抗生素检测技术英文版

抗生素检测技术英文版
抗生素检测技术英文版

Liquid chromatography–tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal

farms

Malgorzata Gbylik-Sikorska ?,Andrzej Posyniak,Tomasz Sniegocki,Jan Zmudzki

National Veterinary Research Institute (NVRI),al.Partyzantow 57,24-100Pulawy,Poland

h i g h l i g h t s

g r a p h i c a l a b s t r a c t

water sample

CONTROL

OUT OF CONTROL

LC-MS/MS

water with antibiotics

residues

adsorption

constant exposure

environment

Veterinary inspection

a r t i c l e i n f o Article history:

Received 7February 2014

Received in revised form 25April 2014Accepted 28April 2014

Handling Editor:Klaus Kümmerer Keywords:Antibiotics Water Multiclass LC–MS/MS

a b s t r a c t

A sensitive liquid–chromatography–electrospray tandem mass spectrometry multiclass method for determination of 45veterinary compounds belonging to 9different antibiotic groups,including amino-glicosides (4),b -lactams (13),diaminopyrimidines (1),?uoroquinolones (10),lincosamides (1),macro-lides (5),pleuromutilins (1),sulfonamides (6)and tetracyclines (4),in water from breeding animal watering supply system has been developed.Isolation of the analytes was carried out by solid phase extraction with hepta?uorobutyric acid as an ion-pair agent on the Strata-X reversed phase cartridges.All analytes were determined simultaneously in one single run on a C18column with gradient elution and short analysis time (13min).Method was validated,average relative recoveries were in the range of 84.3–109.3%with satisfactory precision are repeatability for all compounds are in the range of 4.7–12.2%,within-laboratory reproducibility are in the range of 4.4–13.5%for.The limit of quantitation (LOQ)of the method was in the range of 0.02–10l g L à1,depending of analyte.The applicability of the method was tested by determining antimicrobial compounds in real water samples collected from water supply systems in breeding animal farms.The average antibiotics concentration in real water samples were,respectively,in the range of 0.14–1670l g L à1.

ó2014Elsevier Ltd.All rights reserved.

1.Introduction

Despite recommendations,the usage of antibiotics in food-producing animals therapy is still increasing (Kemper,2008).

https://www.360docs.net/doc/3b4956891.html,/10.1016/j.chemosphere.2014.04.1050045-6535/ó2014Elsevier Ltd.All rights reserved.

?Corresponding author.Tel.:+48818893127;fax:+48818862595.

E-mail address:malgorzata.gbylik@piwet.pulawy.pl (M.Gbylik-Sikorska).

Obviously,excluding the use of antibiotics in bacterial diseases in breed animal farms is impossible.Therefore,many classes of anti-biotics,such as aminoglicosides,b-lactams,diaminopyrimidines,?uoroquinolones,lincosamides,macrolides,pleuromutilins,sul-fonamides and tetracyclines are widely used in current veterinary practice to treat animal diseases or illegally to promote animal growth.In poultry and swine therapy,the antimicrobial com-pounds are commonly added to animal feed or drinking water sources.Due to the fact that many antibiotics are added to water, some water supply systems can be contaminated and can spread to the farm environment.Not using regular cleaning of water sup-ply systems,especially after?nish antibiotic treatment,deliberate illegal administration of low doses of antibiotics in water to ani-mals stimulation,as well as remains of unconscious application of antibiotics,can lead to undesirable consequences.The constant exposure of breeding animals to these compounds may lead to res-idues in animal tissues and antimicrobial resistance of animal and environment pathogens.Moreover,exposure of animal for trace amounts of antibiotics can also interfere with the pharmacokinet-ics of other compounds and can in?uence on action of other anti-bacterial agents,which were administered intentionally in the treatment of infection in animals.This may result in prolongation of the withdrawal period of antibiotic,which was administrated to treat animals diseases.In water supply systems,the same phys-ical phenomenon as in the natural aquatic environment,such as antibiotics accumulation,may also occur.Physicochemical proper-ties of some antibacterial agents(tetracyclines,?uoroquinolones and sulfonamides)enable them to absorb onto sewage sludge,soil and sediments(Kemper,2008;Kummerer,2009).Thus,can adsorb onto water supply system pipes and after then can be systemati-cally eluted after animal treatment?nish.This situation may be harmful to the animals and consumers of food of animal origin health and can lead to increase of allergy and bacteria resistance to antibiotics use in human medicine.Non-controlled antibacterial residues in water supply systems can also spread to the natural environment with the farm sludge.

The aim of this study was to develop a non-invasive form of control of antibiotic residues,which are present in water supply systems after?nishing their administration in water for the treat-ment and the illegal administration in subliminal doses of antibac-terial compounds in water for health animals.Therefore,it was necessary to develop an analytical method for the determination of antimicrobial compounds residues in water samples collected from water supply systems in food-producing animals.Until now,there have been many analytical methods for determining antimicrobial compounds in different biological matrices,animal tissues(Chico et al.,2008;Hurtaud-Pessel D.et al.,2011;Granelli and Branzell,2007;Smith et al.,2009;Gbylik et al.,2013)and feed (Chafer-Pericas et al.,2011).In addition,there are many approaches contributing to the realisation of studies on the occur-rence of antibiotics in environmental water samples,such as wastewater,river water,lake water,?sh farms and ground water (Kim and Carlson,2007;Chang et al.,2010;Borecka et al.,2013; Gros et al.,2013).Some of the reported methods included the anal-ysis of only one group of the most important antibiotics used in veterinary and human therapy,such as sulfonamides(Raich-Montiu et al.,2007)or?uoroquinolones(Xiao et al.,2008).The separate determination of antibiotics from different groups in one sample is more expensive and time consuming.Furthermore, more frequent detection of the trace amounts,as well as high con-centrations of antimicrobial compounds from different classes in the same water sample are observed.The multiclass analytical methods for determination of antibacterial compounds belonging to groups such as macrolides,sulfonamides,?uoroquinolones and tetracyclines(Carlson and Kim,2007;Tong et al.,2009),b-lactams (Campagnolo et al.,2002),or lincozamides and thrimethoprim,additionally(Silvia et al.,2005;Kasprzyk-Horden et al.,2007)in environmental water samples have been described in the litera-ture.However,most of the methods do not include the analysis of aminoglycosides in the same analytical protocol(Campagnolo et al.,2002;Carlson and Kim,2007;Tong et al.,2009).Most of them used the solid phase extraction(SPE)followed by liquid chro-matography coupled with the tandem mass spectrometry(LC–MS/ MS).Typically,these methods used ethylenediaminetetraacetic acid(EDTA)as a chelating agents and OASIS HLB SPE cartridges (Campagnolo et al.,2002;Silvia et al.,2005;Karthikeyan and Meyer,2006;Carlson and Kim,2007;Tong et al.,2009).Unfortu-nately,none of them relates to determination and analysis of anti-biotics in water samples from food-producing animal water supply systems,which aim to control systems contaminations and there are no published methods for simultaneous determination of aminoglicosides,b-lactams,diaminopyrimidines,?uoroquino-lones,lincosamides,macrolides,pleuromutilins,sulfonamides and tetracyclines.

This study presents a simple and ef?cient multi-class method for determination of45analytes belonging to9different antibacte-rial compound groups in water collected from food-producing ani-mals water supply systems.The sample preparation step contains the ion-par agent addition and the Strata-X SPE cartridges usage. The method was validated according to selected requirements of the European Decision2002/657/EC(C.D.2002/657/EC),(linearity, precision,recovery and selectivity),for analytical limits of the method,limit of detection(LOD)and limit of quantitation(LOQ) were estimated.A developed method is dedicated to determination of antibiotics residues(trace amounts,in the range of0.02–1000l g Là1)after?nishing the antibiotics application on breeding-animal farms,but it cannot be used to determine of the antibiotic concentrations during treatment(therapeutic doses). The applicability of the method was evaluated by determining antimicrobial compounds in water supply systems from food-producing animals collected from a few different farms in Poland.

2.Materials and methods

2.1.Reagents

All reagents used were of analytical grade,>95%purity.Sodium acetate and sodium hydroxide were from POCH(Gliwice,Poland), acetonitrile and methanol were obtained from J.T.Baker(Deventer, the Netherlands).Hepta?uorobutyric acid(HFBA)was from Fluka, (Newport News,VA,the United States).Water was deionised (>18M X cmà1)by the Millipore system.Amoxicillin(AMOX), ampicillin(AMPI),penicillin G(PEN G),nafcillin(NAF),dicloxacillin (DICLOX),oxacillin(OXA),cephapirin(CFPI),ceftiofur(CFT),cef-operazone(CFPE),cephalexin(CFLE),cefquinome(CFQ),cefazolin (CFZ),cefalonium(CFLO),dano?oxacin(DAN),di?oxacin(DIF), enro?oxacin(ENR),cipro?oxacin(CIP),nor?oxacin(NOR),marbo-?oxacin(MAR),?umequine(FLU),sara?oxacin(SAR),oxolinic acid (OXO),nalidix acid(NAL),chlortetracycline(CTC),tetracycline(TC), doxycycline(DC),oxytetracycline(OTC),streptomycin(STRP), dihydrostrepromycin(DISTRP),spectinomycin(SPEC),neomycin (NEO),sulfamerazine(SME),sulfamethazine(SMT),sulfamethoxa-zole(SMA),sulfamonomethoxine(SMM),sulfadimethoxine (SDMX),sulfathiazole(SFT),trimethoprim(TMP),tylosin(TYL), erythromycin(ERY),spiramycin(SPI),tilmicosin(TIL),josamycin (JOS),lincomycin(LIN),tiamuline(TIM),sulfafenazole(SFF)–internal standard(IS),were from Sigma–Aldrich(St.Louis,MO, the United States).Strata X(100mg,6mL)cartridges were obtained from Phenomenex(Torrance,CA,the United States),syr-inge?lters0.22l m PVDF were from Restek(Bellefonte,PA,the United States).

M.Gbylik-Sikorska et al./Chemosphere119(2015)8–159

2.2.Standard solutions

Individual stock standard solutions(1mg mLà1)for macrolides (TYL,ERY,SPI,TIL,JOS),tetracyclines(TC,CTC,DC,OTC),sulfona-mides(SME,SMT,SMA,SMM,SDMX,SFT)diaminopyrimidine (TMP),pleuromutylines(TIM)and lincozamides(LIN)were pre-pared in methanol and stored in amber volumetric?asks at à18°C.Whereas for?uoroquinolones(DAN,DIF,ENR,CIP,NOR, FLU,SAR,OXO,NAL,MAR)standard solutions were prepared in methanol with addition of sodium hydroxide and stored in amber volumetric?asks atà18°C.For aminoglycosides(STRP,DISTRP, SPEC,NEO)and b-lactams(AMOX,AMPI,OXA,DIKLOX,PEN G, NAF,CFPI,CFT,CFLE,CFQ,CFZ)standard solutions were prepared in water;cefalosporines(CFLO and CFPE)were prepared in aceto-nitrile and water(1:1,v/v)and stored in amber volumetric?asks atà18°C.Mixtures of working standard solutions were prepared in water and stored in plastic?asks at4°C.Individual stock inter-nal standard(IS)solution(1mg mLà1)for SFF was prepared in water and stored in amber volumetric?asks atà18°C.Working internal standard solution(2l g mLà1)was prepared in deionised water and stored in amber volumetric?ask at4°C.

2.3.Water samples

For validation experiments,water samples were collected from water supply systems on local food-producing animal farm.Before the experiment,water samples were respectively checked to be free of the antibiotics.For the purpose of the matrix effect,water samples from water supply systems and wastewater samples were collected.For the main study,water samples were collected from water supply systems of25food-producing animal farms in Poland.Water samples were collected into dark plastic bottles and kept in a cooler with ice until transportation to the laboratory. Once back to the laboratory,water samples were stored atà18°C until the analysis.

2.4.Sample preparation

Before extraction,50l L of IS was added to a250mL water sam-ple in polypropylene bottle(500mL),mixed and left at room temperature in a dark place for15min,after that6mL of0.5M sodium acetate pH=5.6and30l L of HFBA were added and shaken brie?y for5min.Such prepared samples were transferred to pre-conditioned Strata-X SPE cartridges(sequentially conditioned with 5mL of MeOH,5mL H2O and5mL of0.05M HFBA).The?ow was no faster than1drop/5s.After then cartridges were vacuum-dried for5min at a pressure ranged from12mmHg to18mmHg.The analytes were eluted with3mL mixture of acetonitrile and 0.05M HFBA(9:1,v/v)twice.Eluates were collected in10mL glass tubes and evaporated to dryness under a stream of nitrogen at 45±5°C.The residues were dissolved in500l L of0.025%HFBA and?ltered through0.22l m PVDF syringe?lters into LC vials. 2.5.Liquid chromatography–mass spectrometry

The LC–MS/MS analysis was performed on the Agilent1200 HPLC system(Agilent Technologies,Germany)with an automatic degasser,a binary pump and an autosampler connected to the AB Sciex API4000triple quadrupole mass spectrometer(AB Sciex, Canada).The chromatographic separation was performed on the Luna C18(2)100A column(50?3.0mm,particle size3l m,Phe-nomenex),which was maintained at30°C.The?ow rate of mobile phase was400l L minà1,the injection volume–30l L.The optimal composition of mobile phase A and B was acetonitrile(A)and 0.025%HFBA(B).The mobile phase gradient program started at 85%of B,60%B at1min,40%B at3min and then5%at4min,held for3min.The column returned to the initial composition and re-equilibrated within6min before the next injection.The MS instrument was operated in the positive ESI mode.The following parameters were used in the tune mode:resolution Q1and Q3–unit;temperature–500°C,nebuliser gas(N2)–40;curtain gas (N2)–20;collision gas(N2)–3;auxiliary gas–50;ion spray volt-age–5500V.The Analyst1.5software controlled the LC–MS/MS system and processed the data.The data acquisition was in multi-ple reactions monitoring(MRM)mode.The ion transitions and mass parameters monitored for each analyte are listed in Table1.

2.6.Method validation

Water samples free from antibiotics were used in the validation process.Linearity was performed by the matrix-matched calibra-tion curve which had been prepared by fortifying blank water sam-ples at9concentration levels(0.02,0.05,1,10,50,100,250,500 and1000l g Là1).The50l L of IS was added to each sample. Quantitative results evaluation was performed by comparing the analyte/internal standard peak area ratio from matrix-matched calibration curve to the analyte/internal standard peak area ratio in analysed samples.

The repeatability was calculated as the coef?cients of variation (CV,%)of results obtained after fortifying of six blank samples at three concentration levels:10,100and500l g Là1.The spiked samples were analysed on the two subsequent days with the same instrument and the same operators.

The within-laboratory reproducibility was calculated as the overall coef?cients of variation(CV,%)of the results obtained after fortifying another two sets of blank samples at the same concen-tration levels of analysed compounds as for the repeatability and analysing on2d with the same instrument and another operators.

Selectivity was checked by analysis of20blank water samples collected from different sources which allows to verify the appear-ance of possible presence of interfering substances around the retention times of the compounds of interest.

The percentage relative recovery was evaluated in the same experiment as repeatability by comparing the mean measured con-centration with the forti?ed concentration of the samples.

The method detection limit(LOD)and the quanti?cation limit (LOQ)were estimated after analysis of20forti?ed blank samples at the minimum detectable concentration level of each analyte and measured the signal to noise ratios at3and10respectively.

The stability of antibiotics in water samples were evaluated by analysing samples forti?ed at the10l g Là1concentration level concentration for each of45compounds.The stability of individual stock standard solution for all analytes were estimated in the following order:1d,1and2weeks,1,3,6and10months.The standard solutions were stored in a dark place at two different temperatures:4°C andà18°C.The prepared samples were stored atà18°C and analysed after1,7and14d,1,2,3and 6months.

The matrix effect was calculated by analysing6water samples from different sources spiked at10l g Là1concentration level for each analyte and it was calculated by means of the Eq.(1).The matrix effect was evaluated as a percentage of signal intensity of water sample extract forti?ed after extraction(IW M)in relation to signal intensity of deionised water forti?ed(IW D)at the same concentration level.

Matrix effecte%T?

IW M

IW D

?100e1T

The robustness of the method was estimated for the four different possible factors that could have an in?uence on the method results. Among possible factors are:the volume of solvent for conditioning

10M.Gbylik-Sikorska et al./Chemosphere119(2015)8–15

of SPE cartridges and volume of elution solvent,the temperature of the evaporation of the extracts,the size of syringe?lters.The study was performed with eight water samples spiked at the level of 10l g Là1.The results were evaluated on the basis of the Youden approach,described by Plackett and Burman,1946and Van der Heyden et al.,2001.

3.Results and discussion

3.1.LC–MS/MS conditions

The mass spectrometer settings were optimised with a direct infusion of working standard solutions.For all compounds,the two most abundant product ions produced from each precursor ion were chosen as the ion transition in order to comply with the criteria needed for qualitative and quantitative methods.Accord-ing to the EU criteria(C.D.2002/657/EC),two MRM transitions were monitored.The characteristic MS/MS parameters:collision energy(CE),declustering potential(DP)and dwell time have been optimised separately for each analyte(Table1).The analyses were performed in the positive ionisation mode.

In order to improve the chromatographic separation of the selected antibiotics from the possible matrix interferences,the LC conditions were optimised.In the majority of the published meth-ods,for the determination of the antibacterial compounds in water samples,the suf?cient chromatography separation was obtained with a different C18column(Raich-Montiu et al.,2007;Carlson and Kim,2007;Kasprzyk-Horden et al.,2007;Xiao et al.,2008; Tong et al.,2009).This can be explained by the fact that highly polar compounds are not retained and elute in the void volume of column when reversed-phase separation is used.Ion-pair chro-matography can be the solution to this problem,however,asym-metric peak shape,low signal intensity also ion suppression may occur.For this reason,C18columns with different parameters(col-umn size and particle size)were chosen for this experiment.It was found that the best result(high selectivity,good peak shape,higher intensity of most compounds and shorter retention times),was obtained with the Luna C18(2)100A column(50?3.0,3l m).At the second step,different compositions of the mobile phase includ-ing ion-pair agents,were tested.Mobile phase compositions of methanol and acetonitrile coupled with formic acid or water including one of two ion-pair agents such as hepla?uorobutyric acid and penta?uoropionic acid were tested.The use of the ion-pair

Table1

MS/MS ion transitions and parameters.

Analyte Ion transition1(m/z)Ion transition2(m/z)Dwell time(ms)DP(V)CE(Ev)

SPEC351.1/333.2351.1/207.2203267 STRP582.0/263.0582.0/246.02052166 DISTRP584.3/263.2584.3/246.22042150 NEO615.3/161.0615.3/163.22010942 AMOX366.1/349.1366.1/208.0201445 PEN G335.1/160.0335.1/176.1201760 AMPI350.1/106.0350.1/160.0155827 DICLOX470.0/160.0470.0/311.0155022 NAF415.0/199.0415.0/171.0154820 OXA402.0/160.0402.0/243.0155225 CFPI424.0/152.0424.0/124.0203550 CFT524.0/241.0524.0/125.0202550 CFQ529.0/134.0529.0/125.0202550 CFLO459.0/337.1459.0/152.0201646 CFZ455.0/323.0455.0/156.0201550 CFLE348.0/158.0348.0/106.0201050 CFPE646.0/530.0646.0/530.0201760 TMP292.1/262.2292.1/231.3155236 CIP332.0/314.0332.0/231.0152865 ENR360.0/342.0360.0/286.01533100 DIF400.5/382.1400.5/356.0153050 DAN358.0/340.0358.0/255.0156033 FLU262.1/244.0262.1/202.0154425 OXO262.0/244.0262.0/216.0155325 NAL233.0/215.0233.0/187.0154230 MAR363.0/345.0363.0/320.0157030 SAR385.8/368.1385.8/348.0155031 NOR320.0/302.0320.0/231.0153050 ERY734.0/576.5734.0/158.2152875 TYL916.0/174.0916.0/772.51552110 TIL869.6/696.5869.6/174.21513561 JOS828.2/173.9828.2/229.0158046 SPI843.5/540.4843.5/174.21512044 LIN407.2/126.1407.2/359.3157428 TIM494.4/192.2494.4/118.81512830 SMT279.2/156.0279.2/108.0102550 SME265.0/156.0265.0/108.0102750 SDMX311.0/156.0311.0/108.0102350 SMA254.0/107.8254.0/155.9102440 SMM281.0/156.0281.0/108.0103550 SFT256.0/156.0256.0/108.0105320 DC445.0/428.0445.0/154.0152350 OTC461.0/426.0461.0/444.0152840 TC445.0/410.0445.0/427.0152755 CTC479.0/444.0479.0/462.0152960

M.Gbylik-Sikorska et al./Chemosphere119(2015)8–1511

chromatography was necessary because of the polar character of aminoglycosides(Karthikeyan and Meyer,2006).Unfortunately, the addition of ion-pair agent caused a signi?cant reduction of sig-nal intensity of ERY,but lower concentration of ion-pair agent caused the lost of aminoglycosides elution from column.The best results such as better aminoglycosides elution from chromatogra-phy column,satisfactory peak shapes and reproducible retention time were obtained with0.025%HFBA combined with acetonitrile. Because of this compromise between adequate ion-pair agent vol-ume and pH of mobile phase,therefore the LOQ for ERY,NEO, AMOX and PEN G are in the range of5l g Là1to10l g Là1. Furthermore,the mobile phase gradient was also optimised in order to achieve the best chromatographic result with the mini-mum analysis time.The last eluting analyte was detected at 7.66min,the total run time was13min.In Fig.1,total ion current (TIC)chromatogram of real sample spiked on5l g Là1of mixture containing45analytes is displayed.

3.2.Optimisation sample preparation

Water samples from water supply systems from breeding-animals farms are speci?c kind of matrix,signi?cantly differing from the environmental water samples.Besides the antibiotics,different pH values of the solution,?ltration step,ion-pair agent and chelating agent addition prior SPE extraction were conducted.

At?rst,the necessity of the?ltration step was tested and no sig-ni?cant in?uence on the SPE extraction was detected.Similarly to reports of other authors,it is very important to adjust the pH val-ues to acidic and neutrals compounds.The pH value is a critical part of the sample preparation and SPE extraction process because the pKa values of analytes are in the range of about2.6–9.7.The additions of a different buffer prepared with non-organic acid like, hydrochloric acid and organic acids(formic acid,acetic acid)and sodium acetate were tested.All buffers were tested with pH value in the range of3.0–6.0.It was dif?cult to?nd the compromise between very sensitive to the presence of acid b-lactams and mac-rolides,and tetracyclines,?uoroquinolones and sulfonamides,for which the isolation is better in acidic solution.The most satisfac-tory recoveries were achieved with0.5M sodium acetate pH=5.6.

In the previous studies,addition of EDTA to water sample to improve tetracyclines isolation was used(Xiao et al.,2008; Chang et al.,2010;Gros et al.,2013).During the experiment,there was no signi?cant impact on tetracyclines recoveries with EDTA addition into the sample.

In the next step the employing of the ion-pair agents which are commonly recommended in the sample extraction to enable the aminoglicosides extraction,took place.The selection of ion-pair

Representative total ion current(TIC)chromatogram of real water sample spiked on5l g Là1concentration level by mixture 12M.Gbylik-Sikorska et al./Chemosphere119(2015)8–15

agent were checked.The best choice was found with Strata-X car-tridges and the mixture of acetonitrile with HFBA (9:1,v/v)as the elution solvent,because only these cartridges usage with ion pair addition,enable the aminoglycosides elution.Overall,the Strata-X (100mg and 200mg)cartridges gave the same recoveries better then Strata-XL (500mg).Finally,Strata-X (100mg)was selected to be used at this study because of shorter time of the SPE sample loading step then Strata-X 200mg.

To enhance the puri?cation of the samples,?nal extract syringe ?lters (PVDF and NYLON)were tested.PVDF syringe ?lters gave the best ‘‘purity’’of the extract without any in?uence on the analytes recoveries.

3.3.Method validation

The validation results of the developed method are reported in Table 2.During the validation study parameters such as precision (repeatability and within –laboratory reproducibility),selectivity and linearity were established according to the European Decision 2002/657/EC (C.D.2002/657/EC ).The matrix-matched calibration curves of 9points achieved good linearity,greater than r 2=0.99for all analytes.As can be seen in Table 2,the overall coef?cient of variation (CV)for all compounds is in the range of 4.7–12.2%

Table 2

Validation report of developed method.Analyte Repeatability (CV,%)Within-lab reproducibility (CV,%)LOD (l g L à1)LOQ (l g L à1)Recovery (%)SPEC 6.1±0.77.6±0.70.35194.1±3.6STRP 5.3±0.87.1±0.80.36196.4±2.4DISTRP 6.0±1.17.6±0.50.73291.3±4.2NEO 7.3±0.7 6.8±0.8 3.791097.1±3.5AMOX 5.6±1.0 4.0±0.5 3.541097.7±5.1PEN G 9.4±2.112.7±0.3 3.721097.1±3.1AMPI 7.9±0.612.2±0.60.020.05105.7±2.5DICLOX 5.7±1.18.7±0.60.020.05104.8±3.1NAF 4.3±0.49.2±0.70.020.05100.3±1.7OXA 9.8±1.79.3±0.40.020.0590.3±2.4CFPI 8.0±0.613.6±0.40.020.0592.1±2.8CFT 7.4±0.58.8±0.50.020.05102.7±1.9CFQ 6.2±0.89.7±0.60.010.02103.2±3.2CFLO 5.5±1.011.2±0.40.010.0296.4±1.7CFZ 8.2±0.87.9±0.70.010.0299.4±2.4CFLE 7.8±0.913.9±1.50.020.0592.7±1.2CFPE 7.5±1.29.9±0.60.010.0291.1±2.2TMP 5.4±0.712.5±0.80.020.0595.5±2.6CIP 6.5±0.310.5±0.20.010.0287.7±2.7ENR 7.3±0.37.1±0.50.010.0289.5±3.2DIF 6.3±0.5 6.1±0.80.010.0295.2±1.4DAN 8.4±0.28.3±0.60.010.0296.0±1.9FLU 11.5±0.310.2±0.30.010.02101.7±3.1OXO 9.1±0.79.1±0.40.010.02105.1±1.6NAL 9.2±0.211.1±0.10.010.02109.3±2.8MAR 5.2±0.710.9±0.30.010.0285.7±1.1SAR 10.0±0.79.1±0.80.010.0284.3±1.7NOR 10.2±0.511.6±0.70.010.0285.3±2.7ERY 11.4±0.49.4±0.3 2.03596.4±4.6TYL 11.3±0.610.5±0.30.010.0291.4±1.6TIL 6.2±0.412.2±0.30.020.05103.3±3.1JOS 7.7±0.411.3±0.60.020.05103.6±2.7SPI 8.1±0.48.0±0.60.020.0595.7±2.9LIN 4.7±0.38.5±0.20.010.0298.9±1.6TIM 5.3±0.67.3±0.40.010.0296.8±1.6SMT 6.3±0.910.1±0.20.010.02106.9±2.1SME 8.2±0.711.4±0.60.010.02104.5±1.8SDMX 8.3±0.38.1±0.30.010.0298.9±2.3SMA 10.0±0.77.0±0.20.010.02102.1±1.6SMM 9.1±0.89.1±0.50.010.0291.0±2.6SFT 5.8±0.87.9±0.50.020.02105.1±2.2DC 4.4±0.613.3±0.40.020.0595.8±1.8OTC 11.4±0.712.9±0.30.010.0299.3±1.6TC 11.0±0.68.0±0.30.020.0595.9±2.9CTC

5.3±0.5

10.5±0.4

0.02

0.05

98.8±2.3

Table 3

Matrix effects:negative values characterise the ion suppressions,and positive ones –the ion enhancement (à)–ion suppression,(+)–ion enhancement.Analyte Matrix effect (%)Analyte Matrix effect (%)SPEC à11.6±1.4OXO à8.6±0.5STRP 10.2±0.7NAL à5.3±0.4DISTRP 8.8±0.6MAR à7.8±0.6NEO 9.8±0.4SAR à6.3±0.2AMOX à9.6±1.1NOR à5.2±0.4PEN G à6.3±0.4ERY à12.4±1.3AMPI à6.8±0.2TYL à11.8±0.8DICLOX à5.2±0.6TIL à10.7±0.6NAF à7.1±1.4JOS à9.1±1.6OXA à6.4±0.4SPI à10.3±0.4

CFPI à3.6±0.9LIN 17±0.5CFT à2.1±1.1TIM à8.2±0.6CFQ à4.4±0.2SMT à7.5±0.5CFLO à3.6±0.3SME à8.9±0.4CFZ à4.9±0.6SDMX à7.9±1.3CFLE à2.9±0.4SMA à8.4±0.9CFPE à5.4±0.5SMM à10±1.6TMP 4.9±0.6SFT à8.3±1.0CIP à8.3±0.7DC 11.9±1.3ENR à9.9±0.4OTC 13.6±1.2DIF à7.1±0.9TC 10.5±0.9DAN à8.9±0.5CTC

11.3±0.5

FLU

à9.2±0.3

M.Gbylik-Sikorska et al./Chemosphere 119(2015)8–1513

for repeatability and4.4–13.5%for within–laboratory reproduc-ibility.All analytes provided the acceptable results in the agree-ment with the criteria of the European Decision2002/657/EC (C.D.2002/657/EC).The percentage of the relative recoveries was calculated in terms of the internal standard and is in acceptable range of the EU requirement with recovery values ranged from 70%to120%respectively.The average recoveries for three valida-tion levels are listed in Table2.

The selectivity of the method improves no interfering peaks co-eluted at the same retention time of interest for analytes in any sample extracts.

The LOD values are in the range of0.01–3.79l g Là1and the LOQ values are in the range of0.02–10l g Là1,depending of analyte.

It was found that the stability of proven individual stock stan-dard solution for?uoroquinolones,sulfonamides,pleuromutilins, diaminopyrimidines and tetracyclines stored atà18°C remains unchanged for at least6months.The aminoglicosides individual stock standard solutions stored under the same conditions are stable for3months.The stability of penicillines,cephalosporins and macrolides is2months at least because of the considerable decrease of concentration levels.All standard stock solution stored at4°C was stable not longer than for3months with the exception for penicillines,cephalosporins and macrolides which are stable for 1month.The stability results for water samples spiced with?uoro-quinolones,sulfonamides,pleuromutilins,diaminopyrimidines at the10l g Là1concentration level for all tested antibiotics remain stable at the similar level stored atà18°C at least for6months. For aminoglicosides,tetracyclines,macrolides,cefalosporines and penicillines,signi?cant reductions of concentrations of fresh extracts were observed after2weeks.

The water samples from food-producing animal watering sys-tems are known to be rich in mechanical impurities,nutrients,feed residues,vitamin and minerals,which can greatly affect the perfor-mance of the method,especially in the ESI-MS analysis with signal suppression and signal enhancement.The matrix effect was calcu-lated for all analytes in different water samples(from water supply systems and waste waters).The matrix effect is reported as the average results in Table3.

As it was found,the average matrix effect expressed as ion sup-

Chromatograms of real water samples with mostly detected analytes:a–water sample contaminated with ENR=22.6l g Là1and DC=75.1l g Là1,b–water contaminated with ENR=64.4l g Là1and TIM=68.8l g Là1,c–water sample contaminated with SMT=22.5l g Là1and TMP=44.5l g Là1,d–contaminated water contaminated with LIN=304l g Là1.

14M.Gbylik-Sikorska et al./Chemosphere119(2015)8–15

water and0.05M HFBA for SPE cartridges conditioning step were tested.Then,different values of elution mixture(2?3mL, 2?4mL,2?5mL)and the temperature evaporation(35–50°C) were checked.Additionally,some minor changes like different size of syringe?lters(0.22l m and0.45l m)were investigated,too. There were no signi?cant differences observed at the evaluation of robustness.In addition,no degradation of the compounds was noted at low and higher temperature of evaporation.The syringe ?lters resize was not affected for analytes concentration level. 3.4.Application of real samples

In order to check suitability of the proposed method,50water samples obtained from different food-producing animal farms in Poland were tested.Water samples were only collected on farms provided with documentation of non-use of antibiotics during sample collecting.Matrix-matched calibration curves were used for the quanti?cation of the antibiotics compounds in these sam-ples,whereas retention times,comparing analyte/internal stan-dard peak area ratio from matrix-matched calibration curve to analyte/internal standard peak area ratio in analysed samples, were also used for identi?cation.The results of this study indicate that8out of45antibiotics were detected in the analysed samples of food-producing animal farms(Table4).

Speci?cally,ENR was one of the most frequently detected anti-biotics(in19samples),DC was found in13out of analysed sam-ples.Twenty-six out of the analysed water samples were contained antibiotics residues.The sample chromatograms of real water samples are shown in Fig.2.The presence of antibiotics was found in52%out of analysed water samples.This may be caused by a wrong dosage of pharmaceuticals,as well as antibiot-ics accumulation in water supply systems because of no cleaning systems.Both cases provided the occurrence of antibiotics residues in farm environment and constant exposure of animals to antibac-terial agents.This situation can cause negative effect on the farm environment,pass into animals organisms and promote dissemi-nation of not only antibiotics resistant bacteria,but also the resis-tance genes in bacterial populations.This is con?rm of the necessity to research and control the degree of water supply sys-tems contamination by antibiotics.

4.Conclusion

The invented method,allows for a fast quantitative and qualita-tive analysis of45veterinary antibiotics in water from food-pro-ducing animals water supply systems.The method is based on the SPE extraction and clean up subsequently analysed by LC–MS/MS.The proposed method is simple,fast and easy to perform and allows to determine a wide variety of antibiotics belonging to9different groups in a single run method.The application of the proposed method allows for a new and non-invasive control of antibiotic residues in water supply systems.The concentration of antibiotics residues in real water samples were respectively in the range of0.14–1670l g Là1.

Acknowledgements

The authors wish to thank Malgorzata Kotulska for her work in the validation process,Anna Gajda and Marta Piatkowska for their participation in sample analysis.References

Borecka,M.,Bia?k-Bielinska, A.,Siedlewicz,G.,Kornowska,K.,Kumirska,J., Stepnowski,P.,Pazdro,K.,2013.A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique.J.

Chromatogr.A.1304,138–146.

Campagnolo,E.R.,Johnson,K.R.,Karpati,A.,Rubin,C.S.,Kolpin,S.W.,Meyer,M.T., Esteban,J.E.,Currier,R.W.,Smith,K.,Thu,K.M.,Mcgeehin,M.,2002.

Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations.Sci.Tot.Environ.299,89–95. Carlson,K.,Kim,S.C.,2007.Quanti?cation of human and veterinary antibiotics in waater and sediment using SPE/LC/MS/MS.Anal.Bioanal.Chem.387,1301–1315.

Chafer-Pericas, C.,Maquiera, A.,Puchades,R.,Miralles,J.,Moreno, A.,2011.

Multiresidue determination of antibiotics in feed and?sh samples for food safety https://www.360docs.net/doc/3b4956891.html,parison of immunoassay vs LC–MS–MS.Food Control22, 993–999.

Chang,X.,Meyer,M.T.,Liu,X.,Zhao,Q.,Chen,H.,Chen,J.,Qiu,Z.,Yang,L.,Cao,J.,Shu, W.,2010.Determination of antibiotics in sewage form hospitals,nursery and slaughter house,wastewater treatment plant and source water Chongqing region of three Gorge Resorvoir in China.Environ.Pollut.158,1444–1450. Chico,J.,Rubies,A.,Centrich,F.,Campanyo,R.,Prat,M.D.,Granados,M.,2008.High-throughput multiclass method for antibiotics residue analysis by liquid chromatography–tandem mass spectrometry.J.Chromatogr.A1213,189–199. Commission Decision2002/657/EC,Off.J Europ Commun L221,20028.

Gbylik,M.,Posyniak,A.,Kamila,M.,Bladek,T.,Zmudzki,J.,2013.Multi-residue determination of antibiotics in?sh by liquid chromatography–tandem mass spectrometry.Food Addit.Contam.A30,940–948.

Granelli,K.,Branzell, C.,2007.Rapid multi-residue screening of antibiotics in muscle and kidney by liquid chromatography–electrospray ionization–tandem mass spectrometry.Anal.Chim.Acta586,289–295.

Gros,M.,Rodriguez-Mozaz,S.,Barcelo, D.,2013.Rapid analysis of multiclass antibiotic and some of their metabolites in hospital,urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry.J.Chromatogr.A1292, 173–188.

Hurtaud-Pessel,D.,Jagadeshwar-Reddy,T.,Verdon,E.,2011.Development of new screening method for the detection of520antibiotic residues in muscle tissues using liquid chromatography and high resolution mass spectrometry with a LC-LTQ-Orbitrap instrument.Food Addit.Contam.A28(10),1340–1351. Karthikeyan,K.G.,Meyer,M.T.,2006.Occurrence of antibiotics in wastewater treatment facilities in Wisconsin,USA.Sci.Tot.Environ.361,196–207. Kasprzyk-Horden,B.,Dinsdale,R.M.,Guwy,A.,2007.Multi-residue method for the determination of Basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry.J.Chromatogr.A 1161,132–145.

Kemper,N.,2008.Veterinary antibiotics in aquatic and terrestrial environment.

Ecol.Ind.8,1–13.

Kim,S.C.,Carlson,K.,2007.Quanti?cation of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS.Anal.Bioanal.Chem.387,1301–1315.

Kummerer,K.,2009.Antibiotics in aquatic environment–A–Part I.Chemosphere 75,417–434.

Plackett,R.L.,Burman,J.P.,1946.The design of optimal multifactorial experiments.

Biometrika33,305–325.

Raich-Montiu,J.,Folch,J.,Compano,R.,Grandos,M.,Prat,M.D.,2007.Analysis of trace levels of sulfonamides in surface water and soil samples by liquid chromatography-?uorescence.J.Chromatogr.A1172,186–196.

Silvia,M.,Cruz,D.,Barcelo,D.,2005.LC–MS2trace analysis of antimicrobials in water,sediment and soil.Trends Anal.Chem.24,7.

Smith, A.J.,Ballam,J.L.,Ward,A.,2007.The development of a rapid screening technique to measure antibiotic ancticity on ef?uents and surface water samples.Mar.Pollut.Bull.54,1940–1946.

Smith,S.,Gieseker, C.H.,Reimsschuessel,R.,Decker, C.H.,Carson,M.C.,2009.

Simultaneous screening and con?rmation of multiple classes of drug residues in ?sh by liquid chromatography–ion trap mass spectrometry.J.Chromatogr.A 1216,8224–8232.

Tong,L.,Li,P.,Wang,Y.,Zhu,K.,2009.Analysis of veterinary antibiotc residues in swine wastewater and environmental water samples using optimized SPE-LC/ MS/MS.Chemosphere74,1090–1097.

Van der Heyden,Y.,Nijhuis,A.,Smeyers-Verbeke,J.,Vandeginste,B.G.M.,Massart,

D.L.,2001.Guidance for robustness:ruggedness tests in method Validation.J.

Pharm.Biomed.Anal.24,723–753.

Xiao,Y.,Chang,H.,Jia, A.,Hu,J.,2008.Trace analysis of quinolone and ?uorquinolone antibiotics from wastewaters by liquid chromatography–electrospray tandem mass spectrometry.J.Chromatogr.A1214,100–108.

M.Gbylik-Sikorska et al./Chemosphere119(2015)8–1515

动物源性食品中青霉素类抗生素残留检测的研究进展

本版编辑: 四川畜牧兽医 2007年第12期 综述 直接的影响。其中RS-2与RS-4菌株具有较广的耐药性,在研制微生态制剂或与抗菌药物联合应用上有更好的使用价值,能达到较好的互补效应。3.3微生态制剂的作用机制是运用有益的活菌制剂来调节机体的微生态平衡,活菌的数量直接影响益生菌剂的使用效果。本试验发现一些抗菌药物如环丙沙星、左氟沙星、氨苄青霉素、阿莫西林等对乳酸杆菌大部分菌株和芽孢杆菌都敏感。因此,当用猪源乳酸杆菌及植物源乳酸杆菌等菌株研制微生态制剂时,在生产和使用过程中应避免接触这些抗菌药物,以免杀死活菌使制剂失去效用。4结论本试验以6株猪源乳酸杆菌、1株植物源乳酸杆 菌以及4株芽孢菌对32种抗菌药物进行了药物敏感性试验。结果表明,猪源乳酸菌对抗菌药物的耐受性达31.25%~53.13%。所有猪源乳酸菌对复达欣、头孢他啶、头孢氨苄、苯唑青霉素、复方新诺明、痢特灵、头孢噻肟、青霉素、杆菌肽等不敏感;其中对RS-2和RS-4株菌不敏感的药物达17种之多,可以作为本项目的新型益生素进行深入研究。植物源乳酸杆菌仅对10种药物有耐受性,对大多数抗菌药物表现极敏,与猪源乳酸菌存在明显差异,不适合作为新型益生素应 用,但可用于后续课题的优化组合对比试验。芽孢杆菌对多种抗生素敏感,只有杆菌肽抑菌圈为零,可用于后续课题的对比及优化组合试验。■参考文献(略) 目前国内外已对青霉素类抗生素的残留进行了多方面研究,为更深入、更全面地了解各种新型研究技术以及相关法律法规,并为我国开展进一步的残留监测提供参考,现将国内外有关的残留检测方法综述如下。1残留标准和休药期 为了避免消费者受到抗生素残留的危害,各国都制定有各种抗生素最高残留限量(MRL)标准。我国对 牛乳中的抗生素残留问题一向非常重视,早在1982 年,卫生部颁布的《乳与乳制品卫生管理办法》中就明确说明:应用抗生素期间和停药后5d的乳汁不得食用。2001年9月,农业部发布《无公害食品生鲜牛乳》的行业标准,并于10月正式实施,该标准也要求鲜牛乳中“抗生素不得检出”。早在1973年欧共体就规定:禁止使用青霉素、氨苄青霉素作为饲料添加剂。我国《关于出口动物性食品中农药、兽药残留量和生物毒素检验方法标准摘要》中规定:青霉素的残留按SN0539-1996标准应小于0.025IU/g。对无公害肉产品有害物质限量应符合《无公害畜禽肉产品安全要求》(GB18406.3-2001)中的规定:青霉素在牛羊猪的肌肉、肝、肾中的残留应≤0.05mg/kg。 因此,在中华人民共和国农业部公告第278号中,根据各青霉素类抗生素的吸收转化效率和半衰期的差异以及不同食品动物的代谢速度,对休药期作了具体的规定: 注射用青霉素G(钾、钠):弃奶期3d;注射用苄星青霉素(注射用苄星青霉素G):兽药规范78版,牛、羊 收稿日期:2007-09-10 作者简介:秦川(1982-),男,在读研究生,研究方向:预防兽医学。 动物源性食品中青霉素类 抗生素残留检测的研究进展 秦 川,田晋红 (西南大学药学院,重庆北碚400716) 中图分类号:S859.84 文献标识码:A 文章编号:1001-8964(2007)12-0024-03 摘要:青霉素类抗生素的广泛应用给畜牧业带来巨 大经济效益的同时,其残留也带来了一系列的负面影响。本文综述了青霉素类抗生素在动物源性食品中残留检测的研究进展,包括两方面内容:青霉素类抗生素在动物性食品中的残留和休药期;国内外关于青霉素类抗生素残留的检测方法,如:微生物法、高效液相色谱法、酶联免疫法等。 关键词:青霉素;动物源性食品;残留;休药期;检测方法 ###############################################曾宪春24

牛奶中的抗生素残留检测方法研究进展

牛奶中的抗生素残留检测方法研究进展 3.1微生物检测法 微生物检测法是应用较广泛的方法,其测定原理是根据抗生素对微生物的生理机能、代谢的抑制作用,来定性或定量确定样品中抗微生物药物残留,如纸片法(PD)、TTC法、拭子法(STOP)等。采用传统的微生物检测方法,缺点是:(1)时间长;(2)显色状态判断通过肉眼辨别,易产生误差,对微红色者无法做出准确判断;(3)操作复杂。优点是费用低,一般实验室都能操作。其中,纸片法和TTC法是牛奶中药物残留检测的两种常用的微生物检测法。 3.1.1纸片法 纸片法,即PD法(Paper Disc)。常用的纸片法有枯草杆菌纸片法和嗜热脂肪杆菌纸片检测法。这两种方法主要用来检测牛奶中的β-内酰胺类抗生素,其操作过程基本相同,而选用的菌种不同。枯草杆菌纸片法检测的结果易出现假阳性,为了确定阳性物质是否为青霉素(或β-内酰胺类),对加热后的乳样用青霉素酶处理,以灭活乳样中的青霉素。然后再行检测,检测限可达0.01 IU/mL。而嗜热脂肪杆菌纸片检测法不仅用于检测奶样中β-内酰胺类抗生素,并能暗示是否还存在其它抑菌物质,检测限可达0.008 IU/mL以下。一般在4h 内即可获得结果。因此,在实践中嗜热脂肪杆菌纸片法比枯草杆菌纸片法应用更为广泛。此外,神保胜彦(1991)对纸片法作了进一步研究和改进。改进后的纸片法不仅能够确定抗生素的种类,而且提高了检出率和准确性,氯霉素最低检出量0.01mg/kg,土霉素0.05mg/kg,链霉素1mg/kg,红霉素0.05mg/kg,青霉素0.0025mg/kg。 3.1.2 TTC法 TTC法,即氯化三苯基四氮唑法( tripheye tetrazolium chloride),是目前我国食品卫生标准中规定的检查牛乳中抗生素残留的检测方法(GB5409—85)。该法简便、快速,无需特殊设备,3~4h可见报告,很适合牧场、乳品厂及食品卫生检测部门采用。检测各种抗生素所用的TTC法试验的灵敏度(最低检出量)分别为:青霉素0.004 U/mL,链霉素0.5 U/mL,庆大霉素0.4 U/mL,卡那霉素5 U/mL。 目前趋向研究更为灵敏、准确、简便、快速的微生物检测方法。如美国和加拿大,使用拭子法和牛的抗生素和磺胺实验法(CAST)。此外,美国近年来补充的一个新的实验方法-快速抗生素筛选法(FAST)。尽管这些快速微生物检测法有时会产生一些假阳性,但在某种程度上是允许的;如产生这类情况,可进一步做确证实验。 3.2理化检测法 理化检测方法是利用抗生素分子中的基团所具有的特殊反应或性质来测定其含量,如高效液相色谱法、气相色谱法、质谱法、联用技术等等,能进行定性、定量和药物鉴定,敏感性较高,但有的检测程序较复杂,有的检测费用较高。在牛奶中抗生素残留检测方面,最常用的理化检测方法是高效液相色谱和联用技术。 3.2.1高效液相色谱 高效液相色谱(HPLC)是目前广泛应用的一种理化检测方法,它引入了气相色谱理论,在技术上采用了高压泵,高效固定相和高灵敏度检测器,实现了分离速度快、效率高和操作自动化。几乎所有的化合物包括高极性/离子型待测物和大分子物质,均可用HPLC进行测定。HPLC的分离机制与常规柱色谱相同,但填料更加精细(ф 5~10μm),需高压泵推动,柱效高(105塔板/m),速度快,灵敏度与GC相近。与GC相比,HPLC流动相参与分离机制,其组成、比例和pH值等可灵活调节,如离子对色谱、胶束色谱、手性分离色谱等,使许多极难分离的待测物得以分析。反相HPLC发展最快,目前已成为大多数抗生素残留的常规分析方法。主要原因是:(1)化学键合固定相(C18或C8)性质稳定,不淋失;(2)使用水、甲醇或乙腈等水溶性有机溶剂作流动相,不干扰紫外检测,成本低;(3)样品中极性杂质先

抗生素检测方法

由于抗生素在废水中的浓度相对较低,所以抗生素的检测一般都是微量或是痕量分析,常采用具有高灵敏度的仪器进行检测。各研究机构对畜禽废水中抗生素的检测技术主要有色谱法和其联用技术、酶免疫分析法、毛细管电泳法等。 色谱分析方法 液相色谱法(LC)在废水抗生素的检测中是最常见的,LC具有分离效能好,检测速度快且重现性好的特点。LC法所用的检测器有紫外检测器(UV),荧光检测器,以及二级管阵列检测器。 高效液相色谱-紫外检测器 高效液相色谱-紫外检测器联用检测技术是最早用于环境中抗生素的分离检测,由于其操作简便以及成本低,被用于畜禽废水中抗生素的检测。 液相色谱-荧光检测器 液相色谱-荧光检测器因为其检测限低所以也被用于畜禽废水中抗生素的检测,通常对本身具有荧光性的抗生素液相色谱-荧光检测器可以直接检测出,但是对于本身不具有荧光性或荧光性差的抗生素,需要对其衍生化来提高目标物的荧光特性以便检测。 液相色谱串联质谱技术 色谱可以用于多组分混合物的分离和分析,可以对有机化合物进行定量分析,但是定性较困难,质谱仪能够对单一组分提供高灵敏度和特征的质谱图,但对复杂化合物无分析能力。所以将色谱与质谱进行联用(或是串联质谱),对复杂化合物中微量和痕量组分的定性和定量分析具有重要的意义。 由于畜禽废水中有多种类的抗生素同时存在,利用色谱和质谱的联用技术可以提高抗生素的定性、定量分析的可靠性、准确性、灵敏度。 酶免疫分析方法 酶免疫分析方法具有操作简单,前处理简化,分析成本低、灵敏、特异性强、检测快速,不需要昂贵的仪器等,而且可以同时测定几个样品,但是酶免疫分析方法对试剂的选择性高,很难同时分析多种成分,对结构类似的化合物有一定程度的交叉,分析分子量很小的化合物和不稳定的化合物有一定的困难。 用酶免疫分析方法试剂盒检测地表水、地下水中的四环素和泰勒菌素,检测分别为0.05μg/L,0.1μg/L。其结果表明,该方法成本低、检测快,可用于水中的四环素、氯四环素、泰勒菌素的初筛检测。

牛奶中抗生素残留及其检测

牛奶中抗生素残留及其检测 徐州市畜禽水产品检测中心 摘要:抗生素在畜牧业中广泛应用,这造成了牛奶中大量残留抗生素。本文论述了牛奶中残留抗生素的原因及其危害性,并列举了目前较为流行的牛奶中抗生素残留的检测方法,介绍了其检测原理。为了了解徐州市牛奶中抗生素的残留情况,随机抽取样品40份,分别采用TTC法和纸片法对样品进行抗生素残留的检测,以农业部2001年发布的无公害食品牛奶中“抗生素不得检出”为判断标准。调查结果显示徐州市牛奶中有部分牛奶存在抗生素的残留。 关键词:牛奶,抗生素残留,国标TTC,微生物法 Assay on Residue of Antibiotics in Milk Abstracts: Antibiotics are used in stockbreeding abroad, and It is the reason why there is residue of antibiotics in milk. The reason and hazard of antibiotics residue are discussed in this paper. Several kinds of popular antibiotics screening test are listed and their principle is introduce simultaneously. In order to know the situation of antibiotics residue in milk from Xuzhou, we selected 40 samples at random. And detected the residue of antibiotics in milk by TTC and paper disc. Antibiotics should not be detected from milk according to the standard issued by the department of agriculture in 2001, but the test results showed that the residue of antibiotics in milk from Xuzhou is higher. Key words: milk, antibiotics residue, TTC, microbial test 抗生素是治疗动物疾病的常用药物,并作为饲料成分被广泛使用。但抗生素容易在动物体内及其产品中残留,经过食用后进入人体,给人类的健康造成危害。目前人们对牛奶的消费量越来越大,牛奶中残留的抗生素会对饮用者的身体健康造成危害,也会对牛奶发酵过程的发酵剂产生抑制作用,从而使牛奶变质造成经济损失。牛奶中抗生素残留的问题日益受到社会的重视。 一牛奶中抗生素残留情况的简介 1抗生素的种类介绍 抗生素类是主要的兽药添加剂和兽药残留物质,约占药物添加剂的60%,在世界及我国的农产品或食品进出口贸易中,常需检测的抗生素残留主要有以下六类: ⑴内酰胺类:内酰胺类抗生素主要用于抗革兰氏阳性细菌感染,也能有效抑制抗革兰氏阴性细

几种常见抗生素的相关性质和检测方法

四环素 四环素类抗生素是由放线菌产生的一类广谱抗生素及半合成抗生素,具有菲烷的基本骨架。 四环素类抗生素在赶早状态下比较稳定,但遇日光可变色。在酸及碱性条件下都不够稳定,易发生水解。四环素类药物主要有以下化学性质: 1.酸性条件下不稳定:C-6羟基和C-5α上的氢正好处于反式构型易发生消除反应,生成无活 性橙黄色脱水物。 在pH2~6条件下C-4位二甲氨基很易发生可逆反应的差向异构化。医学|教育网搜集整理土霉素由于存在C-5羟基与C-4二甲氨基之间形成氢键,4位的差向异构化比四环素难。 而金霉素由于C-7氯原子的空间排斥作用,使4位异构化反应比四环素更容易发生。 2.碱性条件下不稳定:在碱性条件下生成具有内酯结构的异构体。 3.和金属离子的反应:在近中性条件下能与多种金属离子形成不溶性螯合物。 四环素化学结构 本品为黄色结晶形粉末,无臭,空气中稳定,微溶于水,易溶于稀硫酸及氢氧化钠,略溶于乙醇,不溶于氯仿及乙醚,pH2以下溶液不稳定,碱性溶液中很快破坏。 土霉素 子式C22H24N2O9,分子量460.45。又称地霉素、氧四环素。是一种广谱抗菌素,黄色结晶性粉末,无嗅微苦。有二个分子结晶水。熔点181~182℃(分解)。微溶于水,溶于乙醇、丙酮和乙二醇,不溶于氯仿和乙醚。在空气中稳定,遇强光颜色变深。在碱性溶液中容易破坏失效。 化学结构 金霉素 子式C22H23ClN2O8,分子量478.87。又称氯四环素,是一种广谱抗菌素,金黄色结晶。无臭

味苦。熔点168~169℃。一般医药上用其盐酸盐。熔点210℃(分解)。微溶于水和乙醇,不溶于乙醚、丙酮和氯仿。见光颜色变深。在空气中和弱酸性溶液中较稳定,在碱性溶液中易分解。 化学结构 强力霉素 强力霉素是抗生素类药,四环素类药物,可以治疗衣原体支原体感染。其性状为淡黄色或黄色结晶性粉末,臭,味苦。在水中或甲醇中易溶,在乙醇或丙酮中微溶,在氯仿中不溶。 氯霉素 性状:白色针状或微带黄绿色的针状、长片状结晶或结晶性粉末;味苦。在甲醇、乙醇、丙酮、丙二醇中易溶。在干燥时稳定,在弱酸性和中性溶液中较安定,煮沸也不见分解,遇碱类易失效。 化学结构 妥布霉素 硫酸卡那霉素

牛奶中抗生素残留的几种常用检测方法

牛奶中抗生素残留的几种常用检测方法 随着奶牛饲养业的发展,抗生素在预防和治疗奶牛疾病方面得到广泛的应用。生鲜牛奶中抗生素的来源主要是:第一,治疗泌乳期病牛时使用的抗生素会从奶牛体内移行到乳腺残留进入牛奶中,资料表明治疗后的奶牛,其挤出的牛奶5天内都有抗生素残留;其二,为了预防奶牛疾病并提高产量,在奶牛饲料中添加抗生素也会造成牛奶中抗生素的残留;第三,由于牧场管理不善,挤奶、储奶没有严格的卫生制度和配套的设施,人为添加或造成牛奶抗生素的污染。 牛奶中含有抗生素,不仅对人的健康造成很大的危害,而且对乳品加工企业带来经济损失(因无法生成酸奶和奶酪)。因此必须严格控制牛奶中抗生素残留,除了要做好科学饲养、精心管理;正确挤奶和预防疾病外,还要规范抗生素的使用,按国标中有关规定,用药后的奶牛5天后所产的牛奶才可作为原料乳,并且要检测其残留。世界粮农组织(FAO)、世界卫生组织(WHO)、欧盟(EC)及美国的食品和药品管理局(FDA)等对食品中抗生素最大残留量都有明确的规定,我国也有鲜奶中抗生素残留量检验标准(—94)。 目前,鲜奶中抗生素残留的检测方法大致分为三类:生物测定法(微生物测定法、放射受体测定法)、免疫法(放射免疫法、荧光免疫法、酶联免疫法)、理化分析法(波谱法、色谱及联用技术)。下面介绍几种常用的牛奶中抗生素残留检测方法。 TTC法 TTC法是我国鲜奶中抗生素残留量检验标准(—94)的检测法,属生物检测法。其测定原理基于抗生素对微生物的抑制作用。如果牛奶中含有抗生素,则加入菌种(嗜热链球菌)经培育~3小时后,加入TTC指示剂(三苯基四氮唑)不发生还原反应,所以样品呈无色状态;如果牛奶中不含抗生素,则样品呈红色.这样实验后样品颜色不变的为阳性,样品染成红色的为阴性。 TTC法的具体操作步骤: 1.菌液制备:将单菌种(嗜热链球菌)以脱脂乳为培养基,在36±1℃培养箱中培 养15小时后,再以脱脂乳以至于1:1稀释待用; 2.取待检样液9mL,在80℃水浴加热5分钟后冷却到37℃以下,加活菌液1mL,在36℃±1℃水浴2小时,加入4%的TTC指示剂, 36℃±1℃水浴培养30分钟; 3.若样液颜色不变为阳性,呈红色为阴性;若阳性的样液,再置于水浴中培养30 分钟,不显色的为阳性,呈红色为阴性. TTC法测定各种抗生素的灵敏度为:青霉素:4ppb,链霉素:500ppb,庆大霉 素:400ppb,卡那霉素:5000ppb.它具有费用低,易开展的优点;缺点是耗时长,要求操作人员需有一定专业知识且实验过程中菌液的制备、水浴过程控制都要求严格遵守操作规程,否则易出现假阳性,以致出现检验结果的不稳定性。Delvotest sp法(戴尔沃检测法) 该法最早在香港传到广东的,其使用是基于20世纪80年代初香港要求广东出口的生奶必须“无抗”且要求采用Delvotest法检测。该方法也是生物测定法,其试剂是由荷兰DSM公司生产并由AOAC认证。原理是利用微生物—嗜热芽胞菌在64℃条件下培养~3小时后会产酸,酸引起指示剂BCP(溴甲酚紫)变为黄色;若牛奶样品中不含抗生素,培养后样品呈黄色,如样品中含有抗生素, 嗜热芽胞菌生长受到抑制而无法产酸,指示剂将不变色.

抗生素残留快速检测仪的研制

目录 摘要 .......................................................................................................................... I ABSTRACT ................................................................................................................ II 第1章绪论 .. (1) 1.1课题的背景及研究意义 (1) 1.2抗生素残留快速检测系统的国内外发展概况 (2) 1.2.1国外研究现状 (2) 1.2.2国内研究现状 (4) 1.3本文的研究内容及结构 (5) 第2章抗生素残留快速检测系统的原理与方案介绍 (7) 2.1引言 (7) 2.2免疫胶体金层析试纸工作原理 (7) 2.3光学基本原理 (9) 2.3.1加法混色与减法混色 (9) 2.3.2 RGB颜色模型 (10) 2.3.3胶体金光学特性 (10) 2.4功能需求分析 (11) 2.5系统总体方案 (11) 2.5.1试纸条种类标识条的颜色信息采集 (12) 2.5.2显色区域的图像信息采集 (13) 2.6主要器件选型 (14) 2.6.1图像采集传感器 (14) 2.6.2处理器选型 (15) 2.7本章小结 (16) 第3章抗生素残留快速检测系统的硬件设计 (17) 3.1引言 (17) 3.2硬件设计 (17) 3.2.1 STM32F207VGT6资源分配与最小系统设计 (18) 3.2.2电源模块设计 (20) 3.2.3数据采集模块的设计 (23) 3.2.4液晶屏与触摸屏硬件设计 (24) 3.2.5 USB设备硬件设计 (24)

英文产品介绍范文怎么写

英文产品介绍范文怎么写 现在世界贸易往来越来越频繁,用到英语介绍产品的机会也越来越多。下面由为你提供的英文产品介绍范文,希望大家喜欢。 英文产品介绍范文(一) Please look at the brilliantly attracting mobile phone in front of you.This is the latest product of the NOKIA.I'm sure that you are absolutely amused by its perfect appearance,such as the silver-white metal shell,properly colored keyboard,the crystal screen,etc. Of course,it's not persuasive to just judge it from the outside.There's no need to mention the ordinary functions as a mobile,so let me show you the unique and significant functions belonging to it.First,it has the google authorized GPS software,which can bring you a quite clear way when you step out in the open air.Second,the mobile phone can connect to the newly developed 3G net.This can provide you with a series of services such as watching videos,listening to music,delivering pictures and so on.At last,the most essential,it's not expensive in comparison with its fellow products.

产品介绍英文

产品远销英国、美国、日本、意大利和东南亚,深受消费者欢迎和好 Our products are sold in Britain, America, Japan, Italy and South East Asia and well appreciated by their purchasers. 畅销全球 selling well all over the world 典雅大方 elegant and graceful 定型耐久 durable modeling 方便顾客 making things convenient for customers 方便群众 making things convenient for the people; to suit the people's convenience 方便商品 convenience goods 方便生活 bringing more convenience to the people in their daily life; providing amenities for the people; making life easier for the population 各式俱全 wide selection; large assortment 顾客第一 Customers first 顾客是我们的皇帝 We take customers as our Gods. 规格齐全 a complete range of specifications; complete in specifications 花样繁多 a wide selection of colours and designs 货色齐全 goods of every description are available. 客商第一,信誉第一 clients first, reputation first 款式多样 a great variety of models 款式活泼端庄 vivid and great in style 款式齐全 various styles 款式新颖 attractive designs; fashionable(in) style; novel (in) design; up-to-date styling 款式新颖众多 diversified latest designs 美观大方 elegant appearance

产品介绍中英文

英语期末项目考核评分表 类 型 评价指标得分考核人签字 写作考核 1.产品名称 与客户群 (10分) 1.产品名称正确,翻译准 确、精炼,符合商业产品 实际应用规范。(5分) 2.准确界定产品所针对的 客户群体。(5分) 2. 产品作用与 具体信息描述 (25分) 1.有效说明并准确描述产 品作用。(15分) 2.产品信息如成分、形状 等描述正确凝练,能使客 户了解产品本质。(10分) 3.产品特点与 销售优势 (25分) 1.准确说明产品特点。 (10分) 2.有效提炼并准确说明产 品销售优势。 (15分) 4.文本格式与 版面美观 (10分) 版面整洁、美观、清晰明 了,符合格式要求。 (10分) 口 语考核5.口头汇报与 答辩(30分) 1.准确介绍产品信息与作 用特点,销售优势等,能 有效捉进产品销售。 (15分) 2.语言顺畅,语法无误, 条理清晰。 (15分) 总成绩 核分人:总分人:

产品介绍 产品名称:联想电脑 为客户提供产品:在16岁~ 34人,家庭用户专注于25到54岁 该产品功能和信息描述:娱乐可以打发时间,学习,阅读一本书,记住,互联网,应用程序是完整的,可以当移动硬盘使用。功能齐全、方便群众是现代社会的进步,科技的发展和技术进步的标志 产品特点的销售优势:每个零件材料避免假。专业生产技术。价格体现身份,升级更方便。所有有良好的销售渠道和售后服务渠道。对比国内品牌,然后你说,联想是全球第三,是NBA和奥运会赞助商(在都灵冬季奥运会,联想在计算机可靠性击败其他的大型全球品牌是奥运会选为计算机设备)对比国外大品牌,说,性价比高,性能和良好的质量。联想的电脑和特殊的技术和软件内部服务维护,也方便

抗生素残留现状及检测方法

抗生素残留现状及检测方法 随着我国经济的快速发展,人们追求效益最大化,抗生素的 使用越来越普遍,如用抗生素治疗奶牛的乳腺炎;畜禽养殖户在 饲料中添加抗生素和激素,提高种畜的抗病能力和食欲;水产养 殖用户为了让大闸蟹加快脱壳过程、长得肥大生猛,给蟹喂食大 量抗生素和激素等。我国是抗生素生产和使用大国,据统计每年约有6000吨抗生素用于饲料添加剂,占全球抗生素饲料添加剂的50%。 抗生素的大量滥用已经严重威胁到人们的身体健康,专家指出,经常食用含有抗生素的食品,即使是微量的,也能使人出现荨麻疹或造成过敏性休克。时常摄入含有抗生素的食品,可使某些菌株产生耐药性,从而带来预防与治疗某些人畜疾病的困难。如果长期食用抗生素残留的食物,可造成人体中一些非致病菌的死亡,使菌群平衡失调或引起核黄素缺乏症和紫癜性损伤。特别是氯霉素的滥用,极易损害人类骨髓的造血功能,并由此导致再生障碍性贫血的发生。两年前,四川资阳地区曾暴发猪链球菌疫情,微生物专家李明远教授认为,很可能是养殖业者长期在猪饲料里滥用抗生素导致的。 常用抗生素包括β-内酰胺类、四环素类,氨基糖苷类,大环内酯类,磺胺类等,世界各国均对抗生素的使用量提出严格标准,欧盟的标准比日本和美国的标准更加严格,限量值更低,我国要想保障本国食品安全并出口产品到上述国家,就必须加强我国的自身的检测能力。 一般来说,肉类(畜禽),鱼虾(水产),蛋类,奶类,饲料、蜂蜜等产品需要进行抗生素检测,常用方法包括:液相色谱或液相色谱与质谱联用,微生物抑制法和酶联免疫方法。 色谱方法是一种理化检测方法,一般要经过样品的提取、脱蛋白、离心、层析柱净化、衍生化等步骤,能检测抗生素的具体含量,敏感性较高,但检测程序复杂,费用较高,需购买色谱仪等检测设备,不适合小型检验室。 微生物抑制法和酶联免疫方法属于筛选方法,操作简便、快速,消耗成本低,不需要购买大型仪器,但阳性结果需要其他方法进行确认。酶联免疫方法存在一定的假阳性,下面针对微生物方法进行详细介绍。

几种常见抗生素的相关性质和检测方法

四环素 四环素类抗生素就是由放线菌产生得一类广谱抗生素及半合成抗生素,具有菲烷得基本骨 架。 四环素类抗生素在赶早状态下比较稳定,但遇日光可变色。在酸及碱性条件下都不够稳定,易发生水解。四环素类药物主要有以下化学性质: 1、酸性条件下不稳定:C-6羟基与C-5α上得氢正好处于反式构型易发生消除反应,生成 无活性橙黄色脱水物。 在pH2~6条件下C-4位二甲氨基很易发生可逆反应得差向异构化。医学|教育网搜集整理土霉素由于存在C-5羟基与C-4二甲氨基之间形成氢键,4位得差向异构化比四环素难。而金霉素由于C-7氯原子得空间排斥作用,使4位异构化反应比四环素更容易发 生。 2、碱性条件下不稳定:在碱性条件下生成具有内酯结构得异构体。 3、与金属离子得反应:在近中性条件下能与多种金属离子形成不溶性螯合物。四环素化学结构 本品为黄色结晶形粉末,无臭,空气中稳定,微溶于水,易溶于稀硫酸及氢氧化钠,略溶于乙醇,不溶于氯仿及乙醚,pH2以下溶液不稳定,碱性溶液中很快破坏。 土霉素 子式C22H24N2O9,分子量460、45。又称地霉素、氧四环素。就是一种广谱抗菌素,黄色结晶性粉末,无嗅微苦。有二个分子结晶水。熔点181~182℃(分解)。微溶于水,溶于乙醇、丙酮与乙二醇,不溶于氯仿与乙醚.在空气中稳定,遇强光颜色变深。在碱性溶液中容易破坏失效. 化学结构 金霉素 子式C22H23ClN2O8,分子量478、87。又称氯四环素,就是一种广谱抗菌素,金黄色结晶.无臭味苦.熔点168~169℃。一般医药上用其盐酸盐.熔点210℃(分解)。微溶于水与乙醇,不溶于乙醚、丙酮与氯仿。见光颜色变深。在空气中与弱酸性溶液中较稳定,在碱性溶液中易分解。 化学结构 强力霉素

抗生素的生物效价测定法(管碟法)

抗生素的生物效价测定法 测定抗生素效价的方法比较多,一般可以分为物理学方法、化学方法、生物学方法、和两种方法配合等四大类,可根据具体情况选择使用。 生物学方法以抗生素的杀菌力作为衡量效价的标准,其原理恰好和临床应用于的要求一致这是它的优点;又其灵敏度较高,需用检品的量较小,也是其它方法所不及的。 抗生素的生物效价测定法,常用的有稀释法、比浊法和扩散法(或称渗透法)。 稀释法这一方法是用培养基将检品抗生素稀释到各种浓度,并依次分装到一系列的容器内,再加入等量“试验菌种”菌种菌液,并放在37 ℃保温箱内培养一定时间,观察何种稀释度适能抑制细菌的生长,该稀释度即为测定终点(或以细菌生长所引起的PH改变及溶血现象等生化反应作为测定终点),再与同样处理的标准抗生素的终点作比较,即可求得检品的效价。这种方法可以使用液体培养基,也可以使用固体培养基。所用的材料及培养基都必须严格无菌,并要注意无菌操作。由于测定终点是以有无细菌生长来判断的,因此所得结果公是一个范围。 比浊法原理及操作大致与稀释法相同。比浊法也是将不同量的检品及标准品分别加入培养基中,观察其对“试验菌种”的效应——即细菌生长所引起的混浊。这一方法和稀释法的区别有二:a.比浊法的稀释间隔的密度比较近,准确度高一些;b.比浊法不以细菌有无生长的区分为终点,而是将标准品浓度和细菌生长所引起的混浊度求得一定的比例,再由检品的细菌生长混浊度推算检品的效价。这一方法易受杂质的影响,并且不适用于有色或混浊的检品。 扩散法使用固体培养基,在培养基凝固以前将“试验菌种”混合进去,在这样备妥的培养表面,可以用种种设计使检品液或含有抗生素的物质与有菌种的培养基接触。经过培育后,由于抗生素向培养基中扩散,凡抑菌浓度所能达到之下细菌不能生长因而形成透明的抑菌范围,此种范围一般都呈圆形,称为“抑菌圈”。扩散法有几种,或中一种叫管碟扩散法(筒称管碟法)为国际上常用的方法,在我国也作为法定的抗生素检定法。 下面我们将详细地讨论管碟法的原理和实验方法。 一、: 二、管碟法测定的设计原理及计算方法 管碟法所用的管子系用瓷、铝或玻璃制成,较好的用不锈钢制成,它是内径为6+毫米、外径为8+毫米、高10+毫米的圆筒形管子,管子的重量尽可能相等。 摊布固体培养基的容器可用双碟,亦可用平底下班盘。管子放在混有菌种的固体培养基上时,可用人工放置,也可用特定的管子放置器放置。

抗生素残留量检查法标准操作规程

抗生素残留量检查法标准操作规程 目录 1 目的 (2) 2 范围 (2) 3 职责 (2) 4 依据 (2) 5 定义 (2) 6 内容 (2) 6.1 说明............................................................................................... 错误!未定义书签。 6.2 原理 (2) 6.3 实验材料 (2) 6.4 操作步骤 (3) 6.5 判定标准 (3) 6.6 注意事项 (4) 7 相关文件 (4) 8 附件 (4) 9 变更历史记录 (4)

1目的 1.1本规程规范了抗生素残留量检查法的操作过程。 2范围 2.1本规程适用于供试品中氨苄西林的残留量检查。 3职责 3.1质量检验人员:应严格执行本规程的规定。 3.2质量保证人员:负责对本程序的执行进行监督、检查。 4依据 4.1《中国药典》2010年版三部,附录ⅨA,“抗生素残留量检查法”P59~P60。 5定义 N/A 6内容 6.1原理 6.1.1抗生素残留量检查法是依据在琼脂培养基内抗生素对微生物的抑制作用,比较对照品 与供试品对接种的试验菌产生的抑菌圈的大小,检查供试品中抗生素的残留量。 6.2实验材料 6.2.1仪器 6.2.1.1生物安全柜 6.2.1.2恒温培养箱 6.2.1.3恒温水浴锅 6.2.1.4游标卡尺 6.2.2器具 6.2.2.1牛津杯规格:内径6mm、外径8mm、高10mm 6.2.2.2玻璃平皿规格:直径约90mm 6.2.2.3试管及硅胶塞规格:18×180mm 6.2.2.4吸管规格:10ml 6.2.3标准物质 6.2.3.1取氨苄西林对照品适量,用0.01mol/L的盐酸溶解,并稀释成每1ml中含氨苄西林 10mg的溶液,作为氨苄西林对照品储备液,200ul/支无菌分装,-20℃保存,备用。 6.2.4试剂、试液

食品中抗生素残留危害及检测方法

食品中抗生素残留危害及检测方法 随着人们生活质量的提高,食品安全问题越来越为广大消费者所关注,特别是农药和抗生素等药物残留问题更是广大消费者所关注的焦点问题。在食品安全这个全球关注的热点问题上,如何快速、准确地检测食品安全的问题已成为重中之重。要检测抗生素在食品中的残留,必须选择特异性强、灵敏度高、高效快速的检测方法。因此,研究各种抗生素类残留检测的方法,提高其灵敏度与选择性具有十分重要的意义。 抗生素具有哪些危害 人们吃了有抗生素残留的肉、蛋、奶等食物后,会造成抗生素在人体内蓄积,使人产生对抗生素的抗性,引起各种组织器官病变,甚至癌变。 对人类健康的危害 对人体肠道菌群的影响 人体肠道菌群是一个平衡的生态系统,对保持人体健康起着非常重要的作用。如果人们长期摄入含有抗生素的食品后,会使敏感菌群被杀灭或抑制,而耐药菌群却大量繁殖,从而打破原来的平衡状态造成菌群失调,这就可能会导致长期腹泻或营养不良,严重时还可造成耐药菌感染,给临床治疗带来困难。 引起过敏和变态反应

青霉素、四环素、磺胺类及某些氨基糖苷类抗生素能使部分人群发生过敏反应和变态反应,氯霉素可破坏机体造血功能,诱发再生障碍性贫血。经常食用含抗生素的动物性食品,轻者出现皮肤瘙痒、荨麻疹、关节肿痛,重者导致血管性水肿、休克、甚至死亡。 导致细菌耐药性增加 目前,由于抗生素的广泛使用,使得细菌的耐药性不断增加,食用含抗生素残留的动物性食品后,人体内细菌的耐药性增加。同时,动物体内的耐药性菌株的耐药性也可能转移到人体细菌中,从而对人类产生极大的危害。 其他毒害作用 动物性食品中残留的链霉素进入人体后可引起肾损害和听神经受损。长期摄入氨基糖苷类抗生素残留严重超标的动物性食品,可损害第8 对脑神经,出现头晕、头痛、耳鸣、耳聋、恶心、呕吐等症状。四环素会引起肝损伤,与骨骼或牙齿中的钙质结合后,使骨骼及牙齿黄染,还可影响儿童的生长发育。邻氯青霉素、头孢菌素等可引起人类免疫性疾病;氯霉素会损害人的造血功能,抑制蛋白质 摘要:文章综述了抗生素残留的来源与途径, 介绍了抗生素残留对人类健康、乳制品生产、环境及其他方面造成的危害,分析了检测抗生素残留的方法,包括微生物检测法、仪器检验法、免疫学分析法等,并指出了这些检测方法的研究现状与发展前景。 对乳制品生产工艺的危害

6鸡蛋抗生素残留限量的新国家标准

鸡蛋抗生素残留限量的新国家标准 (之前的NY5040-2001无公害食品蛋鸡饲养兽药使用准则已经作废),所以目前鸡蛋里抗生素残留的限量实际上处于无标准状态。 我国70%以上的鸡蛋为500-2000只的小型养鸡户生产,由于受技术、场地、投资不足等各种条件限制,这些小户饲养的蛋鸡更容易得病。为了减少鸡病发生危险,小养鸡户往往长期给蛋鸡喂食大量抗生素。 蛋鸡养殖中常用的抗生素有四环素类、大环内酯类、喹诺酮类和磺胺类等,除了专门的兽用抗生素外,我国也有一些“人兽共用”的药物,比如阿莫西林、氨苄西林、头孢氨苄、克拉维酸、红霉素、链霉素等。 由于上市销售的鸡蛋并无抗生素残留检测项目,所以我们根本无从知晓药残的浓度,仅从用量上推断,大范围超标是肯定的。除此之外,也没有专门的检测标准,所以养殖者心知肚明,销售者稀里糊涂,监管者知而不言,有抗鸡蛋堂而皇之地呆在我们的餐桌几十年! 抗生素有什么危害 抗生素是治病的药物,并不是有毒有害物质,说鸡蛋抗生素残留危害是否危言耸听呢? 鸡蛋抗生素残留的危害主要表现为: 1、药物的副作用产生的直接危害 药物的危害会出现过敏反应及变态反应。轻者出现荨麻疹、发热、关节肿痛及蜂窝组织炎等,严重时会发生过敏性休克,危及生命。人长期摄入微量抗生素,会影响免疫系统功能,降低机体的免疫力。 2、细菌耐药性增强

饲养过程中长期使用抗生素,可使细菌对抗生素产生耐药性,使疾病治疗变得困难。都说离开剂量谈毒性是耍流氓,鸡蛋里抗生素即使有残留也会是微量的,有那么严重的危害吗?和剂量无关的毒性关系一个是遗传毒性,它是指环境中的理化因素(外源化学物质或物理射线等)作用于有机体,使其遗传物质在染色体水平、分子水平和碱基水平上受到各种损伤,产生突变、诱变或畸变,并可向子代遗传,从而造成遗传毒性危害。另一个和剂量产生危害程度相反关系的就是抗生素耐药性。与其他有毒性的物质摄入相反,低剂量的抗生素摄入容易导致体内有害菌产生耐药性,其危害是人类感染有害菌后用抗生素治疗可能失效导致的危险。简言之,抗生素合理大剂量的使用可以杀灭有害菌或使细菌的生长繁殖受到抑制,而长期低剂量暴露则促使有害菌变异进化为耐药菌。无论哪个合格的医生都不会让你长期、低剂量摄入抗生素来预防疾病。耐药性将使治疗简单感染变得更加困难而且更加昂贵,造成有效治疗被延误,病程延长,出现并发症的风险增大,在某些严重的情况下,甚至无法治疗,造成更高的死亡率。发展中国家因耐药性问题而背负了沉重的疾病负担。 《中国青年报》于 2015年04月发表了一篇报道,由复旦大学公共卫生安全教育部重点实验室历经一年,通过对上海、江苏和浙江的1000多名8~11岁的学校儿童人群尿中抗生素的生物监测证实,该地区儿童普遍暴露于多种抗生素,背负沉重的抗生素负担。研究还发现,从儿童体内检测出临床已经停用多年、但在环境和食品中经常发现的抗生素含量,可见抗生素滥用不仅是临床治疗的问题,环境与食品也是儿童抗生素的重要暴露源。 煮熟了的鸡蛋抗生素是否还存留 通常,抗生素比鸡蛋里的营养物质要稳定得多,家庭里蒸煮加热对于热稳定性

抗生素检测方法

抗生素检测方法 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

由于抗生素在废水中的浓度相对较低,所以抗生素的检测一般都是微量或是痕量分析,常采用具有高灵敏度的仪器进行检测。各研究机构对畜禽废水中抗生素的检测技术主要有色谱法和其联用技术、酶免疫分析法、毛细管电泳法等。 色谱分析方法 法(LC)在废水抗生素的检测中是最常见的,LC具有分离效能好,检测速度快且重现性好的特点。LC法所用的检测器有紫外检测器(UV),荧光检测器,以及二级管阵列检测器。 高效液相色谱-紫外检测器 高效液相色谱-紫外检测器联用检测技术是最早用于环境中抗生素的分离检测,由于其操作简便以及成本低,被用于畜禽废水中抗生素的检测。 液相色谱-荧光检测器 液相色谱-荧光检测器因为其检测限低所以也被用于畜禽废水中抗生素的检测,通常对本身具有荧光性的抗生素液相色谱-荧光检测器可以直接检测出,但是对于本身不具有荧光性或荧光性差的抗生素,需要对其衍生化来提高目标物的荧光特性以便检测。 液相色谱串联质谱技术 色谱可以用于多组分混合物的分离和分析,可以对有机化合物进行定量分析,但是定性较困难,质谱仪能够对单一组分提供高灵敏度和特征的质谱图,但对复杂化合物无分析能力。所以将色谱与质谱进行联用(或是串联质谱),对复杂化合物中微量和痕量组分的定性和定量分析具有重要的意义。 由于畜禽废水中有多种类的抗生素同时存在,利用色谱和质谱的联用技术可以提高抗生素的定性、定量分析的可靠性、准确性、灵敏度。 酶免疫分析方法 酶免疫分析方法具有操作简单,前处理简化,分析成本低、灵敏、特异性强、检测快速,不需要昂贵的仪器等,而且可以同时测定几个样品,但是酶免疫分析方法对试剂的选择性高,很难同时分析多种成分,对结构类似的化合物有一定程度的交叉,分析分子量很小的化合物和不稳定的化合物有一定的困难。

制药废水中头孢类抗生素残留检测方法探讨

制药废水中头孢类抗生素残留检测方法探讨 发表时间:2016-06-13T17:25:57.527Z 来源:《健康前沿》2016年3月作者:李文磊 [导读] 受市场需求驱动,头孢类药物生产量十分高。 河北远征药业有限公司河北石家庄 050041 摘要:头孢类抗生素属于临床应用的常见一类抗感染药物,其抗菌谱较广且杀菌能力突出。庞大的市场需求导致了头孢类药物生产量不断增加。然而在制作头孢类药物时会伴随产生较多的制药废水。传统废水处理工艺无法将制药废水中存在的头孢类抗生素残留完全去除,引发了一定的环境问题与安全问题。基于此,提出应用固相萃取-超生效液相色谱与两级串联质谱相结合的检测技术,重点对头孢类抗生素进行检测,并对头孢类制药废水环境风险进行评估。 关键字:制药废水头孢类抗生素残留检测方法 受市场需求驱动,头孢类药物生产量十分高。在进行头孢类药物制作过程中,会伴随产生一定的制药废水,而这部分废水采取传统废水处理工艺无法将废水中存在的头孢类抗生素残留完全消除,引发了一定的生物安全性问题。为加强对制药废水中的头孢类抗生素残留进行检测质量与效果,需要采取一定的检测方法。而固相萃取-两级串联质谱法检出限较低且灵敏度较高,在城市污水、生活污水等痕量抗生素检测中应用十分广泛。 一、实验材料与方法分析 (一)试剂与仪器分析 选择头孢类制药,具体包括头孢克洛、头孢曲松、头孢氨苄、头孢西丁、头孢噻吩、头孢噻肟、头孢唑啉、头孢呋辛与头孢拉定,前面八种头孢类制药均属于美国药典标准品,而头孢拉定则属于德国制药。头孢呋辛、头孢曲松、头孢噻吩标准品纯度分别表现为91.8%、92.4%、93.7%与94.7%,而其他头孢类制药标准纯度则在98%以上。选择色谱纯的甲醇、乙腈与甲酸,其他试剂则为分析纯,选择超纯水作为实验用水,在试验操作之前,分别进行不同头孢类单标甲醇储备液与混合甲醇储备液配置,并将储备液存放于棕色玻璃瓶之中, 以-20℃条件进行冷藏。孔固相萃取装置选择Supelco-24型号,选择的固相萃取柱型号为Oasis HLB,通过该设备进行样品洗涤与洗脱预处理,并应用超高效液相色谱串联质谱仪进行样品检测,依托MassLynx V4.1软件进行目标抗生素浓度研究。 (二)采样方式 以某制药废水处理厂中取出废水水样,在取样过程中共设置三个采样点,以每天三次的方式进行采样,共采样四天。采集样品存放于棕色玻璃瓶内,以4℃条件进行保存,要求对样品在48h内完成头孢类抗生素残留检测。 (三)环境风险评估标准 引入RQ概念,即风险商值法进行废水头孢类抗生素残留的环境风险问题评估。RQ值即实测环境浓度与预测无效应浓度之间的比值。依据RQ参数区间,可以将环境风险等级划分为三个级别,其一,低环境风险,RQ值区间为0.01-0.1;其二,中等环境风险,RQ值区间为 0.1-1.0;其三,高等环境风险,RQ取值超出1。 二、头孢类抗生素残留检测试验结果分析 (一)流动相种类设定 流动相主体以高纯水与乙腈为主,并掺入一定量甲酸,从而对色谱峰拖尾现象进行改善,强化分离效果。试验采取500μg/L混合物志标准液,并设计三种流动相,第一种流动相为高纯水与乙腈,第二种流动相则为0.01%的甲酸高纯水与甲酸乙腈溶液,第三种流动相则为0.1%的甲酸高纯水与甲酸乙腈溶液。流动相设定流速度标准为0.4mL/min。通过检测发现,随着甲酸浓度增加,头孢曲松、头孢西丁、头孢呋辛、头孢噻吩四种抗生素色谱峰面积出现了显著提升,而其他几种抗生素色谱峰面积变化幅度较小。而当甲酸浓度为0.1%时,所有目标物均在8min内出现了色谱峰分离现象,且不存在拖尾问题。基于此,实验选定第三种流动相。 (二)固相萃取条件选择 考虑到制药废水之中存在着一定的蛋白质,蛋白质与抗生素容易产生固相萃取柱吸附位点竞争,可能会对测试结果带来干扰,影响回收效果。为此,在进行固相萃取之前应采取措施进行废水蛋白质沉淀处理。此外,影响固相萃取回收率的关键因素还表现为水样pH值,应用本实验设备,需要确保水样pH值适当,为此,选择硫酸氢二钠与柠檬酸作为pH缓冲溶液,深入分析水样pH值对目标物回收率的影响,结果发现,当pH值为5时,则回收率达到最高值,回收率表现在72.8%-102%区间内。 (三)制药废水头孢类抗生素浓度检测分析 采取固相萃取-超生效液相色谱与两级串联质谱相结合的检测技术,可以获取制药废水残留浓度的具体分布状况。通过实验检测,在废水中共检测中四类头孢类抗生素,其中进水水样中抗生素浓度最高的为头孢呋辛,具体如下所示:

相关文档
最新文档