用遗传算法解决旅行商问题

用遗传算法解决旅行商问题
用遗传算法解决旅行商问题

用遗传算法解决旅行商问题

最近心血来潮,重新拾起大学毕业设计时研究过的遗传算法。去年做毕业设计时还觉得遗传算法是一种多么神秘的算法,但是今天看来,遗传算法也就和冒泡排序算法差不多,都是通用的算法,只不过遗传算法实现起来稍微复杂一点而已。

我曾经被遗传算法的名字所疑惑,还以为遗传算法会改变程序的形态,使得程序就好像生物一样进化,过了几天去看程序已经变得连编写程序的人都认不出来了,汗!大二时的幼稚想法。

遗传算法其实是一种求函数极值的随机搜索算法,但它又不是毫无规则地随机搜索,而是基于一种假设:假设函数值的分布是有一定的连续性的,换句话说函数的极值出现在一个较优值附近的概率要大于出现在一个较差值附近的概率。基于这个假设,遗传算法总是以较大概率保留较优值所代表的搜索方向,而以较低概率保留较差值所代表的搜索方向。这并不是说不去搜索较差值的附近区域,只是搜索的概率较低而已。这个思想与模拟退火算法相似,对于能量较高的系统状态,程序仍然以一定的概率接受,只不过这个概率小于1。

遗传算法的局部搜索能力较强,但是很容易陷入局部极值,毕业设计的时候曾经认为只要增加变异概率就可以跳出局部极值,还美其名曰自适应,现在想想这种想法是错误的:虽然增加变异概率可以搜索到远离当前极值的点,但是新点的值往往不能和当前保留下来的较优值相提并论,因为这些较优值都是经过千百代的进化而存留下来的,于是远离当前极值的点往往在两到三代以内就被淘汰掉了。增加变异概率实际上是把遗传算法退化成了一种纯粹的随机搜索,所谓的自适应也无从谈起!

那么如何解决遗传算法容易陷入局部极值的问题呢?让我们来看看大自然提供的方案。六千五百万年以前,恐龙和灵长类动物并存,恐龙在地球上占绝对统治地

位,如果恐龙没有灭绝灵长类动物是绝没有可能统治地球的。正是恐龙的灭绝才使灵长类动物有了充分进化的余地,事实上地球至少经历了5次物种大灭绝,每次物种灭绝都给更加高级的生物提供了充分进化的余地。所以要跳出局部极值就必须杀死当前所有的优秀个体,从而让远离当前极值的点有充分的进化余地。这就是灾变的思想。

下一个问题是什么时候进行灾变,换句话说什么时候局部搜索已经充分了呢?我用了一个灾变倒计数的概念:从500开始递减,每一代递减一次,如果出现了新的最优值,就从新开始计数,如果出现新最优值的时候倒计数递减次数的2.5倍已经超过500则从新的初始值开始倒数。例:初始倒数500,如果倒数到200时出现新最优值,则从(500 - 200) * 2.5 = 750开始从新倒数,下一次如果倒数到100时出现新最优值,则从(750 - 100) * 2.5 = 1625开始倒计数(这里的2.5是一个经验值,可以在全局参数设置里面调整)。也就是说倒计数的长度取决于进化的速度,进化速度越慢倒计数长度越长。如果倒计数完毕还没有新的最优值,就认为局部搜索已经充分,就发生灾变。

基于上诉思想我写了一个程序来计算旅行商问题。我现在终于体会到旅行商问题为什么会这么有名,有很多算法都可以解决旅行商问题,问题描述简单,评价函数也不复杂,问题的解可以直观地显示出来,具有各种如局部极值多等典型的性质,这些都成为算法练兵的好处,可以清晰地比较各个算法的优劣,发现算法的缺陷。可以说旅行商问题就是一个练兵场,一个学校,为算法提供了成长的场所。为算法能够应用到其他复杂领域打好基础。

程序输入是一个文本文件,里面记录了所有城市的坐标,以及最优个体的序列。以一张只有10个城市的地图为例,文本中可能记录了以下内容:

0.604600, 0.592500, 8

0.610500, 0.261400, 3

0.572800, 0.494300, 7

0.153200, 0.983900, 2

0.955700, 0.772000, 0

0.914400, 0.276500, 4

0.998500, 0.484800, 6

0.449800, 0.605300, 5

0.308500, 0.109000, 1

0.364700, 0.060100, 9

表示第一个城市的坐标为0.604600, 0.592500(程序客户区的宽和高为单位1,所有城市的坐标值均在[0.0,0.0] ~ [1.0,1.0]之内),第二个城市坐标为0.610500, 0.261400...依次类推。

后面所跟的整数为最优个体的序列,上述数据表示旅行商应该从第8号城市(0.308500, 0.109000)出发,经过3,7,2,0,4,6,5,1,9号城市,最后又回到第8号城市。

程序的最终目标是求取一个序列,使得旅行商按照这个序列旅行时行程最短。

程序的变异方法是自繁殖变异,有两种:1、随机取两点,逆序这两点间的序列。

2、随机把一个城市转移到另一个序列位置。

对于一个500个城市的地图,大概在5万代左右发生第一次灾变,用时约6~8分钟,灾变前夕的灾变倒计数初始值已经从800达到2000~20000。可以看到从一次灾变结束到下一次灾变开始,最优值的变化趋势近似呈一条拖拽线,越接近局部极值进化速度越慢,这也说明灾变倒计数的策略是正确的。

下面是一次试验的数据统计:程序运行两个小时,进化到一百万代,发生了16

次灾变,最优个体产生于第606722代,属于第11个进化周期,总行程长度为17.164006,第一次灾变发生在第49773代,第一次灾变前最优个体产生于第45523代,总行程长度为18.029128。

分析最优分趋势图,在每个进化周期内最优分图形基本呈拖拽线形状,可以看到多数进化周期已经没有进化速度,说明局部搜索已经充分,少数进化周期在发生灾变时还有明显进化速度,这是因为这些周期恰好进入一个比较长的停滞期时被程序认为局部搜索充分了,停滞期的出现根随机数有关,个人认为应该可以通过调节灾变初始值和灾变倍增值解决。

分析平均分趋势图,可以看到每次分生灾变后群体平均分会达到一个较大的值,然后迅速下降,再慢慢上升。这说明旅行商问题的局部极值非常多,极值附近解的分数要远远低于整个解空间的平均分,这主要是因为一个较优解的进行一次变异后生成的子女绝大部分都是畸形的分数很低的个体,由于遗传算法并不放弃这些进化方向,从而影响了群体的平均分。灾变时对整个解空间进行随机搜索,这时的群体平均分可以作为整个解空间平均分的体现,进化一定时间以后,群体迅速陷入到一个特定的局部极值附近,这个时候较优解还没有进化出来,群体中充斥着畸形个体,只有少量比较优秀的个体,所以平均分也随之迅速下降,随后由于优秀个体存活率比较高,群体渐渐被优秀个体统治,群体平均分也开始上升。仔细分析每一个进化周期的平均分趋势图可以发现,在进化的后期群体平均分有一个稳固上升的阶段(这应该是最优个体慢慢排挤其他个体的结果),在此之前都会有一个标志性的少量下挫曲线(如图),还不知道产生这个曲线的原因。

程序下载地址:GA旅行商问题

下面是程序的主要核心代码:

// 变异函数

inline void Variant(GENE & gsource, GENE & gdest, int * ptemp, int size, int varate)

{

static int i;

static int j, k, l, n, m;

static int tmp;

memcpy(gdest.index, gsource.index, sizeof(int) * size);

for(i = 0; i < varate; i++)

{

switch(rand() % 2)

{

case 0:

// 逆序变异

{

j = rand() % size;

k = rand() % size;

if(j == k)

{

k = (k + 1) % size;

}

if(j > k)

实验六:遗传算法求解TSP问题实验分析

实验六:遗传算法求解TSP问题实验 一、实验目的 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。用遗传算法对TSP问题进行了求解,熟悉遗传算法地算法流程,证明遗传算法在求解TSP问题时具有可行性。 二、实验内容 参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 1. 最短路径问题 所谓旅行商问题(Travelling Salesman Problem , TSP),即最短路径问题,就是在给定的起始点S到终止点T的通路集合中,寻求距离最小的通路,这样的通路成为S点到T点的最短路径。 在寻找最短路径问题上,有时不仅要知道两个指定顶点间的最短路径,还需要知道某个顶点到其他任意顶点间的最短路径。遗传算法方法的本质是处理复杂问题的一种鲁棒性强的启发性随机搜索算法,用

遗传算法解决这类问题,没有太多的约束条件和有关解的限制,因而可以很快地求出任意两点间的最短路径以及一批次短路径。 假设平面上有n个点代表n个城市的位置, 寻找一条最短的闭合路径, 使得可以遍历每一个城市恰好一次。这就是旅行商问题。旅行商的路线可以看作是对n个城市所设计的一个环形, 或者是对一列n个城市的排列。由于对n个城市所有可能的遍历数目可达(n- 1)!个, 因此解决这个问题需要0(n!)的计算时间。假设每个城市和其他任一城市之间都以欧氏距离直接相连。也就是说, 城市间距可以满足三角不等式, 也就意味着任何两座城市之间的直接距离都小于两城市之间的间接距离。 2. 遗传算法 遗传算法是由美国J.Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法。通过模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体,利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。遗传算法在本质上是一种不依赖具体问题的直接搜索方法,是一种求解问题的高效并行全局搜索方法。其假设常描述为二进制位串,位串的含义依赖于具体应用。搜索合适的假设从若干初始假设的群体集合开始。当前种群成员通过模仿生物进化的方式来产生下一代群体,如随机变异和交叉。每一步,根据给定的适应度评估当前群体的假设,而后使用概率方法选出适应度最高的假设作为产生下一代的种子。

旅行商问题概述_郭靖扬

旅行商问题(TravelingSalesmanProblem,简称TSP)是一个著名的组合优化问题:给定n个城市,有一个旅行商从某一城市出发,访问每个城市各一次后再回到原出发城市,要求找出的巡回路径最短。如果用图论来描述,那就是已知带权图G= (C,L),寻出总权值最小的Hamilton圈。其中C={c1,c2,…,cn}表示n个城市的集合,L={lij|ci,cj∈C}是集合C中元素(城市)两两连接的集合,每一条边lij,都存在与之对应的权值dij,实际应用中dij可以表示距离、费用、时间、油量等。 TSP的描述虽然简单, 解决起来却很困难。最简单思路是用穷举法把所有可能的巡回路径全部列出来,最短的一个就是最优解,但这样只能处理很小规模的问题。旅行商问题属于 NP-complete问题, 是NP(non-deterministicpoly-nominal)问题中最难的一类,不能在多项式时间内求解。如果有n座城市,那么巡游路径共有(n-1)!/2条,计算的时间和(n-1)!成正比。当 城市数n=20,巡回路径有1.2×1018种,n=100, 巡回路径就有多达4.6×10155种,而据估计宇宙中基本粒子数“仅仅只有”1087个。 尽管如此,随着算法研究的逐步深入和计算机技术飞速提高,对TSP问题的研究不断取得进展。70年来,被征服的TSP规模从几十个城市增加到上万个城市。目前的最高记录是在2004年5月,找到的巡游瑞典24978个城镇的最优路径 (sw24978), 花费了84.8个CPU年。图1展示了TSP的研究进展,最近的二三十年时间里,被攻克的TSP规模高速增长,差不多是每十年增加一个数量级。照这样发展下去的话,再过20年就能解决上百万个城市的TSP,有专家甚至已经为此准备好了数据:全球190,4711个城市的坐标。当然,能不能达到这 个目标,有赖于未来计算技术的发展。 图1TSP的发展 字母后面的数字表示城市数,“sw24978”就是瑞典的 24978个城镇。 一、应用 旅行商问题具有重要的实际意义和工程背景。它一开始 是为交通运输而提出的,比如飞机航线安排、送邮件、快递服务、设计校车行进路线等等。实际上其应用范围扩展到了许多其他领域,下面举几个实例。 印制电路板转孔是TSP应用的经典例子,在一块电路板上打成百上千个孔,转头在这些孔之间移动,相当于对所有的孔进行一次巡游。把这个问题转化为TSP,孔相当于城市,孔到孔之间的移动时间就是距离。 为了避免大气干扰,使光学系统达到其衍射极限分辨率,欧美发达国家提出发展空间光干涉仪和综合孔径望远镜的计划。美国航空航天局有一个卫星群组成空间天文台(Space-basedObservatories)的计划, 用来探测宇宙起源和外星智慧生命。欧洲空间局也有类似的Darwin计划。对天体成像的时候,需要对两颗卫星的位置进行调整,如何控制卫星,使消耗的燃料最少,可以用TSP来求解。这里把天体看作城市,距离就是卫星移动消耗的燃料。 美国国家卫生协会在人类基因排序工作中用TSP方法绘制放射性杂交图。把DNA片断作为城市,它们之间的相似程度作为城市间的距离。法国科学家已经用这种办法作出了老鼠的放射性杂交图。 此外,旅行商问题还有电缆和光缆布线、晶体结构分析、数据串聚类等多种用途。更重要的是,它提供了一个研究组合优化问题的理想平台。很多组合优化问题,比如背包问题、分配问题、车间调度问题,和TSP同属NP-complete类,它们都是同等难度的,如果其中一个能用多项式确定性算法解决,那么其他所有的NP-complete类问题也能用多项式确定性算法解决。很多方法本来是从TSP发展起来的,后来推广到其他NP-complete类问题上去。 二、TSP求解方法 求解旅行商问题的方法可以分为两大类,一类是精确算法,目的是要找到理论最优解;另一类是近似算法,不强求最优解,只要找到“足够好”的满意解就可以了。 (一)精确算法 如前面所述,穷举法和全局搜索算法属于精确算法,但 旅行商问题概述 郭靖扬 (电子科技大学光电信息学院, 四川成都610054) 【摘要】旅行商问题是组合优化的经典问题,应用广泛,而且长期以来被作为NP-complete问题的理想研究平台。文章介绍 了旅行商问题的基础知识、应用,以及常用的求解方法。 【关键词】旅行商问题;组合优化;NP-complete;k-opt;智能算法【中图分类号】TP182【文献标识码】A【文章编号】1008-1151(2006)08-0229-02大众科技 DAZHONGKEJI2006年第8期(总第94期) No.8,2006 (CumulativelyNo.94) 【收稿日期】2006-03-18【作者简介】郭靖扬(1980-),四川宜宾人,电子科技大学光电信息学院硕士研究生。 229--

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

实验报告:遗传算法在解决旅行商问题的应用

实验报告:用遗传算法解决旅行商问题的简单实现 实验目的:编写程序实现用遗传算法解决旅行商问题,研究遗传算法的工作原理和收敛性质。 实验者: 问题描述:TSP是一个具有广泛应用背景和重要理论价值的组合优化难题,TSP问题可以简单的描述为:已知N个城市之间的相互距离.现有一个旅行商必须遍历这N个城市,并且每个城市只能访一次,最后必须返回出发城市。如何安排他对这些城市的访问次序,可使旅行路线的总长度最短? 本次实验的目标问题中国大陆31个大城市的公路旅行商问题,数据来源是《中国大城市公路里程表》(后附)。 需求分析:TSP已经被证明是一个NP—Hard问题,即找不到一种算法能在多项式时间内求得问题的最优解。利用遗传算法,在一定时间内求得近似最优解的可能性比较大。实验目标是: 1)设计用遗传算法解决TSP问题的程序; 2)求出该TSP问题的(近似)最短路程; 3)求得相应的城市遍历序列; 4)检查算法收敛性,求解决该问题的(近似)最优遗传参数。 算法分析: 1.算法基本流程

2.编码策略与初始群体设定 TSP的一般编码策略主要有二进制表示、次序表示、路径表示、矩阵表示和边表示等。而路径编码是最直观的方式,以城市序号作为遗传基因。在本实验中,我们用一个N维向量来表示一个个体,N是城市总数,元素表示城市遍历顺序,以最后一个到达的城市为结束。则群体用一个N * POP的矩阵表示,POP为群体中的人口(个体数)。初始群体在空间中自动生成。 3.适应度函数及结束条件 适应度函数采用题目的目标函数——路径的总路程(包括回到出发点)。适应度越低,个体越优秀。由于暂时无法先验估计收敛性和目标结果,所以以一个参数,最大遗传代数MAXGEN作为程序结束控制。 4.遗传算子设计 遗传算子的设计方法主要有两大类:自然算法和贪心算法。自然算法是以大自然的进化规律为依据,大体采用“优胜劣汰”的机制来进行遗传;贪心算法则是以迅速收敛为目标,对个体进行更严格的选择和遗传处理。

货郎担问题或旅行商问题动态规划算法

#include #include #define maxsize 20 int n; int cost[maxsize][maxsize]; int visit[maxsize]={1}; //表示城市0已经被加入访问的城市之中 int start = 0; //从城市0开始 int imin(int num, int cur) { int i; if(num==1) //递归调用的出口 return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径 int mincost = 10000; for(i=0; i

{ /*if(mincost <= cost[cur][i]+cost[i][start]) { continue; //其作用为结束本次循环。即跳出循环体中下面尚未执行的语句。区别于break } */ visit[i] = 1; //递归调用时,防止重复调用 int value = cost[cur][i] + imin(num-1, i); if(mincost > value) { mincost = value; } visit[i] = 0;//本次递归调用完毕,让下次递归调用 } } return mincost;

} int main() { int i,j; // int k,e,w; n=4; int cc[4][4]={{0,10,15,20}, {5,0,9,10}, {6,13,0,12}, {8,8,9,0}}; for(i=0; i

遗传算法解决TSP问题

遗传算法解决TSP问题 姓名: 学号: 专业:

问题描叙 TSP问题即路径最短路径问题,从任意起点出发(或者固定起点),依次经过所有城市,一个城市只能进入和出去一次,所有城市必须经过一次,经过终点再到起点,从中寻找距离最短的通路。 通过距离矩阵可以得到城市之间的相互距离,从距离矩阵中的到距离最短路径,解决TSP问题的算法很多,如模拟退火算法,禁忌搜索算法,遗传算法等等,每个算法都有自己的优缺点,遗传算法收敛性好,计算时间少,但是得到的是次优解,得不到最有解。 算法设计 遗传算法属于进化算法的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异。 数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法。算法中称遗传的生物体为个体,个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体,在算法中染色体常用一串数字表示,数字串中的一位对应一个基因。一定数量的个体组成一个群体。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代遗传算法计算程序的流程可以表示如下: 第一步准备工作 (1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。 (2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。 (3)确定适应值函数f(x)。f(x)应为正值。 第二步形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。 第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。 第四步选择

粒子群算法与遗传算法的比较

粒子群算法介绍 优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重 影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Particle Swarm Optimization -PSO) 算法. 这种算法 以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。 粒子群优化(Particle Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolutionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随 当前搜索到的最优值来寻找全局最优。 1. 引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士提出。源于对鸟群捕食的行为研究。 PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。但是它没有遗传算法用的交叉(crossover)以及变异(mutation),而是粒子在解空间追随最优的粒子进行搜索。同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2. 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。人工生命包括两方面的内容: 1. 研究如何利用计算技术研究生物现象 2. 研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的. 现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局 部信息从而可能产生不可预测的群体行为 例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和 计算机辅助设计. 在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上. 粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的 过程. 但后来发现PSO是一种很好的优化工具.

遗传算法解决TSP问题的matlab程序

1.遗传算法解决TSP 问题(附matlab源程序) 2.知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市 3.只能访问一次,最后又必须返回出发城市。如何安排他对这些城市的访问次序,可使其 4.旅行路线的总长度最短? 5.用图论的术语来说,假设有一个图g=(v,e),其中v是顶点集,e是边集,设d=(dij) 6.是由顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶 7.点且每个顶点只通过一次的具有最短距离的回路。 8.这个问题可分为对称旅行商问题(dij=dji,,任意i,j=1,2,3,…,n)和非对称旅行商 9.问题(dij≠dji,,任意i,j=1,2,3,…,n)。 10.若对于城市v={v1,v2,v3,…,vn}的一个访问顺序为t=(t1,t2,t3,…,ti,…,tn),其中 11.ti∈v(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为: 12.min l=σd(t(i),t(i+1)) (i=1,…,n) 13.旅行商问题是一个典型的组合优化问题,并且是一个np难问题,其可能的路径数目 14.与城市数目n是成指数型增长的,所以一般很难精确地求出其最优解,本文采用遗传算法 15.求其近似解。 16.遗传算法: 17.初始化过程:用v1,v2,v3,…,vn代表所选n个城市。定义整数pop-size作为染色体的个数 18.,并且随机产生pop-size个初始染色体,每个染色体为1到18的整数组成的随机序列。 19.适应度f的计算:对种群中的每个染色体vi,计算其适应度,f=σd(t(i),t(i+1)). 20.评价函数eval(vi):用来对种群中的每个染色体vi设定一个概率,以使该染色体被选中 21.的可能性与其种群中其它染色体的适应性成比例,既通过轮盘赌,适应性强的染色体被 22.选择产生后台的机会要大,设alpha∈(0,1),本文定义基于序的评价函数为eval(vi)=al 23.pha*(1-alpha).^(i-1) 。[随机规划与模糊规划] 24.选择过程:选择过程是以旋转赌轮pop-size次为基础,每次旋转都为新的种群选择一个 25.染色体。赌轮是按每个染色体的适应度进行选择染色体的。 26.step1 、对每个染色体vi,计算累计概率qi,q0=0;qi=σeval(vj) j=1,…,i;i=1, 27.…pop-size. 28.step2、从区间(0,pop-size)中产生一个随机数r; 29.step3、若qi-1 step4、重复step2和step3共pop-size次,这样可以得到pop-size个复制的染色体。 30.grefenstette编码:由于常规的交叉运算和变异运算会使种群中产生一些无实际意义的 31.染色体,本文采用grefenstette编码《遗传算法原理及应用》可以避免这种情况的出现 32.。所谓的grefenstette编码就是用所选队员在未选(不含淘汰)队员中的位置,如: 33.8 15 2 16 10 7 4 3 11 14 6 12 9 5 18 13 17 1 34.对应: 35.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1。 36.交叉过程:本文采用常规单点交叉。为确定交叉操作的父代,从到pop-size重复以下过 37.程:从[0,1]中产生一个随机数r,如果r 将所选的父代两两组队,随机产生一个位置进行交叉,如: 38.8 14 2 13 8 6 3 2 5 7 3 4 3 2 4 2 2 1 39. 6 12 3 5 6 8 5 6 3 1 8 5 6 3 3 2 1 1 40.交叉后为: 41.8 14 2 13 8 6 3 2 5 1 8 5 6 3 3 2 1 1 42. 6 12 3 5 6 8 5 6 3 7 3 4 3 2 4 2 2 1 43.变异过程:本文采用均匀多点变异。类似交叉操作中选择父代的过程,在r 选择多个染色体vi作为父代。对每一个 选择的父代,随机选择多个位置,使其在每位置

TSP问题算法分析

T S P问题算法分析集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

算法第二次大作业 TSP问题算法分析 021251班 王昱(02125029) 一.问题描述 “TSP问题”常被称为“旅行商问题”,是指一名推销员要拜访多个地点时,如何找到在拜访每个地点一次后再回到起点的最短路径。 TSP问题在本实验中的具体化:从A城市出发,到达每个城市并且一个城市只允许访问一次,最后又回到原来的城市,寻找一条最短距离的路径。 二.算法描述 2.1分支界限法 2.1.1算法思想 分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。 在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

2.1.2算法设计说明 设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down,up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。 对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即: bound(x1)≥bound(x1,x2)≥…≥bound(x1,…,xn) 若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。 再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。 直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值 bound(x1,…,xn)。 2.2A*算法 算法思想 对于某一已到达的现行状态,如已到达图中的n节点,它是否可能成为最佳路径上的一点的估价,应由估价函数f(n)值来决定。假设g*(n)函数值表示从起始节点s到任意一个节点n的一条最佳路径上的实际耗散值。h*(n)函数值表示从任意节点n到目标节点ti的最佳路径的实际耗散值。其中ti是一个可能的目标节点。f*(n)函数值表示从起始s,通过某一指定的n到达目标节点ti的一条最佳路径的实际耗散值,并有 f*(n)=g*(n)+h*(n)。

基于遗传算法的数据分类系统—决策树算法

中文摘要 基于遗传算法的数据分类系统—决策树算法 摘要 决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面较大改进,既适合于分类问题,又适合于回归问题。决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的内部节点(非叶子节点)一般表示为一个逻辑判断,如形式为a=aj的逻辑判断,其中a是属性,aj是该属性的所有取值:树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值就有几条边。树的叶子节点都是类别标记。 关键词:决策树;遗传算法;系统

目录 1引言 (1) 1.1决策树的构造方法 (1) 2决策树是以实例为基础的归纳学习算法 (1) 2.1ID3算法 (2) 2.2C4.5算法 (2) 2.3SLIQ算法 (3) 2.3.1 预排序 (3) 2.3.2 广度优先策略 (3) 2.4SPRINT算法 (3) 3执行系统 (4) 4 评价系统--组桶式算法 (6) 5执行系统 (6) 5.1群体的变化 (7) 5.2个体的适应度 (7) 5.3突变操作 (7) 参考文献 (8) 致谢 (9)

1引言 决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。 决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。 1.1决策树的构造方法 决策树构造的输入是一组带有类别标记的例子,构造的结果是一棵二叉树或多叉树。二叉树的内部节点(非叶子节点)一般表示为一个逻辑判断,如形式为a=aj的逻辑判断,其中a是属性,aj是该属性的所有取值:树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值就有几条边。树的叶子节点都是类别标记。 由于数据表示不当、有噪声或者由于决策树生成时产生重复的子树等原因,都会造成产生的决策树过大。因此,简化决策树是一个不可缺少的环节。寻找一棵最优决策树,主要应解决3个最优化问题:生成最少数目的叶子节点、生成的每个叶子节点的深度最小、生成的决策树叶子节点最少且每个叶子节点的深度最小。 2决策树是以实例为基础的归纳学习算法 它从一组无次序、无规则的元组中推理出决策树表示形式的分类规则。它采用自顶向下的递归方式,在决策树的内部结点进行属性值的比较,并根据不同的属性值从该结点向下分支,叶结点是要学习划分的类。从根到叶结点的一条路径就对应着一条合取规则,整个决策树就对应着一组析取表达式规则。1986年Quinlan提出了著名的ID3算法。在ID3算法的基础上,1993年Quinlan又提出了C4.5算法。为了适应处理大规模数据集的需要,后来又提出了若干改进的算法,其中SLIQ (super-vised learning in quest)和SPRINT (scalable parallelizableinduction of decision trees)是比较有代表性

用遗传算法解决旅行商问题

用遗传算法解决旅行商问题 姓名:王晓梅 学号:1301281 班级:系统工程6班

一、问题背景 有一个销售员,要到n 个城市推销商品,他要找出一个包含所有n 个城市的具有最短路程的环路。 现在假设有10个城市,他们之间的距离如下。 { 0, 107, 241, 190, 124, 80, 316, 76, 152, 157}, { 107, 0, 148, 137, 88, 127, 336, 183, 134, 95}, { 241, 148, 0, 374, 171, 259, 509, 317, 217, 232}, { 190, 137, 374, 0, 202, 234, 222, 192, 248, 42}, { 124, 88, 171, 202, 0, 61, 392, 202, 46, 160}, { 80, 127, 259, 234, 61, 0, 386, 141, 72, 167}, { 316, 336, 509, 222, 392, 386, 0, 233, 438, 254}, { 76, 183, 317, 192, 202, 141, 233, 0, 213, 188}, { 152, 134, 217, 248, 46, 72, 438, 213, 0, 206}, { 157, 95, 232, 42, 160, 167, 254, 188, 206, 0} 将这10个城市分别编码为0,1,2,3,4,5,6,7,8,9。要求走完这10个城市,目标是使走的距离最短。 二、建立模型 ),...,1,(1) ,...,1,(1. .)(min 11 11n j j i n i j i t s j i n j ij n i ij ij n i n j ij x x d x =≠==≠=≠∑∑∑∑==== 三、设计算法 1、种群初始化 (1)一条染色体的初始化 10个城市分别对应0~9这十个数,每个染色体代表一个解决方法,即0~9这十个数的一种排序方式,可随机产生一个数,用取余的方法得到一个0~9的数,依次得到与前面不重复的十个数,构成一个染色体。 (2)种群的初始化 这里假设种群有100个染色体,也就是循环100次染色体的初始化可得到一个种群。

Tsp问题的几种算法的分析

摘要 本文分析比较了tsp问题的动态规划算法,分支界限法,近似等算法。分析了旅行商问题的时间度特点,针对启发式算法求解旅行商问题中存在的一些问题提出了改进算法。此算法将群体分为若干小子集,并用启发式交叉算子,以较好利用父代个体的有效信息,达到快速收敛的效果,实验表明此算法能提高寻优速度,解得质量也有所提高。 关键词:旅行商问题TSP Abstract this paper analyzed the time complexity of traveling salesman problem,then put forward some imprivement towards the genetic algorithm for solving this problen: divding the population into some small parent individual well.so it can quickly get into convergence, the experimental result indicates the impwoved algorithm can accelerate the apeed of finding solution and improve the precision. Keywords traveling salesman problem; genetic algorithm; subset; henristic crossover operator

目录 1、摘要--------------------------------------------------------------1 2、Abstract---------------------------------------------------------1 3、Tsp问题的提法------------------------------------------------2 4、回溯法求Tsp问题--------------------------------------------3 5、分支限界法求Tsp问题--------------------------------------7 6、近似算法求解Tsp问题-------------------------------------10 7、动态规划算法解Tsp问题----------------------------------12

基于聚类的遗传算法解决旅行商问题

基于聚类的遗传算法解决旅行商问题 摘要:遗传算法(GA)是解决旅行商问题(TSPs)的有效方法,然而,传统的遗传算法(CGA)对大规模旅行商问题的求解效果较差。为了克服这个问题,本文提出了两种基于聚类的改进的遗传算法,以寻找TSPs的最佳结果。它的主要过程是聚类、组内演进和组间连接操作。聚类包括两种方法来将大规模TSP划分为若干子问题,一种方法是k-均值(k-means)聚类算法,另一种是近邻传播(AP)聚类算法。每个子问题对应于一个组。然后我们使用GA找出每个子问题的最短路径长度。最后,我们设计一个有效的连接方法将所有这些组合成为一个,以得到问题的结果。我们尝试在基准实例上运行一组实验,用来测试基于k-means 聚类(KGA)和基于AP聚类(APGA)遗传算法的性能。实验结果表明了它们有效性和高效的性能。将结果与其他聚类遗传算法进行比较,表明KGA和APGA具有更强的竞争力和有效性。 关键词:大规模旅行商问题;遗传算法;聚类;k-means聚类;AP聚类

一、引言 旅行商问题(TSP )是在所有城市搜索最短哈密尔顿路线的问题。TSP 是众所周知的NP-hard 问题。它有许多现实世界的应用[1,2],如规划调度、物流配送、计算机网络和VLSI 路由。近年来研究人员已经研究了不同类型的TSP [3-6]。 TSP 问题可以用如下方式描述:有N 座城市,给出城市之间的距离矩阵为 () d ij N N D ?=。TSP 问题的要求是从所有路径中找到最短路径。如果()i π被定义 为在步骤 ( 1,,)i i N = 中访问的城市,则路线可以被看作城市从1到N 的循环排列。路线的表达式如下: 1 ()(1)()(1)1 minimize N i i N i f d d πππππ-+== +∑ (1) 如果对于1i j N ≤≤、,距离满足d d ij ji = ,则这种情况是对称TSP 。 TSP 可以模型化为加权图。每个顶点代表一个城市,每个边缘连接两个城市。 边的权重表示两个相连的城市之间的距离。现在一个TSP 问题实际上是一个哈密尔顿回路,最优的TSP 路径是最短的哈密顿回路。 用于求解TSP 的算法可以概括为两类,精确算法和启发式算法。精确的算法确保最终解决方案是最优的。分支切割算法是这一类中的典型示例[7,8]。这些算法的关键问题是它们相当复杂,并且在计算机性能方面非常苛刻[9]。自引入模拟退火[10]和禁忌搜索[11]以来,启发式算法有可能突破局限,从而找到路径的局部最优解。在过去的二十年中,提出了大量的自然启发或群体智能方法,例如蚁群算法[12,13],粒子群算法[14]和遗传算法[15,16]来解决TSP 问题 。 遗传算法(GA )是一种通过模拟自然演化过程来搜索最优解解决大规模搜索问题(例如TSP 问题)的有效方法,GA 的目的是通过几个遗传操作,如选择、交叉和突变获得大规模搜索问题的近似解。与其他精确搜索算法相比,其优点主要是通过使用群体的信息而不是仅仅一个个体来实现搜索[5]。除了上述内容之外,GA 通过适应度函数的数值来评估个体的质量,减少当使用启发式算法时被浸入在局部最优解中的风险。 虽然GA 是解决TSPs 的有效方法,但是,随着旅行城市的数量增长,经典遗传算法效果较差。为了使TSP 问题变得更容易并且可以有效地解决大规模TSP ,

算法报告-旅行商问题模板讲解

《算法设计与课程设计》 题目: TSP问题多种算法策略 班级:计算机技术14 学号: 姓名: 指导老师: 完成日期: 成绩:

旅行商问题的求解方法 摘要 旅行商问题(TSP 问题)时是指旅行家要旅行n 个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。本文主要介绍用动态规划法、贪心法、回溯法和深度优先搜索策略求解TSP 问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。 关键字:旅行商问题;动态规划法;贪心法;回溯法;深度优先搜索策略 1引言 旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。研究TSP 的求解方法对解决复杂工程优化问题具有重要的参考价值。关于TSP 的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。归纳起来,目前主要算法可分成传统优化算法和现代优化算法。在传统优化算法中又可分为:最优解算法和近似方法。最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法、回溯法和深度优先搜索策略。 2正文 2.1动态规划法 2.1.1动态规划法的设计思想 动态规划法将待求解问题分解成若干个相互重叠的子问题,每个子问题对应决策过程的一个阶段,一般来说,子问题的重叠关系表现在对给定问题求解的递推关系(也就是动态规划函数)中,将子问题的解求解一次并填入表中,当需要再次求解此子问题时,可以通过查表获得该子问题的解而不用再次求解,从而避免了大量重复计算。 2.1.2 TSP 问题的动态规划函数 假设从顶点i 出发,令'(,)d i V 表示从顶点i 出发经过'V 中各个顶点一次且仅一次,最后回到出发点i 的最短路径长度,开始时,{}'V V i =-,于是,TSP 问

遗传算法求解TSP问题实验报告推荐文档

人工智能实验报告 实验六遗传算法实验II 一、实验目的: 熟悉和掌握遗传算法的原理、流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP 问题的流程并测试主要参数对结果的影响。 二、实验原理: 旅行商问题,即TSP问题(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路经的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题。该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。要求利用遗传算法求解TSP问题的最短路径。 三、实验内容: 1、参考实验系统给出的遗传算法核心代码,用遗传算法求解TSP的优化问题,分析遗传算法求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题,分析种群规模、交叉概率和变异概率对算法结果的影响。 3、增加1种变异策略和1种个体选择概率分配策略,比较求解同一TSP问题时不同变异策略及不同个体选择分配策略对算法结果的影响。 4、上交源代码。 四、实验报告要求: 1、画出遗传算法求解TSP问题的流程图。 开始初始化种群(随机产生城市坐标)确定种群规模、迭代次数、个体选择方式、交叉概率、变异概率等 计算染色体适应度值(城市之间的欧氏距离)按某个选择概率选择个体YES个体交叉个体变异P<迭代总次数N输入适应度最高的结

相关文档
最新文档