本文提出一种适用于SiCMOSFET的压接式封装方法。 SiCMOSFET压接式封装存在两点挑战:SiCMOSFET芯片可接触面积较小,因此现有的应用于压接式IGBT的压力接触方法可能不适用于SiCMOSFET;SiC MOSFET 对封装寄生电感十分敏感,压接式封装结构需适应低寄生电感的要求。本文针对以上的挑战提出了解决方案。采用弹性压针实现SiCMOSFET压力接触,并设计了适用于压接式SiCMOSFET的微通道散热器。基于所提出的封装结构分析了布局设计对寄生电感和并联芯片均流的影响。 根据上述的设计方案进行了样品研制和实验验证。为了验证压接式SiC MOSFET内部并联芯片的均流特性,探讨了一种基于PCB罗氏线圈的电流测试方法,对并联芯片均流特性进行了测试,验证了本文提出的封装结构可以实现较好的并联芯片动态均流。SiC肖特基二极管与Si IGBT组成混合功率模块,可大大减小IGBT开通损耗和二极管反向恢复损耗。但在混合模块IGBT开通时,SiC二极管的寄生电容与回路寄生电感会产生振荡,导致电磁干扰问题。 本文建立了混合模块开通过程理论模型,分析了门极驱动和寄生参数对开通振荡的影响。研究了利用阻尼电路抑制振荡的方法,通过开通过程理论模型给出

LED主要参数及电学、光学、热学特性.doc

LED主要参数及电学、光学、热学特性 LED电子显示屏是利用化合物材料制成pn结的光电器件。它具备pn结结型器件的电学特性:I-V特性、C-V特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。 1、LED电学特性 1.1 I-V特性表征LED芯片pn结制备性能主要参数。LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。 如左图: (1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP为1.2V,GaP为1.8V,GaN为2.5V。 (2)正向工作区:电流IF与外加电压呈指数关系 IF = IS (e qVF/KT –1) -------------------------IS 为反向饱和电流。 V>0时,V>VF的正向工作区IF 随VF指数上升IF = IS e qVF/KT (3)反向死区:V<0时pn结加反偏压 V= - VR 时,反向漏电流IR(V= -5V)时,GaP为0V,GaN为10uA。 (4)反向击穿区V<- VR ,VR 称为反向击穿电压;VR 电压对应IR为反向漏电流。当反向偏压一直增加使V<- VR时,则出现IR突然增加而出现击穿现象。由于所用化合物材料种类不同,各种LED的反向击穿电压VR也不同。 1.2 C-V特性 鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。 C-V特性呈二次函数关系(如图2)。由1MHZ交流信号用C-V特性测试仪测得。 1.3 最大允许功耗PF m 当流过LED的电流为IF、管压降为UF则功率消耗为P=UF×IF LED工作时,外加偏压、偏流一定促使载流子复合发出光,还有一部分变为热,使结温升高。若结温为Tj、外部环境温度为Ta,则当Tj>Ta时,内部热量借助管座向外传热,散逸热量(功率),可表示为P = KT(Tj – Ta)。

红外Ga2S3_Sb2S3硫系玻璃的热稳定性及光学性能

第44卷第6期2016年6月 硅酸盐学报Vol. 44,No. 6 June,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/384879314.html, DOI:10.14062/j.issn.0454-5648.2016.06.08 红外Ga2S3–Sb2S3硫系玻璃的热稳定性及光学性能 李戈1,徐铁峰2,3,戴世勋2,3,张腾宇1,张勤远4,焦清2,3 (1. 宁波大学信息科学与工程学院,浙江宁波 315211;2. 宁波大学高等技术研究院,浙江宁波 315211; 3. 浙江省光电探测材料及器件重点实验室,浙江宁波 315211; 4. 华南理工大学发光材料与器件国家重点实验室,广州 510640) 摘要:采用真空熔融淬冷法制备Ga x Sb40–x S60硫系玻璃样品,并通过Archimedes法、X射线衍射、热膨胀系数分析、可见/近红外光谱吸收度与透过率、中远红外光谱透过率以及Raman散射光谱等研究了硫系玻璃样品的结构、热稳定性和光学性能。结果表明:随着Ga含量的增加,玻璃密度逐渐下降,玻璃转变温度逐渐提高,热膨胀系数不断减小,表明玻璃具有良好的热稳定性;玻璃的可见/近红外短波截止边均发生蓝移,光学带隙增大,而且保持了良好的红外透过率,其较宽的红外透过范围(0.8~14.0μm),涵盖了目前3大主要通信波段和热红外波段,Ga–Sb–S玻璃已成为极具前景的红外材料。Ga含量增加促进[GaS4]四面体的形成,减少[SbS3]三角锥的比例,归纳了该类硫系玻璃的光学性质与结构的依赖关系。 关键词:硫系玻璃;红外光学;光学特性;镓含量;玻璃结构 中图分类号:TN213 文献标志码:A 文章编号:0454–5648(2016)06–0830–06 网络出版时间:2016–05–06 10:33:00 网络出版地址:https://www.360docs.net/doc/384879314.html,/kcms/detail/11.2310.TQ.20160506.1033.008.html Optical Properties and Thermal Stability of Infrared Chalcogenide Glass Ga2S3–Sb2S3 LI Ge1, XU Tiefeng2,3, DAI Shixun2,3, ZHANG Tengyu1, ZHANG Qinyuan4, JIAO Qing2,3 (1. Faculty of Electrical Engineering and Computer Science, NingBo University, Ningbo 315211, Zhejiang, China; 2. Advanced Technology Research Institute, Ningbo University, Ningbo 315211, Zhejiang, China; 3. Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, Zhejiang, China; 4. State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China) Abstract:Series of Ga x Sb40–x S60 chalcogenide glasses were synthesized by a melt-quenching method. The thermal and optical properties of sample glasses were determined by the Archimedes principle, X-ray diffraction, thermal expansion, ultra violet–visible–near infrared absorption spectroscopy, and Fourier transform infrared spectroscopy, respectively. The structures of the samples with different compositions were analyzed by Raman spectroscopy. The results show that all of the glasses have good thermal stability and spectral properties. The density decreases slightly, the glass transition temperature improves, and the thermal expansion coefficient reduces with increasing the content of gallium. Besides, there is a slightly augmentation of optic band gap and a regularly blue-shifted of IR absorption cutting-off edge. Since all of the chalcogenide glasses have a high transmittance in a wide spectrum range of 0.8–14.0 μm (covering three main commutation bands and thermal infrared band), they are thus a promising material for mid-infrared application. According to the Raman spectra, the formation of [GaS4] tetrahedral units promote and the [SbS3] pyramid units suppress with the increase of gallium content. The relationship between optical properties and the structure in the chalcogenide glasses was summarized. Keywords:chalcogenide glass; infrared optics; optical property; gallium content; glass structure 收稿日期:2015–12–25。修订日期:2016–01–18。 基金项目:国家自然科学基金重点项目(61435009);宁波自然科学基金(2015A610079);发光材料与器件国家重点实验室开放课题 (2016–skllmd–11)资助。 第一作者:李戈(1991—),男,硕士研究生。 通信作者:焦清(1985—),女,讲师。Received date: 2015–12–25. Revised date: 2016–01–18. First author: LI Ge (1990–), male, Master candidate. E-mail: imlige@https://www.360docs.net/doc/384879314.html, Correspondent author: JIAO Qing (1985–), female, Lecturer. E-mail:jiaoqing@https://www.360docs.net/doc/384879314.html,

太阳能集热器热性能分析

太阳能集热器热性能分析 摘要:本文介绍了太阳能集热器的种类以及各自的特点。同时,阐述了太阳能集热器热性能的理论,包括影响太阳能集热器热性能的因素、太阳能集热器热性能的测试方法等。 关键字:太阳能集热器、热性能测试、影响因素 0 引言 随着能源的大量消耗和环境的急剧破坏,新能源技术已经成为21世纪世界经济发展中具有决定性影响的五个技术领域之一。太阳能因为具有取之不尽、用之不竭、无环境污染等诸多优点而受到各国重视。2011年,我国太阳能集热器生产量占世界产量的80%,占世界保有量的60%左右,说明我国已经成为太阳能利用大国。 太阳能集热器是将其接收的太阳辐射能向传热工质传递热能的装置,因此,太阳能集热器是太阳能利用的关键装置。所以,太阳能集热器的研究、开发与应用对太阳能资源的高效应用至关重要。 1 太阳能集热器的种类 随着太阳能利用的大力发展,太阳能集热器的种类也越发多样化。根据进入采光口的太阳辐射方向是否改变,分为聚光型集热器、非聚光型集热器;根据集热器的传热工质类型的不同,分为液体型集热器、空气型集热器;根据集热器是否跟踪太阳,分为跟踪集热器、非跟踪集热器;根据集热器是否有真空空间,分为平板型集热器、真空管型集热器;根据集热器的工作温度围的不同,分为高温集热器

(300℃~800℃)、中温集热器(80℃~250℃)、低温集热器(40℃~80℃)。其中,太阳能热利用产品最常见的有两种--平板型太阳能集热器与真空管型太阳能集热器。 1.1 平板型太阳能集热器及其特点 平板型太阳能集热器[1]的典型结构如图1所示,主要包括透明盖板、吸热板芯、流体流道、隔热层和箱体等部分. 图1 平板型太阳能集热器典型结构 透过透明盖板照射到吸热板表面,吸热板吸收大部分太阳辐射能,将其转化为热能,并将热能传递给流道的传热介质,传热介质携带热能进入储热设备。这样,传热工质被加热后,温度逐渐升高,作为集热器的有用热能输出。同时,由于吸热体的温度升高,通过透明盖板和外壳向周围环境散失热量,造成了平板型太阳集热器的各种热损失。 平板型太阳能集热器在我国的太阳能利用中已广泛应用,技术日趋完善,主要特点有可承压性好、大型集热系统性能稳定、建筑一体

常用热分析方法测定固体的热性能

常用热分析方法测定固体的热性能 一、实验目的 (1)掌握常用热分析方法(DTA,TG,DTG,DSC)的基本原理和分析方法,了解常用热分析仪器(差热分析仪,热重分析仪,差热-热重(DTA-TG)联用仪,差示扫描量热法仪的基本结构,熟练掌握仪器操作, (2)运用分析软件对测得热分析曲线进行分析,掌握测定固体样品的热性能的方法,如质量,熔点,结晶度,结晶温度,热效应,玻璃化转变等等。 二、实验原理 1. 差热分析法(简称DTA) 物质在受热或冷却过程中,当达到某一温度时,往往回发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着焓的改变,因而产生热效应,其表现为体系与环境(样品与参比物)之间有温度差。差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系。在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应的物质,均可运用差热分析法进行鉴定。 2. 热重法(简称TG或TGA) 物质受热时,发生化学反应,质量也随之改变,测定物质质量的变化就可研究其过程。热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。 热重法的主要特点是定量强,能准确地测量物质的变化及变化的速率。 从热重法派生出微商热重法(DTG),即TG曲线对温度(或时间)的一阶导数。DTG 曲线能精确地反映出起始反应温度,达到最大反应速率的温度和反应终止温度。在TG曲线上,对应于整个变化过程中各阶段的变化互相衔接而不易分开,同样的变化过程在DTG曲线上能呈现出明显的最大值,故DTG能很好地显示出重叠反应,区分各个反应阶段,而且DTG曲线峰的面积精确地对应着变化了的质量,因而DTG能精确地进行定量分析。 现在发展起来的差热-热重(DTA-TG)联用仪,是将DTA与TG的样品室相连,在同样气氛中,控制同样的升温速率进行测试,同时得到DTA和TG曲线,从而一次测试得到更多的信息,对照进行研究。 3. 差示扫描量热法(简称DSC) 是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。是为克服DTA在定量测量方面的不足而发展起来的一种新技术。 差示扫描量热法有功率补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。 DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好,因此DSC在聚合物领域获得了广泛应用,大部分DAT应用领域都可以采用DSC进行测量,灵敏度和精确度更高,试样用量更少。由于其在定量上的方便从而更适和测量结晶度、结晶动力学以及聚合、固化、交联氧化、分解等反应的反应热及研究其反应动力学。

热电材料的电学性能

1、实验目的 装订线 1. 通过实验了解热电材料的Seebeck系数和电阻率的测定方法; 2. 测量在特定温度范围内热电材料电学电学性能随温度的变化 关系; 3. 结合实验结果分析并热电材料电功率因子与温度的关系。2、实验原理 1. 塞贝克系数 塞贝克效应是材料的一个物理性能,是一种由电流引起的可逆热效应或者说是温度差引起的电效应,其示意图如下: 对于两种不同的导体串联组成的回路,在导体b的开路位置y和z之间,将会有一个电位差,称为热电动势,数值是:,当T不是很大时,为常数,定义为两种导体的相对Seebeck系 数,即 (1) Seebeck系数常用的单是uV/K, Seebeck系数的测量原理如下图所示,1、3和2、4分别是NiCr和NiSi热电偶臂。测量时两段温差保持10℃,S两端存在 温差时会产生热电势差Vs,相对于热电偶的其中一个电偶臂 1、3的Seebeck系数为

2. 电阻率 从原理上讲,对电阻为R,长度为L,截面积为A的样品,电导率=R(A/L)。然而,由于半导体热电材料通常电阻率较小,接触电阻相对较大,容易引入实验误差。实验中电阻率的测定采用下图所示的两探针原理以避免接触电阻的影响。电阻率测量在试样两端等温进行,当△T足够小时,才对样本施加测试电流,这是电阻 R=V R/I const, V R为样品两端电压探针的电压降,I const为恒流源电流,取一特定值。为消除附加的Seebeck电压影响,试验通过改变电流方向进行两次电压测量,取其平均值。得R值后,有公式=R(A/L)算出其电阻率。

3、实验设备与装备 测量装置温度由AI-708P智能控制器控制。样品两端电压利用Agilent970A数据采集仪输入微机。 所用电源为恒流源。测量时抽真空以防样品氧化。 4、实验方法与步骤 1. 实验样品的制备方法: 原料称量→悬浮熔炼→(快速凝固→)机械研磨→热压成型(获 得样品) 2. 实验样品的安装 双眼中先将被测样品两端抛光,并真空镀银或覆盖银浆,形成欧姆接触,以保证样品与纯铜夹具间的良好接触。 3. 热电性能的测定 夹好样品后抽真空,然后根据两个AI-708P控制仪中事先设定的升温程序程序升温至不同的温度,在每一个选定的温度,待温度稳定后才开始测量。 4. 数据处理得到的Seebeck系数和电阻率 5、实验结果处理 本次实验采用5#组数据。 1.以Seebeck系数对温度作图: 首先以直线拟合,获得结果为y=-52.1-0.176x 但是由图上各点位置看出,并非理想结果。误差较大。 再以二次曲线拟合,如图: 可见曲线精确度高了不少,此时方程为 y=-188.87+0.54x-0.000935x2 个人认为还是二次曲线比较理想一些。 电阻率对温度作图

石墨片对环氧树脂的热学、力学和电学性能影响

文章编号:1007-8827(2015)05-0432-06 石墨片对环氧树脂的热学二力学和电学性能影响 Subhra Gantayat1,2,Gyanaranjan Prusty1,Dibya Ranjan Rout2,Sarat K Swain1 (1.Department of Chemistry,Veer Surendra Sai University of Technology,Burla,Sambalpur768018,India; 2.School of Applied Science(Physics),KIIT University,Bhubaneswar751024,India) 摘要:采用溶液技术制备出膨胀石墨增强环氧树脂复合材料三对石墨进行化学改性以提高与环氧树脂的相容性三采用XRD﹑FE-SEM和HR-TEM对环氧树脂/膨胀石墨复合材料进行表征三与环氧树脂相比,添加质量分数9%膨胀石墨后,该复合材料的热分解温度从340?升高至480?,抗张应力提高30%,导电率由10-15增加至10-5数量级三热学﹑力学和电学性能的显著提高,主要归因于膨胀石墨纳米片在环氧树脂基体中的良好分散性,从而可用于广泛的应用领域三 关键词:膨胀石墨;扫描电镜;透射电镜;导电率 中图分类号:TB332文献标识码:A 通讯作者:Sarat K Swain.E-mail:swainsk2@yahoo.co.in Expanded graphite as a filler for epoxy matrix composites to improve their thermal,mechanical and electrical properties Subhra Gantayat1,2,Gyanaranjan Prusty1,Dibya Ranjan Rout2,Sarat K Swain1 (1.Department of Chemistry,Veer Surendra Sai University of Technology,Burla,Sambalpur768018,India; 2.School of Applied Science(Physics),KIIT University,Bhubaneswar751024,India) Abstract:Expanded graphite(EG)-reinforced epoxy composites were prepared by a solution mixing method.The structure and morphology of the EG/epoxy composites were investigated by XRD,FE-SEM and HR-TEM.The EG prepared by acid oxidation and thermal expansion shows good compatibility with the epoxy resin that enters the EG layers to decrease their thickness to60-70nm,owing to its abundant oxygen-containing functional groups.With the addition of9wt%EG,the thermal decomposition temperature of the composite increases from340to480?,the electrical conductivity from10-15to10-5S/cm and the tensile stress is increased by more than30%.These improvements are attributed to the good dispersion of EG sheets in the epoxy matrix. Keywords: Expanded graphite;FE-SEM;HR-TEM;Conductivity Received date:2015-03-05; Revised date:2015-10-08 Corresponding author:Sarat K Swain.E-mail:swainsk2@yahoo.co.in English edition available online ScienceDirect(http://https://www.360docs.net/doc/384879314.html,/science/journal/18725805). DOI:10.1016/S1872-5805(15)60200-1 1 Introduction Polymer matrix composites are multi-phase mate-rials produced by combining polymer resins with rein-forcing fillers having improved properties in compari-son with the matrix materials.Hence,different fillers are used to enhance the physical and mechanical prop-erties of composites.Polymer matrix composites are of scientific and industrial interest because of their en-hanced properties arising from the reinforceing func-tion of nanofillers[1-4].Different conducting fillers such as carbon nanotubes and graphite have been ex-tensively studied because of their ability to increase the mechanical,thermal and electrical properties of the native polymers[5,6]. Epoxy resins are a class of thermoset materials available in various forms from low viscosity liquid to high melting solids,which are widely used as poly-mer matrices in composites,owing to their high strength,low shrinkage,excellent adhesion to sub-strates,chemical resistance and low cost.Most of polymers are generally electrical insulators with very low concentrations of free charge carriers.Thus they are non-conductive and transparent to electromagnetic radiations.This property made them incapable for the use as enclosures for electronic equipments.Hence, these limitations are the causes of growing research activities for electrically conducting polymers.Con-ducting polymers can be either inherently conductive or insulating polymers composited with conductive fillers.Conductive composites are used in light emit-ting devices,batteries,electromagnetic shielding and 第30卷第5期 2015年10月新型炭材料 NEW CARBON MATERIALS Vol.30 No.5 Oct.2015

相关文档
最新文档