用示波器测动态磁滞回线、磁场测量实验报告

用示波器测动态磁滞回线、磁场测量实验报告
用示波器测动态磁滞回线、磁场测量实验报告

铁磁材料的磁滞回线和基本磁化曲线

(动态磁滞回线实验)

磁性材料在科研和工业中有着广泛的应用,种类也相当繁多,因此各种材料的磁特性测量,是电磁学实验中一个重要内容。磁特性测量分为直流磁特性测量和交流磁特性测量。本实验用交流正弦电流对磁性材料进行磁化,测得的磁感应强度与磁场强度关系曲线称为动态磁滞回线,或者称为交流磁滞回线,它与直流磁滞回线是有区别的。可以证明:磁滞回线所包围的面积等于使单位体积磁性材料反复磁化一周时所需的功,并且因功转化为热而表现为损耗。测量动态磁滞回线时,材料中不仅有磁滞损耗,还有涡流损耗,因此,同一材料的动态磁滞回线的面积要比静态磁滞回线的面积稍大些。本实验重点学习用示波器显示和测量磁性材料动态磁滞回线和基本磁化曲线的方法,了解软磁材料和硬磁材料交流磁滞回线的区别。 一.实验目的

1. 了解磁性材料的磁滞回线和磁化曲线的概念,加深对铁磁材料的重要物理量矫顽力、剩磁和磁导率的理解。

2. 用示波器测量软磁材料(软磁铁氧体)的磁滞回线和基本磁化曲线,求该材料的饱和磁感应强度m B 、剩磁r B 和矫顽力c H 。

3. 学习示波器的X 轴和Y 轴用于测量交流电压时,各自分度值的校准。

4. 用示波器显示硬铁磁材料(模具钢12Cr )的交流磁滞回线,并与软磁材料进行比较。

二. 实验原理

(一)铁磁物质的磁滞现象

铁磁性物质的磁化过程很复杂,这主要是由于它具有磁性的原因。一般都是通过测量磁化场的磁场强度H 和磁感应强度B 之间关系来研究其磁化规律的。

如左图所示,当铁磁物质中不存在磁化场时,H 和B 均为零,在H B 图中则相当于坐标原点O 。随着磁化场H 的增加,B 也随之增加,但两者之间不是线性关系。当H 增加到一定值时,B 不再增加或增加的十分缓慢,这说明该物质的磁化已达到饱和状态。m H 和m B 分别为饱和时的磁场强度和磁感应强度(对应于图中A 点)。如果再使H 逐步退到零,则与此同时B 也逐渐减小。然而,其轨迹并不沿原曲线AO ,而是

沿另一曲线AR 下降到r B ,这说明当

H 下降为零时,铁磁物质中仍保留一

定的磁性。将磁化场反向,再逐渐增加

其强度,直到m H H -=,这时曲线达到A '点(即反向饱和点),然后,先使磁化场退回到0=H ;再使正向磁化场逐渐增大,直到饱和值m H 为止。如此

就得到一条与A AR '对称的曲线A R A '',而自A 点出发又回到A 点的轨迹为一闭合曲线,称为铁磁物质的磁滞回线,此属于饱和磁滞回线。其中,回线和H 轴的交点Hc 和'

Hc 称为矫顽力,回线与B 轴的交点r B 和'

r B ,称为剩余磁感应强度。

(二)利用示波器观测铁磁材料动态磁滞回线

电路原理图如图2所示。

将样品制成闭合环状,其上均匀地绕以磁化线圈1N 及副线圈2N 。交流电压u 加在磁化线圈上,线路中串联了一取样电阻1R ,将1R 两端的电压1u 加到示波器的X 轴输入端上。副线圈2N 与电阻2R 和电容C 串联成一回路,将电容C 两端的电压2u 加到示波器的Y 轴输入端,这样的电路,在示波器上可以显示和测量铁磁材料的磁滞回线。

图2 用示波器测动态磁滞回线的电路图

1. 磁场强度H 的测量

设环状样品的平均周长为l ,磁化线圈的匝数为1N ,磁化电流为交流正弦波电流1i ,由安培回路定律11i N Hl =,而111i R u =,所以可得

μ

线

1

1

1R l u N H ??=

(1) 式中,1u 为取样电阻1R 上的电压。由公式(1)可知,在已知1R 、l 、1N 的情况下,测得1u 的值,即可用公式(1)计算磁场强度H 的值。 2.磁感应强度B 的测量

设样品的截面积为S ,根据电磁感应定律,在匝数为2N 的副线圈中感生电动势2E 为 dt

dB

S N E 22-= (2) (2)式中,

dt

dB

为磁感应强度B 对时间t 的导数。 若副线圈所接回路中的电流为2i ,且电容C 上的电量为Q ,则有 C

Q

i R E +

=222 (3) 在(3)式中,考虑到副线圈匝数不太多,因此自感电动势可忽略不计。在选定线路参数时,将2R 和C 都取较大值,使电容C 上电压降22C i R C

Q

u <<=

,可忽略不计,于是(3)式可写为 222i R E = (4)

把电流dt

du C dt dQ

i C ==

2代入(4)式得 dt

du C R E C

22= (5) 把(5)式代入(2)式得S dt

du C R dt dB

S

N C 22=- 在将此式两边对时间积分时,由于B 和C u 都是交变的,积分常数项为零。于是,在不考虑负号(在这里仅仅指相位差π±)的情况下,磁感应强度 S

N Cu R B C

22=

(6) 式中,2N 、S 、2R 和C 皆为常数,通过测量电容两端电压幅值C u 代入公式(6),可以求得材料磁感应强度B 的值。

当磁化电流变化一个周期,示波器的光点将描绘出一条完整的磁滞回线,以后每个周期

都重复此过程,形成一个稳定的磁滞回线。 3.B 轴(Y 轴)和H 轴(X 轴)的校准

虽然示波器Y 轴和X 轴上有分度值可读数,但该分度值只是一个参考值,存在一定误差,且X 轴和Y 轴增益可微调会改变分度值。所以,用数字交流电压表测量正弦信号电压,并且将正弦波输入X 轴或Y 轴进行分度值校准是必要的。

将被测样品(铁氧体)用电阻替代,从R 1上将正弦信号输入X 轴,用交流数字电压表测量R 1两端电压U 有效,从而可以计算示波器该档的分度值(单位V/cm),见图3。须注意: 1、数字电压表测量交流正弦信号,测得得值为有效值有效U 。而示波器显示的该正弦信号值为正弦波电压峰-峰值峰峰 U 。两者关系是

有效峰-峰=U U 22 (7)

2、用于校准示波器X 轴档和Y 轴档分度值的波形必须为正弦波,不可用失真波形。 用上述方法可以对示波器Y 轴和X 轴的分度值进行校准。

三.实验仪器及装置

动态磁滞回线实验仪由可调正弦信号发生器、交流数字电压表、示波器、待测样品(软磁

铁氧体、硬磁Cr12模具钢)、电阻、电容、导线等组成。其外型结构如图4所示。

图4 动态磁滞回线实验仪外观

四.实验内容 必做实验

(一)观察和测量软磁铁氧体的动态磁滞回线 1.按图2要求接好电路图。

2.把示波器光点调至荧光屏中心。磁化电流从零开始,逐渐增大磁化电流,直至磁滞回

上海复旦天欣科教仪器有限公司

Hz

FD-BH-2动态磁滞回线实验仪

mV

电源 交流电压测量

功率信号输出 幅度调节

上海复旦天欣科教仪器有限公司

信号输出 频率调节

线上的磁感应强度B 达到饱和 (即H 值达到足够高时,曲线有变平坦的趋势,这一状态属饱和)。磁化电流的频率f 取50Hz 左右。示波器的X 轴和Y 轴分度值调整至适当位置,使磁滞回线的m B 和m H 值尽可能充满整个荧光屏,且图形为不失真的磁滞回线图形。

3.记录磁滞回线的顶点m B 和m H ,剩磁r B 和矫顽力c H 三个读数值(以长度为单位),在作图纸上画出软磁铁氧体的近似磁滞回线。

4.对X 轴和Y 轴进行校准。计算软磁铁氧体的饱和磁感应强度m B 和相应的磁场强度m H 、剩磁r B 和矫顽力c H 。磁感应强度以T 为单位,磁场强度以m A /为单位。

5. 测量软磁铁氧体的基本磁化曲线。现将磁化电流慢慢从大至小,退磁至零。从零开始,由小到大测量不同磁滞回线顶点的读数值i B 和i H ,用作图纸作铁氧体的基本磁化曲线(H B -关系)及磁导率与磁感应强度关系曲线(H -μ曲线),其中H

B

=μ。 (二) 观测硬磁Cr12模具钢(铬钢)材料的动态磁滞回线

1. 将样品换成Cr12模具钢硬磁材料,经退磁后,从零开始电流由小到大增加磁化电流,直至磁滞回线达到磁感应强度饱和状态。磁化电流频率约为f=50Hz 左右。调节X 轴和Y 轴分度值使磁滞回线为不失真图形。(注意硬磁材料交流磁滞回线与软磁材料有明显区别,硬磁材料在磁场强度较小时,交流磁滞回线为椭圆形回线,而达到饱和时为近似矩形图形,硬磁材料的直流磁滞回线和交流磁滞回线也有很大区别。(见参考资料7)

2. 对X 轴和Y 轴进行校准,并记录相应的m B 和m H ,r B 和c H 值,在作图纸上近似画出硬磁材料在达到饱和状态时的交流磁滞回线。 五.实验数据例(仅供参考)

铁氧体基本磁化曲线与磁滞回线的测量

测量铁氧体的基本磁化曲线时,先将样品退磁,然后从零开始不断增大电流,记录各磁滞回线顶点的B 和H 值,直至达到饱和。注意由于基本磁化曲线各段的斜率并不相同,一条曲线至少20余个实验数据点,实验结果如表1所示。(本示波器cm div 00.11=,估读至4/1小格,即cm 05.0)。

表1 软磁铁氧体基本磁化曲线的测量

并且记录得到矫顽力C H 在示波器上显示cm 55.0,剩磁r B 在示波器上显示cm 00.1,饱和磁感应强度在示波器上显示cm 20.2。

根据记录数据可以描画出样品的磁化曲线:

铁氧体环状样品,外径mm 0.381=Φ,内径mm 0.232=Φ,高H

ι=mm 0.10,平均周长

m l 321108.952/)(-?=Φ+Φ?=π,磁环截面积262110752/)(m l S H -?=?Φ-Φ=。

示波器X 轴定标:

正弦波峰峰值在示波器上读为 3.00cm ,用交流数字电压表测量R 1两端电压得有效值为

21.1mV,U

峰-峰

=2

2

.U

有效

=2

2

×21.1mV=42.2

2

mV 。所以X 轴灵敏度

=00

.322

.42=19.89mV

示波器Y 轴定标:

峰峰值为4.60cm ,用交流数字电压表测量电容两端电压U 有效=16.2mV 。 U 峰-峰=22.U 有效=22×16.2mV 。所以Y 轴灵敏度=

60

.42

.1622?=9.96mV 。 初级线圈和次级线圈匝数相等,即匝20021==N N ,电阻Ω=00.21R ,Ω?=32100.51R ,电容F C 61070.4-?=,所以

磁场强度)m /A (U 76.20U 00

.2108.9501989.0200R U l N I l N H 111R R 31R 11

?=???='

==- 磁感应强度()mT Uc T U U U S N C R B C C C 2.159)(1534.0107520000996.01070.4100.516

6322=?=??????='?=-- 根据上面记录数据得到:矫顽力 m /A 4.11505.076.20H C =?= 剩磁 mT 1592.15900.1B r =?=

饱和磁感应强度 mT 35020.22.159B m =?=

六.思考题

1. 在公式(3)中,22C i R U <<时可将C U 忽略,222i R E =。考虑一下,由这项忽略引起的不确定度有多大?

2. 在测量H B -曲线过程,为何不能改变X 轴和Y 轴的分度值?

3. 示波器显示的正弦波电压值与交流电压表显示的电压值有何区别?两者之间如何换算?

4. 硬磁材料的交流磁滞回线与软磁材料的交流磁滞回线有何区别? 附录:

软磁材料和硬磁材料介绍

磁滞回线所围面积很小的材料称为软磁材料。这种材料的特点是磁导率较高,在交流下使用时磁滞损耗也较小,故常作电磁铁或永磁铁的磁轭以及交流导磁材料。如电工纯铁、坡莫合金、硅钢片、软磁铁氧体等都属于这一类。磁滞回线所围面积很大的材料称为硬磁材料,其特征常常用剩余磁感应强度r B 和矫顽力c H ,此两个特定点数值表示。r B 和c H 大的材料可作为永久磁铁使用。有时也用BH 乘积的最大值

max )(BH 衡量硬磁材料的性能,称为最大磁能,硬磁材料典型例子是各种磁钢合金和永久钡铁氧体。

用示波器观察铁磁材料的动态磁滞回线_实验报告

图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S S RD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

示波器的使用实验报告 (3)

物理实验报告 一、【实验名称】 示波器的使用 二、【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法 2.掌握用示波器观察电信号波形的方法 3.学会使用双踪示波器观察李萨如图形和控制示波管工作的电路 三、【实验原理】 双踪示波器包括两部分,由示波管和控制示波管的控制电路构成 1.示波管示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两队相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏,高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。在Y偏转板上和X偏转板上分别加上电压,可以在荧光屏上得到相应的图形。 双踪示波器原理 2.双踪示波器的原理 双踪示波器控制电路主要包括:电子开关,垂直放大电路,水平放大电路,扫描发生器,同步电路,电源等; 其中,电子开关使两个待测电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板,这样在荧光屏上忽而显示Y CH1信号波形,忽而显示Y CH2信号波形,由于荧光屏荧光物质的余晖及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上呈现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的

起点均不一样所造成的,为了获得一定数量的完整周期波形,示波器上设有“Time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波性。(看到稳定波形的条件:只有一个信号同步) 当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”;反之则为“外同步”。操作时,使用“电平旋钮”,改变触发电势高度,当待测电压达到触发电平时,开始扫描,直到一个扫描周期结束。但如果触发电势超出所显示波形最高点或最低点的范围,则扫描电压消失,扫描停止。 3.示波器显示波形原理 如果在示波器的Y CH1或Y CH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期相等时,则在荧光屏上显示出完整的正弦波形。 4.李萨如图形的基本原理 如果在示波器的Y偏转板上加上正弦波,在X偏转板上加上另一正弦波,则当两正弦波信号的频率比为简单整数比时,在荧光屏上将得到李萨如图形。 四、【仪器用具】: 信号发生器、双踪示波头、探头 五、【实验内容】 几种李萨如图形 n x n y分别代表图形在水平或垂直方向的切点数量 nx/n y=1/2 n x/n y=1/3 n x/n y=2/3 n x/n y=3/4 1.观察正弦波形 a.打开示波器 b.开通CH1及相应信号发生器fx=100Hz c.得到大小合适稳定的正弦波 2.测正弦波电压,测正弦波的周期 a.调节波形上下移动键,使得fx=100Hz,改变一次v/div,再记录dy b.调整波形左右移动键,使得改变一次t/div,再记录dx dv(V)垂直格数Vpp(V) dx(us) 水平格数fy(Hz) 1 3. 2 3.2 100 3.8 2631 实际示数12.2 2686

示波器的使用实验报告

示波器的使用实验报告 示波器的使用实验报告1 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。 1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高

速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做余辉时间。余辉时间短于10s为极短余辉,10s1ms为短余辉,1ms0.1s 为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流密度,从而达到调节亮点的辉度。第一阳极、第二阳极和前加速极都是与阴极在同一条轴线上的三个金属圆筒。前加速极G2与A2相连,所加电位

2016磁滞回线的测量

实验名称:用示波器观测铁磁材料的动态磁滞回线姓名学号班级 桌号教室基础教学楼1101 实验日期 2016年月日节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 评 分 此实验项目教材没有相应内容,请做实验前仔细阅读 本实验报告!并携带计算器,否则实验无法按时完成!

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几 个重要概念 1、饱和磁感应强度B S 、饱和磁场强度H S 和磁化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值 H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化曲线成为一闭合曲线,这个闭合曲线称为磁滞 B H B ~H H μ B ~H S f d e

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

示波器实验报告98152

《示波器的使用》实验示范报告 【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。 【实验仪器】 1、双踪示波器GOS-6021型 1台 2、函数信号发生器YB1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。

示波管结构简图示波管内的偏转板 2、扫描与同步的作用 如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y轴偏转板电压的图形,必须加上X轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯

2016磁滞回线的测量(实验报告)(1)

2016磁滞回线的测量(实验报告)(1)

石家 庄铁道大学物理实验中心 第2页 共24页 实验名称: 用示波器观测铁磁材料的动态磁滞回线 姓 名 学 号 班 级 桌 号 教 室 基础教学楼1101 实验日期 2016年 月 日 节 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。

3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共24页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重 要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁 石家庄铁道大学物理实验中心第4页共24页

石家庄铁道大学物理实验中心 第5页 共24页 化曲线 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。

石家庄铁 道 大 学 物 理 实 验 中 心 第6页 共24页 图 1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、 磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现剩磁现象。不断地正向或反向缓慢改变磁场,磁化

用示波器观察铁磁材料的动态磁滞回线-实验报告

用示波器观察铁磁材料的动态磁滞回线-实验报告

2 B a B B s c a' b' H H m o B r H c 图1 起始磁化曲线和磁滞回线 用示波器观察铁磁材料动态磁滞回线 【摘要】铁磁材料按特性分硬磁和软磁两大类,铁磁材料的磁化曲线和磁滞回线,反映该材料的重要特性。软磁材料的矫顽力H c 小于100A/m ,常用做电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。磁滞回线是反映铁磁材料磁性的重要特征曲线。矫顽力和饱和磁感应强度B s 、剩磁B r P 等参数均可以从磁滞回线上获得.这些参数是铁磁材料研制、生产、应用是的重要依据。 【关键词】磁滞回线 示波器 电容 电阻 Bm Hm Br H 【引言】铁磁物质的磁滞回线能够反映该物质的很多重要性质。本实验主要运用示波器的X 输入端和Y 输入端在屏幕上显示的图形以及相关 数据,来分析形象磁滞回线的一些因素,并根据 数据的处理得出动态磁滞回线的大致图线。 【实验目的】 1. 认识铁磁物质的磁化规律,比较两种典 型的铁磁物质的动态磁化特性。 2. 测定样品的H D 、B r 、B S 和(H m ·B m )等参 数。 3. 测绘样品的磁滞回线,估算其磁滞损耗。 【实验仪器】 电阻箱(两个),电容(3-5微法),数字万用表,示波器,交流电源,互感器。 【实验原理】 铁磁物质是一种性能特异,用途广泛的材 料。铁、钴、镍及其众多合金以及含铁的氧化物 (铁氧体)均属铁磁物质。其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图1为铁磁物质的磁感应强度B 与磁化场强度H 之间的关系曲线。 图中的原点O 表示磁化之前铁磁物质处于磁中性状态,即B =H =O ,当磁场H 从零开始增加时,磁感应强度B 随之缓慢上升,如线段oa 所示,继之B 随H 迅速增长,如ab 所示,其后B 的增长又趋缓慢,并当H 增至H S 时,B 到达饱和值B S ,oabs 称为起始磁化曲线。图1表明,当磁场从H S 逐渐减小至零,磁感应强度B 并不沿起始磁化曲线恢复到“O ”点,而是沿另一条新的曲线SR 下降,比较线段OS 和SR 可知,H 减小B 相应也减小,但B 的变化滞后于H 的变化,这现象称为磁滞,磁滞的明显特征是当H =O 时,B 不为零,而保留剩磁Br 。 当磁场反向从O 逐渐变至-H D 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,H D 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD 称为退磁曲线。 图1还表明,当磁场按H S →O →H D →-H S →O →H D ′→H S 次序变化,相应的磁感应强度B 则沿闭合曲线S SRD 'S D R ''变化,这闭合曲线称为磁滞回线。所以,当铁磁材料处于交变磁场中时(如变压器中的铁心),将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量,并以热的形式从铁磁材料中释放,这种损耗称为磁滞损耗,可以证明,磁滞损耗与磁滞回线所围面积成正比。

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

示波器的应用实验报告

电子线路实验报告 实验名称:实验三示波器的应用——信号测量系别专业: 实验者姓名: 实验日期: 2016 年 10 月28日 实验报告完成日期: 2014 年 10 月29日 指导老师意见: 成绩

一、实验目的 1、了解示波器的基本工作原理和主要技术指标; 2、掌握示波器的使用方法; 3、应用示波器测量各种信号的波形参数。 二、实验原理 1、数字示波器显示波形原理 示波器显示器是一中电压控制器件,根据电压有无控制屏幕亮灭,并根据电压大小控制光点在屏幕上的位置。 2、数字存储示波器的原理 数字存储示波器主要由信号调理部分、采集存储部分、触发部分、软件处理部分和其他部分组成: (1)信号调理部分:主要由衰减器和放大器组成; (2)采集和存储部分:主要由模数转换器 ADC、内存控制器和存储器组成;(3)触发部分:主要由触发电路构成; (4)软件处理部分:处理器组成; 三、示波器使用方法总结

1、面板: 左上部为屏幕和屏幕菜单键,右上部为操作面板,下部为信号输出、输入端口。右上部的操作面板又可分为几小块:信号水平调节区(Horizontal)、信号垂直调节区(Vertical)、触发区(Trigger)、测量区(Measure)、工具区(Tools)。 2、功能键及旋钮作用说明: (1)、Horizontal区: Horiz——进入水平控制菜单,可选择时基模式(标准、XY)。 旋钮——可做水平位移和水平方向灵敏度的调节。 (2)、Vertical区: 1、2——通道开关,键灯亮表明该通道工作中。按一下,进入通道设置菜单,可对通道的耦合方式、带宽限制、微调、倒置和探头等功能进行设置;再按一下,关闭该通道。 旋钮——可做垂直方向的位移和垂直方向灵敏度的调节。 Help——显示帮助信息,各个的按键说明。 (3)、Tools区: Wave Gen(信号发生器)——键灯亮,信号发生器工作,进入信号发生器菜单,可选波形、频率、幅度、偏移,并将信号从Gen Out插孔输出。 左部旋钮(Entry)——可选择菜单项、调节参数。 (4)、Measure区: Cursors——可调节光标手动进行测量,旋钮可移动光标线,可选择X1、X2、Y1、Y2、X1X2锁定、Y1Y2锁定等。 Meas——可进行自动测量,选择全部通道显示全部测量信息。

大学物理实验示波器实验报告

示波器的使用 【实验简介】 示波器是用来显示被观测信号的波形的电子测量仪器,与其他测量仪器相比,示波器具有以下优点:能够显示出被测信号的波形;对被测系统的影响小;具有较高的灵敏度;动态范围大,过载能力强;容易组成综合测试仪器,从而扩大使用范围;可以描绘出任何两个周期量的函数关系曲线。从而把原来非常抽象的、看不见的电变化过程转换成在屏幕上看得见的真实图像。在电子测量与测试仪器中,示波器的使用范围非常广泛,它可以表征的所有参数,如电压、电流、时间、频率和相位差等。若配以适当的传感器,还可以对温度、压力、密度、距离、声、光、冲击等非电量进行测量。正确使用示波器是进行电子测量的前提。 第一台示波器由一只示波管,一个电源和一个简单的扫描电路组成。发展到今天已经由通用示波器到取样示波器、记忆示波器、数字示波器、逻辑示波器、智能化示波器等近十大系列,示波器广泛应用在工业、科研、国防等很多领域中。 Karl Ferdinand Braun 生平简介 1909年的诺贝尔物理奖得主Karl Ferdinand Braun 于1897年发明世界上 第一台阴极射线管示波器,至今许多德国人仍称CRT 为布朗管(Braun Tube)。 【实验目的】 1、 了解示波器的结构和工作原理,熟悉示波器和信号发生器的基本使用方法。 2、 学习用示波器观察电信号的波形和测量电压、周期及频率值。 3、 通过观察李沙如图形,学会一种测量正弦波信号频率的方法。 【实验仪器】 VD4322B 型双踪示波器、EM1643型信号发生器、连接线及小喇叭等 图8-1 Karl Ferdinand Braun 5 6 9 10

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告 铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。2测定样品的基本磁化曲线作H 曲线。3测定样品的Hc、Br、Bm和 Hm?6?1Bm等参数。4测绘样品的磁滞回线。【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。其特征是在外磁场作用下能被强烈磁化故磁导率很高。另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。铁磁材料的相对磁导率可高达数千乃至数万这一特点是它用途广泛的主要原因之一。图2-3 铁磁材料μ与H 关系曲线图2-4 不同铁磁材料的磁滞回线可以说磁化曲线和磁滞回线是铁磁材料分类和选用的主要依据图2-4为常见的两种典型的磁滞回线其中软磁材料的磁滞回线狭长、矫顽力、剩磁和磁滞损耗均较小是制造变压器、电机、和交流磁铁的主要材料。而硬磁材料的磁滞回线较宽矫顽力大剩磁强可用来制造永磁体。3利用示波器观测磁滞回线的原理图2-5 原理电路图利用示波器观测磁滞回线的原理电路如图2-5所示。待测样品为EI型矽钢片其上均匀地绕以磁化线圈N及副线圈n。交流电压u加在磁化线圈上线路中串联了一取样电阻R1。将R1两端的电压UH加到示波器的X输入端上对DC4322B 示波器为通道Ⅰ。副线圈n与电阻R2和电容C串联成一回路。电容C两端的电压UB加到示波器的Y输入端上对DC4322B示波器为通道Ⅱ。下面我们来说明为什么这样的电路能够显示和测量磁滞回线。

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

示波器使用大学物理实验报告示范及数据处理

《示波器的使用》实验报告 物理实验报告示范文本: 包含数据处理李萨如图 【实验目的】 1.了解示波器显示波形的原理,了解示波器各主要组成部分及它们之间的联系和配合; 2.熟悉使用示波器的基本方法,学会用示波器测量波形的电压幅度和频率; 3.观察李萨如图形。 【实验仪器】 1、双踪示波器 GOS-6021型 1台 2、函数信号发生器 YB1602型 1台 3、连接线示波器专用 2根 示波器和信号发生器的使用说明请熟读常用仪器部分。 [实验原理] 示波器由示波管、扫描同步系统、Y轴和X轴放大系统和电源四部分组成, 1、示波管 如图所示,左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 示波管结构简图示波管内的偏转板 2、扫描与同步的作用

如果在X 轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如图 图扫描的作用及其显示 如果在Y 轴偏转板上加正弦电压,而X 轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如图 如果在Y 轴偏转板上加正弦电压,又在X 轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,其合成原理如图所示,描出了正弦图形。如果正弦波与锯齿波的周期(频率)相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。由此可见: (1)要想看到Y 轴偏转板电压的图形,必须加上X 轴偏转板电压把它展开,这个过程称为扫描。如果要显示的波形不畸变,扫描必须是线性的,即必须加锯齿波。 (2)要使显示的波形稳定,Y 轴偏转板电压频率与X 轴偏转板电压频率的比值必须是整数,即: n f f x y = n=1,2,3, 示波器中的锯齿扫描电压的频率虽然可调,但要准确的满足上式,光靠人工调节还是不够的,待测电压的频率越高,越难满足上述条件。为此,在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节到接近满足式频率整数倍时的条件下,再加入“同步”的作用,扫描电压的周期就能准确地等于待测电压周期的整数倍,从而获得稳定的波形。 (1)如果Y 轴加正弦电压,X 轴也加正弦扫描电压,得出的图形将是李萨如图形,如表所示。李萨如图形可以用来测量未知频率。令f y 、f x 分别代表Y 轴和X 轴电压的频率,n x 代表X 方向的切线和图形相切的切点数,n y 代表Y 方向的切线和图形相切的切点数,则有 y x x y n n f f = 李萨如图形举例表

磁滞回线的测量(实验报告记录)()

磁滞回线的测量(实验报告记录)()

————————————————————————————————作者:————————————————————————————————日期: 2

实验名称:用示波器观测铁磁材料的动态磁滞回线 姓名学号班级 桌号教室基础教学楼1101 实验日期2016年月日节 此实验项目教材没有相应内容,请做实验前仔细阅读本实验报告!并携带计算器,否则实验无法按时完成! 一、实验目的: 1、掌握磁滞、磁滞回线、磁化曲线、基本磁化曲线、矫顽力、剩磁、和磁导率的的概念。 2、学会用示波法测绘基本磁化曲线和动态磁滞回线。 3、根据磁滞回线测定铁磁材料在某一频率下的饱和磁感应强度Bs、剩磁Br和矫顽力Hc 的数值。 4、研究磁滞回线形状与频率的关系;并比较不同材料磁滞回线形状。 二、实验仪器 1.双踪示波器 2.DH4516C型磁滞回线测量仪 石家庄铁道大学物理实验中心第3页共15页

三、实验原理 (一)铁磁物质的磁滞现象 铁磁性物质除了具有高的磁导率外,另一重要的特点就是磁滞。以下是关于磁滞的几个重要概念 1、饱和磁感应强度B S、饱和磁场强度H S和磁化曲线 石家庄铁道大学物理实验中心第4页共15页

石家庄 铁道大学物理实验中心 第5页 共15页 铁磁材料未被磁化时,H 和B 均为零。这时若在铁磁材料上加一个由小到大的磁化场,则铁磁材料内部的磁场强度H 与磁感应强度B 也随之变大,其B-H 变化曲线如图1(OS )曲线所示。到S 后,B 几乎不随H 的增大而增大,此时,介质的磁化达到饱和。与S 对应的H S 称饱和磁场强度,相应的B S 称饱和磁感应强度。我们称曲线OS 为磁性材料的磁化曲线。 图1 磁性材料的磁化曲线 图2 磁滞回线和磁化曲线 2、磁滞现象、剩磁、矫顽力、磁滞回线 当铁磁质磁化达到饱和后,如果使H 逐步退到零,B 也逐渐减小,但B 的减小“跟不上”H 的减小(B 滞后于H )。即:其轨迹并不沿原曲线SO ,而是沿另一曲线Sb 下降。当H 下降为零时,B 不为零,而是等于B r ,说明铁磁物质中,当磁化场退为零后仍保留一定的磁性。这种现象叫磁滞现象,B r 叫剩磁。若要完全消除剩磁B r ,必须加反向磁场,当B =0时磁场的值H c 为铁磁质的矫顽力。 当反向磁场继续增加,铁磁质的磁化达到反向饱和。反向磁场减小到零,同样出现B H B ~H H μB ~H S f d e

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

相关文档
最新文档