012渐近法、近似法和超静定结构的影响线

§12 渐近法、近似法和超静定结构的影响线本章内容包括:

1. 渐进法概述

2. 力矩分配法的概念

3. 单结点的力矩分配——基本运算

4. 多结点的力矩分配——渐近运算

5. 无剪力分配法

6. 剪力分配法

7. 超静定结构的影响线

重点和难点:

1. 单结点和多结点的力矩分配法计算

2. 无剪力分配法计算

3. 超静定结构的影响线

§12.1 渐进法概述

●超静定结构基本解法:力法,位移法。

●但无论是力法或位移法,未知量数目在三个以内的结构算起来比较容易。3~5有点费劲,5个以上就比较困难了,而10个以上至更多未知量,很困难或无法再用力法或位移法计算。

●在工程实际结构,对横向三跨七层刚架:

4×7+7=35个(位移法)7×3×3=63个(力法)。纵向连续梁,七跨或八跨,也有7、8个未知量。

●用力法及位移法求解十分困难,使得学者又研究出其它方法,于是近几十年来,在力法及位移法的基础上,又发展了许多实用的计算方法:(渐进法,数值法)。

●渐进法力矩分配法、无剪力分配法、迭代法、

反弯点(D值法)、弯矩二次分配法、联合法

●优点:避免求解联立方程组,但又能满足工程

需要。

§12.2 力矩分配法的概念

?

基本思路:两大步骤——先拆后搭?

拆——拆成单杆结构——位移法基本结构?搭——还原为原结构——列平衡条件——位移法基本方程2 m 2 m

4 m

P = 6 KN q = 5 KN/m

EI ①固定

②转动

R 1 =0

平衡条件③还原 简单回顾位移法基本思路:

A B C

?

位移法基本思路:刚臂转角由位移法方程求得11

1r R P -=?②固定状态+转动状态=最终状态

①思考:A B C

转动状态可否不求转角而直接得到转动状态下的弯矩图??

q P A

B C

Mp R 1P 不平衡力矩的产生:

二、分析问题

新的方法:直接反向叠加不平衡力矩即可平衡。

A

B C -R 1P

转动状态弯矩图=?

新问题反向的不平衡力矩在两个近端如

何分配?在两个远端如何传递?力矩分配法

分析问题

3.问题归纳

①不平衡力矩?

②分配?

③传递?

R

1P

F

BC

M F

BA M F

BC

F

BA P M M R +=1?由节点平衡条件得不平衡力矩等于杆件固端

弯矩之和

P

R 11. 不平衡力矩

3S i =1=

?i 32.转动刚度S ——表示杆件抵抗杆端转动的能力——数值上等于杆端产生单位转角时,在该杆端产生(或需要施加)的力矩。

l

EI i =其中

A B

C D 1

=?BD

i BC i 4BA i 3BC i 2BD i -M

l EI i =图中BC BC i S 4=BA BA i S 3=BD

BD i S = 转动刚度S

3. 分配问题A

B C

D

P R 1

-R 1P BA M BC M BD

M ??BD BD i M =?

BA BA i M 3=?BC BC i M 4=BD

BC BA P M M M R ++=-1结点平衡条件反向不平衡力矩→转动

→杆端弯矩

?

??BD BC BA P i i i R ++=-431?

??=++=∑i BD BC BA S S S S )(∑-=i

P S R 1?)()(11P BA P i

BA BA BA R R S S S M -?=-?=?=∑μ?

)()(11P BD P i BD BD BD R R

S S S M -?=-?=?=∑μ?)()(11P BC P i BC BC

BC R R S S S M -?=-?=?=∑μ?)()(11P BA P i BA BA BA

R R S S S M -?=-?=?=∑μ?)()(11P i P i

i i R R S S M -?=-?=∑μ同

)()(11P i P i i i R

R S S M -?=-?=∑μ即杆端所产生(分配)的弯矩与杆件转动刚度S 成比例。

即按照转动刚度S 分配不平衡力矩。

∑=i

i i S S μ 分配系数)(1P i R -?μ

分配弯矩即杆件近端弯矩1=∑i μ 共同分配不平衡力矩解决分配问题!!

A B C

D BD i BC i 4BA

i 3BC i 2BD

i -M 1

=?4. 传递问题传递系数C ——远端弯矩/近端弯矩

2

142==i i C BC 030==i

C BA 1-=-=i i C BD

力法求解超静定结构的步骤

第七章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 §7-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

结构力学习题集——静定结构位移计算

第三章 静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. M =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。 A a a 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l l /3 2 /3 /3 q 13、图示结构,EI=常数 ,M =?90kN m , P = 30kN 。求D 点的竖向位移。 P 3m 3m 3m 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 q 16、求图示刚架中D点的竖向位移。EI = 常数 。 l l l/2 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。

第四节 水锤计算的特征线法

第四节水锤计算的特征线法 前面介绍了水锤计算的解析法。解析法的优点是应用简便,但难以求解较为复杂锤问题。水锤计算的特征线法原则上可以解决任何形式的边界条件问题,可以较合理应水轮机的特性,能较方便地计人摩阻的影响,也便于用数字计算机计算。 特征线法有两种,一种以ζ-v(或H-V)为坐标场,一种以x-t为坐标场,两法的结果是一致的。 图14-12 简单管示意图 一、以ζ-v为坐标场的特征线法 图14-12表示一特性沿管长不变的水管,P为管中任意一点,距A点和B点的距离分为和。根据基本方程式(14-5)和式(14-6)可导出求解P、B、A三点水锤压强时征线方程。 (一)任意断面P的水锤求解 根据基本方程式(14-5)和式(15一6),P点在时刻t的压强和流速变化为 式中上标“P”表示地点,下标“t”表示时间,例如,表示P点在时刻t的水头,余类推。对于某一确定的断面P,为一常数,为便于书写,在波函数F和f中略去了。 对于A点,在时刻可写出下列相似的方程 因F是由A向P传播的反向波,故。由于水管特性不变,。考虑以上关系,将式(a)和式(b)两组方程相减,得 以上二式消去f,并将ζ=△H/Ho、v=V/Vmax和ρ=cVmax/2gHo。 对于B点,在时刻可以写出与式(b)相似的方程

因f是由B向P传播的正向波,故,将式(c)与(a)两组方程相减,以上法处理,得 从形式上看,式(14-35)是反x向写出的,称之为反向方程,在ζ-v坐标场上是一根斜率为2ρ的直 线,如图14-13中的线;式(9-36)是顺x向写出的方程,成为正向方程,在ζ-v坐标场上是一根斜率为-2ρ的直线,如图14-13中的线。 图14-13 ζ-v坐标场上得特征线 在式(14-35)和式(14-36)中,如已知A点在时刻和B点在时刻的压强和流速 ,即可求出P点在时刻t的压强和流速。和为图14-13中Pt的坐标值,可用 和两条直线的交点求出。用特征线法求解压强和流速的方法就是过去广为采用的水锤计算的图解法。 (二)进口B点的水锤求解 已知P点在时刻t的压强和流速,列出PB间反向方程 压力水管进口为水库或平水建筑物,,故由上式可确定未知量。 (三)管末A点的水锤求解 已知P点在时刻t的压强和流速,列出PA间的正向方程

静定结构位移计算练习题(答案在后)

静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。

a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l /3 2 /3 /3 q 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。 18、求图示刚架中D 点的竖向位移。 E I = 常数 。 q l l l/l/22

19、求图示结构A、B两截面的相对转角,EI=常数。 23 l/ l/3 20、求图示结构A、B两点的相对水平位移,E I = 常数。 l l 26、求图示刚架中铰C两侧截面的相对转角。 27、求图示桁架中D点的水平位移,各杆EA 相同。 a 30、求图示结构D点的竖向位移,杆AD的截面抗弯刚度为EI,杆BC的截面抗拉(压)刚度为EA。

《结构力学习题集》(上)超静定结构计算――力法1(精)

超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1、 (2、 (a (b (3、 (4、 (5、 (6、 (7、 (a(b 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a(bX 1

c 6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方程中?12122t a t t l h =--(/(。 t 2 1 t l A h (a(bX 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为。 (a(bP k P X 1 二、计算题: 8、用力法作图示结构的M 图。 B EI 3m 4kN A 283 kN 3m EI

/m C 9、用力法作图示排架的M 图。已知 A = 0.2m 2,I = 0.05m 4 ,弹性模量为E 0。 q 8m =2kN/m 6m I I A 10、用力法计算并作图示结构M 图。EI =常数。 M a a a a 11、用力法计算并作图示结构的M图。 q l l ql/2 2 EI EI EI 12、用力法计算并作图示结构的M图。

q= 2 kN/m 3 m 4 m 4 m A EI C EI B 13、用力法计算图示结构并作出M图。E I 常数。(采用右图基本结构。P l2/3l/3l/3 l2/3 P l/3 X 1 X 2 14、用力法计算图示结构并作M图。EI =常数。 3m 6m

第一节 一阶线性方程的特征线解法

第一节一阶线性方程的特征线解法 ) ,(),(),(),(t x D u t x C u t x B u t x A t x =++1.一阶线性方程的一般形式: 的已知函数。为其中),(),(),,(),,(),,(t x t x D t x C t x B t x A (1) 时,即 当0),(≡t x D 0 ),(),(),(=++u t x C u t x B u t x A t x (2) 称方程为齐次的,否则为非齐次的。

2.一阶线性方程的Cauchy 问题?? ?==++)()0,(),(),(),(),(x x u t x D u t x C u t x B u t x A t x ?(3) ??? ??==c x t x B dt t x A dx )0(),(),((4) 称(4)为(3)的特征方程,其解称为(3)的特征线。3.一阶线性方程的Cauchy 问题的求解:特征线法 思路:利用(4)将(3)转化为常微分方程的初值问题先求特征线上点对应的函数关系,任意化即可。

例1:?? ?∈=>∈=+光滑)()()()0,() 0,(000x R x x x t R x a x t ρρρρρ解: 特征方程为:?????== c x a dx dt )0( 1特征线为: c at c t x +=),(沿着特征线),,(c t x x =() t c t x t U ),,()(ρ=满足以下常微分初值问题:?????====??+??=??+??=) ()0,()0),0(()0(00c c x U t a x t dt dx x dt dU ρρρρρρρ

(整理)力法求解超静定结构的步骤:.

第八章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 6) §8-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法 近似方法:

《结构力学习题集》(上)第四章超静定结构计算——力法

第四章 超静定结构计算——力法 一、判断题: 1、判断下列结构的超静定次数。 (1)、 (2)、 (a ) (b ) (3)、 (4)、 (5)、 (6)、 (7)、 (a)(b) 2、力法典型方程的实质是超静定结构的平衡条件。 3、超静定结构在荷载作用下的反力和内力,只与各杆件刚度的相对数值有关。 4、在温度变化、支座移动因素作用下,静定与超静定结构都有内力。 5、图a 结构,取图b 为力法基本结构,则其力法方程为δ111X c =。 (a) (b) X 1

6、图a 结构,取图b 为力法基本结构,h 为截面高度,α为线膨胀系数,典型方 程中?1212 2t a t t l h =--()/()。 t 21 t l A h (a) (b) X 1 7、图a 所示结构,取图b 为力法基本体系,其力法方程为 。 (a)(b) 1 二、计算题: 8、用力法作图示结构的M 图。 3m m 9、用力法作图示排架的M 图。已知 A = 0.2m 2 ,I = 0.05m 4 ,弹性模量为E 0。 q

a a 11、用力法计算并作图示结构的M 图。 ql /2 12、用力法计算并作图示结构的M 图。 q 3 m 4 m 13、用力法计算图示结构并作出M 图。E I 常数。(采用右图基本结构。) l 2/3 l /3 /3 l /3 14、用力法计算图示结构并作M 图。EI =常数。 3m 3m

2m 2m 2m 2m 16、用力法计算图示结构并作M 图。EI =常数。 l l q l l 17、用力法计算并作图示结构M 图。E I =常数。 18、用力法计算图示结构并作弯矩图。 16 1 kN m m m m 19、已知EI = 常数,用力法计算并作图示对称结构的M 图。 q l l q

2006典型例题解析--第3章-静定结构位移计算

第3章 静定结构位移计算 §3 – 1 基本概念 3-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 3-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 3-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

结构力学自测题(第六单元位移法解超静定结构)

结构力学自测题(第六单元位移法解超静定结构) 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、图 示 结 构 ,?D 和 ?B 为 位 移 法 基 本 未 知 量 ,有 M i l ql AB B =-682 ?// 。 ( ) l D ? 2、图 a 中 Z 1, Z 2 为 位 移 法 的 基 本 未 知 量 , i = 常 数 , 图 b 是 Z Z 2110== , 时 的 弯 矩 图 , 即 M 2 图 。 ( ) a b l ( ) ( ) 3、图 示 超 静 定 结 构 , ?D 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。 此 结 构 可 写 出 位 移 法 方 程 111202 i ql D ?+=/ 。 ( ) 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须; C. 可 以 ,但 不 必 ; D. 一 定 条 件 下 可 以 。 ( ) 2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 : A.M i i i l AB A B AB =--426???/ ; B.M i i i l AB A B AB =++426???/ ; C.M i i i l AB A B AB =-+-426???/ ; D.M i i i l AB A B AB =--+426? ??/。 ( ) ?A B 3、图 示 连 续 梁 , 已 知 P , l ,?B , ?C , 则 : A . M i i BC B C =+44?? ; B . M i i BC B C =+42?? ; C . M i Pl BC B =+48?/ ; D . M i Pl BC B =-48?/ 。 ( ) l l l l /2/2

最新力法求解超静定结构的步骤:

力法求解超静定结构 的步骤:

第八章力法 本章主要内容 1)超静定结构的超静定次数 2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分)) 3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架) 4)力法的对称性利用问题,对称结构的有关概念四点结论 5)超静定结构的位移计算和最后内力图的校核 6) §8-1超静定结构概述 一、静力解答特征: 静定结构:由平衡条件求出支反力及内力; 超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。 二、几何组成特征:(结合例题说明) 静定结构:无多余联系的几何不变体 超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。 多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。 多余求知力:多余联系中产生的力称为 三、超静定结构的类型(五种) 超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构 四、超静定结构的解法 综合考虑三个方面的条件: 1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程; 2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。即结构的变形必须 符合支承约束条件(边界条件)和各部分之间的变形连续条件。 3、物理条件:即变形或位移与内力之间的物理关系。 精确方法: 力法(柔度法):以多余未知力为基本未知量 位移法(刚度法):以位移为基本未知量。 力法与位移法的联合应用: 力法与位移法的混合使用:混合法

利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题

龙源期刊网 https://www.360docs.net/doc/385569955.html, 利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题 作者:吴建成王平心 来源:《科技视界》2013年第24期 【摘要】本文研究具有初值条件u(x,0)=g(x)的方程u+b·Du+cu=f(x,t)的初值问题。方程u+b·Du+cu=f(x,t)是具有常系数的一阶非齐次线性偏微分方程,这类方程在变分法、质点力学和几何学中都出现过,因此研究这类方程的目的是更好地应用于这些学科。求解这类方程的最基本方法是特征线法。它是把偏微分方程转化为常微分方程或常微分方程组,通过求解这些常微分方程得到所要求的解。本文分别运用特征线法以及特征线法的特殊情况求解了该初值问题,两种方法所得到的解是一致的,都是u(x,t)=g(x-bt)(x+b(u-t),u)du。因此,有了通过特征线法所求得的该初值问题的解的公式,我们可以更好地研究相关的一些实际问题。 【关键词】线性偏微分方程;初值问题;特征线法;常微分方程 0 引言 1)初值问题 其中,c∈R1,b=(b1,b2,…,bn)∈R都是常数。x=(x1,x2,…,xn)是n维空间变量,t是时间变量(x,t)是已知函数。 2)分析 上述初值问题中的方程(1)是一阶非齐次线性偏微分方程,在大多数常微分方程和偏微分方程教程中,一阶偏微分方程通常受到简单的处理,原因之一是具有很明显应用意义的偏微分方程即位势方程、热传导方程和波动方程等都是标准的二阶偏微分方程。实际上,一阶偏微分方程在变分法、质点力学和几何光学中都出现过,在流体力学、空气动力学和其它工程技术等领域有着广泛的应用。例如在种群分析中,个体(不必是生物体,如生产的产品如灯泡、晶体管、食品或更一般的任一类似的物品的集合)根据统计样本随着时间的变化会变得不合格,因此研究一阶偏微分方程有着实际意义。 一阶偏微分方程的特点是:其通解可以通过解一个常微分方程组而得到,称这种求解方法为特征线法[1]。而高阶偏微分方程和一阶偏微分方程组没有这个特点。特征线法是一种重要 又实用的方法,利用该方法证明了半有界弦振动的一维半线性波动方程的间断初边值问题的分片光滑解的全局存在性定理[2];用该方法给出了一类仓库货物储存模型解的递推表达式,并 证明其光滑性从而得到了经典解的唯一性[3];通过运用特征线法,讨论了无粘性Burgers方程

结构力学位移法题及答案

> 超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1) (2) (3) (4) (5) (6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI=EI= 24442 @ 2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。 2 * 13、用位移法计算图示结构并作M 图。E I =常数。

l l /2l /2 14、求对应的荷载集度q 。图示结构横梁刚度无限大。已知柱顶的水平位移为 ()5123/()EI →。 12m 12m 8m q 15、用位移法计算图示结构并作M 图。EI =常数。 l l l l — 16、用位移法计算图示结构,求出未知量,各杆EI 相同。 4m 19、用位移法计算图示结构并作M 图。 q l l

20、用位移法计算图示结构并作M 图。各杆EI =常数,q = 20kN/m 。 6m 6m | 23、用位移法计算图示结构并作M 图。EI =常数。 l l 2 24、用位移法计算图示结构并作M 图。EI =常数。 q 29、用位移法计算图示结构并作M 图。设各杆的EI 相同。 q q l l /2/2 * 32、用位移法作图示结构M 图。 E I =常数。

典型例题解析-_静定结构位移计算

第5章 静定结构位移计算 §5 – 1 基本概念 5-1-1 虚拟单位力状态构造方法 ●虚拟单位力状态构造方法: (1)去掉所有荷载重画一个结构; (2)标出所求位移矢量; (3)该矢量变成单位力,即得虚拟单位力状态。 如图3-1a 刚架求C 点竖向位移CV ?和C 截面转角 C ?,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位 力状态。 5-1-2 位移计算公式 虚拟单位力作用下,引起的内力和支座反力: N Q ,,,Ri F M F F 实际荷载作用下,引起的内力: NP P QP ,,F M F ●位移计算一般公式 N Q Ri i F du Md F ds F c ??γ=++-∑∑∑∑??? ●荷载作用产生位移的计算公式 Q N QP NP P k F F F F M M ds ds ds EA EI GA ?=++∑∑∑? ?? 1、梁或刚架结构 P M M ds EI ?=∑? 2、桁架结构 N NP F F ds EA ?=∑? 图3-1虚拟单位力状态 ) a () b () c (

2 结构力学典型例题解析 3、混合结构 N NP P F F MM ds ds EA EI ?=+∑∑? ? ●支座移动引起位移计算公式 Ri i F c ?=-∑ ●温度引起位移计算公式 ()N 0t F t dx M dx h α??α=+±∑∑?? ()N 0M t t lF A h α??α=+±∑∑ 式中:0,,t t α?为线膨胀系数形心温度温差,h 截面高度 M A 虚拟状态弯矩图面积 ●有弹性支座情况的位移计算公式 ()P RP R 0RP R M M F ds F EI k Ay F F EI k ?=+?±=+? ∑∑? ∑∑ 5-1-3 图乘法 图乘法公式: 0P ()Ay MM dx EI EI ±?==∑∑? 图乘法公式条件: ●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定: 面积A 与y 0同侧取“+”号 注意:求面积的图形要会求面积和形心位置。 为使计算过程简洁、明了,先将面积和形心处对应弯矩求出标在弯矩图一侧,然后直接代入图乘法公式求得位移。 图3-2 图乘法示意图

水力瞬变特征线法和隐式差分法的对比分析

!!!!!!!!!!!!!!!!"" " " 设计计算 水力瞬变特征线法和隐式差分法 的对比分析 蒋仕章 # 蒲家宁 $ 中国人民解放军后勤工程学院%蒋仕章 蒲家宁&水力瞬变特征线法和隐式差分法的对比分析’油气储运’())*’()$*%*(+*,-摘 要 液体在长输管道内不稳定流动问题可以采用各种数值解法并借助计算机来进行处 理’如特征线法.隐式差分法等-特征线法是广泛使用的数值方法’隐式差分法在液体长输管道不稳定流动问题分析中应用则比较少-分析了长输管道水力瞬变特征线法和隐式有限差分法的优缺点’并结合算例分析’指出隐式差分法适合于长输管道水力瞬变分析’计算误差较小-主题词 长输管道 特征线法 隐式有限差分法 对比分析 长输管道内液体的流动状态可分为稳定和不稳定两大类-稳定流动是管道流动的基本状态’不稳定流动则由稳定流动受到破坏而引起’例如开阀和关阀. 开泵和停泵.调节阀和安全阀动作.动力故障以及管道泄漏等各种原因而发生水力瞬变-工程上的不稳定流问题十分重要’因为它可能引起的管道超压. 噪声.抽空和振动比起由稳定流分析所得的结果要严重得多- 目前’液体在长输管道内不稳定流动问题常采用各种数值解法并借助计算机来进行有效的分析-美国学者斯特里特$/010********%在*678年创建的特征线法是最广泛使用的数值方法9*+8: -文献;*<在流体动力学理论基础上’运用以特征线法为主的数值分析方法’结合具体实例说明了液体输送管道和管网系统水力瞬变的分析方法和动态控制的措施-特征线法具有理论严密’ 物理意义明确’适用范围广等特点-隐式差分法在液体长输管道不稳定流动问题分析中应用则比较少- 一.管道水力瞬变数学模型 =.水击基本微分方程 *6)(年’意大利学者阿列维$10>??@5A @%以严密的数学方法’建立了不稳定流动的基本微分方程’ 奠定了水击分析的理论基础9*+8: - *B C D E D F G H D E I J D K G D L D K G M E N E N *OP Q )$*% D L D F G H D L D K G R ( I J B C D E D K S T U Q )$(%式中L VV 液体压头W E VV 液体流量W H VV 管内液流的平均流速W M VV 水力摩阻系数W P VV 流态指数W B VV 重力加速度W C VV 管道流通面积W R VV 水击波速W F VV 时间变量W K VV 管长变量-X .边. 初值条件液体长输管道系统由节点和元件组成’其中节点是长输管道系统的边界点’ 节点的工艺要求即为动态的边界条件-元件是连续于节点间的工艺设备’它们可以是管道.泵.阀门等多种形式’元件通过量及其相应的元件参数反映出元件特性-根据质量守恒定律’在任何时间流进.流出任意节点Y 的流量必须相等’即 Z [\]Y R Y [E Y [ G E Y Q )$8% #,)))*7’重庆市大坪长江二路*^,号W 电话&$)(8%7_(^,8*)- ‘ (*‘油气储运 ())*年

位移法例题

第7章 位移法 习 题 7-1:用位移法计算图示超静定梁,画出弯矩图,杆件EI 为常数。 题7-1图 7-2:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-2图 7-3:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-3图 7-4:用位移法计算图示超静定梁,画出弯矩图。 C H 2

题7-4图 7-5:用位移法计算图示刚架,画出弯矩图,杆件EI 为常数。 题7-5图 7-6:用位移法计算图示排架,画出弯矩图。 题7-6图 7-7:用典型方程法计算7-2题,画出弯矩图。 7-8:用典型方程法计算7-3题,画出弯矩图。 7-9:用典型方程法计算7-5题,画出弯矩图。 7-10:用典型方程法计算图示桁架,求出方程中的系数和自由项。 题7-10图 7-11:用典型方程法计算图示刚架,求出方程中的系数和自由项。 1 1 E

题7-11图 7-12:用位移法计算图示结构,杆件EI 为常数(只需做到建立好位移法方程即可)。 题7-12图 7-13:用位移法计算图示结构,并画出弯矩图。 题7-13图 7-14:用位移法计算图示结构,并画出弯矩图。 C L L F

题7-14图 7-15:用位移法计算图示刚架,画出弯矩图。 题7-15图 7-16:用位移法计算图示结构,并画出弯矩图。 题7-16图 7-17:用位移法计算图示结构,并绘弯矩图,所有杆件的EI 均相同。 L L L L a a

题7-17图 7-18:确定图示结构用位移法求解的最少未知量个数,并画出基本体系。 题7-18图 7-19:利用对称性画出图示结构的半刚架,并在图上标出未知量,除GD 杆外,其它杆件的EI 均为常数。 e ) k C C d ) (c ) F k a ) (b ) D B L L

第5章 静定结构位移计算

第5章 静定结构位移计算 习题 5-1:由积分法求图示悬臂梁C 点的竖向位移CY ?,杆件的EI 为常数。 题5-1图 5-2:由积分法求图示悬挑梁C 点、D 点的竖向位移CY ?和DY ?,杆件EI 为常数。 题5-2图 5-3:图示刚架的A 支座向下发生了a 的移动,向左发生了b 的移动,求由此引起C 点的转角C ??和D 点的竖向位移DY ?。 题5-3图 题5-4图 5-4:图示刚架的A 支座向下发生了a 的移动,C 支座向右发生了b 的移动,求由此引起铰D 两侧截面的相对转角D ??和E 点的竖向位移EY ?。 5-5:图示桁架的CE 杆由于制造误差比设计短了a ,试计算由此引起的D 点水平位移DX ?。杆件的EA 均相同。 m 4kN

题5-5图 5-6:图示桁架的EB 杆由于制造误差比设计短了a ,试计算由此引起的D 点水平位移DX ?。杆件的EA 均相同。 题5-6图 5-7:求图示桁架E 点的竖向位移 EY ?、FG 杆的转角 FG ??,所有杆件EA 相同。 题5-7图 5-8:求出图示桁架C 点的竖向位移 CY ?,所有杆件的EA 相同。

题5-8图 5-9:求图示结构的C 、D 两点的相对水平位移 CDX ?,所有杆件的EI 相同。 题5-9图 5-10:求图示结构D 点的水平位移 DX ?,所有杆件的EI 相同。 题5-10图 5-11:计算图示结构D 点的转角 D ??,所有杆件的EI 相同,弹簧刚度系数为k 。 10kN

题5-11图 5-12:试求图示结构G 点的水平位移GX ?,所有杆件的EI 均为常量。 题5-12图 5-13:用图乘法求图示结构D 点的竖向位移DY ?,所有杆件的EI 相同,弹簧的刚度系数为k 。 题5-12图 5-14:求图示结构A 点的水平位移 AX ?、D 点的转角 D ??,所有杆件的EI 相同。 q kN

结构力学-第7章-位移法Word版

第7章位移法 一. 教学目的 掌握位移法的基本概念; 正确的判断位移法基本未知量的个数; 熟悉等截面杆件的转角位移方程; 熟练掌握用位移法计算荷载作用下的刚架的方法 了解位移法基本体系与典型方程的物理概念和解法。 二. 主要章节 §7-1 位移法的基本概念 §7-2 杆件单元的形常数和载常数—位移法的前期工作 §7-3 位移法解无侧移刚架 §7-4 位移法解有侧移刚架 §7-5 位移法的基本体系 §7-6 对称结构的计算 *§7-7支座位移和温度改变时的位移法分析(选学内容) §7-8小结 §7-9思考与讨论 三. 学习指导 位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。 四. 参考资料 《结构力学(Ⅰ)-基本教程第3版》P224~P257 第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。

本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)② 基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解) §7-1 位移法的基本概念 1.关于位移法的简例 为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。图7-1和图7-2所示。 (a) (a) (b) (b) 图7-1 图7-2 第一步:从结构中取出一个杆件进行分析。(杆件分析) 图7-2中杆件AB 如已知杆端B 沿杆轴向的位移为i u (即杆件的伸长)则杆端力Ni F 为: i i i Ni u l EA F (7-1) E-为弹性模量,A-为杆件截面面积,i l -为杆件长度

工程力学习题集(三)

力法 思考题 1.超静定结构与静定结构在几何组成上有何区别?解法上有什么不同? 2.力法中超静定结构的次数是如何确定的? 3.力法方程及方程中各系数和自由项的物理意义是什么? 4.应用力法计算时,对超静定结构作了什么假定? 5.在超静定桁架和组合结构中,切开或撤去多余链杆的基本结构,两者的力法方程是否相同? 6.举例说明用力法解超静定结构的步骤。 7.力法方程中为什么主系数必为正值,而副系数可为正值、负值或为零? 8.如何判定结构是否为对称结构?在分析对称结构时,应如何简化计算? 习题 1.试确定图示各结构的超静定次数。

题1图 2.试用力法计算图示超静定梁,并绘出内力图。 题2图 3.用力法计算图示连续梁,并绘弯矩图,EI为常量。

题3图 4.用力法计算图示刚架,并作出内力图。 题4图 5.用力法计算图示刚架,并作出内力图。 题5图 6.用力法计算图示刚架,并作出弯矩图。

题6图 7.试求图示超静定桁架各杆的内力。各杆EA均相同。 题7图 8.作图示结构中CD梁的弯矩图,各杆EI=常数,立柱AB截面面积A= 题8图 9.试用力法计算下列排架,作弯矩图。

题9图 10.利用对称性计算图示结构,绘出弯矩图。 题10图 位移法 思考题 1.用位移法计算结构时,为什么能够用结点位移作为基本未知量? 2.举例说明用位移法解超静定结构的步骤。 3.为什么一个刚结点只有一个转角作为基本未知量?为什么铰处的转角不作

为基本未知量? 4.位移法能否用于求解静定结构,为什么? 习题 1.试确定图示各结构用位移法计算时的基本未知量数目。 题1图 2.用位移法计算图示刚架,并作出内力图。 题2图 3.用位移法计算图示刚架,并作出内力图。

结构力学位移法题及答案

超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1)(2)(3) (4)(5)(6) 2、位移法求解结构内力时如果P R一定为零。 M图为零,则自由项1P 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M图,横梁刚度EA →∞,两柱线刚度i相同。 13、用位移法计算图示结构并作M图。E I =常数。 14、求对应的荷载集度q。图示结构横梁刚度无限大。已知柱顶的水平位移为 () /() EI→。 5123 15、用位移法计算图示结构并作M图。EI =常数。 16、用位移法计算图示结构,求出未知量,各杆EI相同。 19、用位移法计算图示结构并作M图。 20、用位移法计算图示结构并作M图。各杆EI =常数,q = 20kN/m。 23、用位移法计算图示结构并作M图。EI =常数。 24、用位移法计算图示结构并作M图。EI =常数。 29、用位移法计算图示结构并作M图。设各杆的EI相同。 32、用位移法作图示结构M图。E I =常数。 36、用位移法计算图示对称刚架并作M图。各杆EI =常数。 38、用位移法计算图示结构并作M图。EI =常数。 42、用位移法计算图示结构并作M图。 43、用位移法计算图示结构并作M图。EI =常数。 48、已知B点的位移?,求P。 51、用位移法计算图示结构并作M图。 超静定结构计算——位移法(参考答案) 1、(1)、4;(2)、4;(3)、9;(4)、5;(5)、7; (6)、7。 2、(X) 3、(X) 4、(O) 5、(X) 12、13、

超静定计算

一. 用力法计算超静定结构 (一)复习重点 1. 理解超静定结构及多余约束的概念,学会确定超静定次数 2. 理解力法原理 3. 掌握用力法计算超静定梁和刚架(一次及二次超静定结构) 4. 掌握用力法计算超静定桁架和组合结构(一次及二次超静定结构) 5. 了解温度变化、支座移动时超静定结构的计算(一次超静定结构) (二)小结 1. 超静定结构、多余约束、超静定次数 (1)超静定结构 从几何组成角度,结构分为静定结构和超静定结构。 静定结构:几何不变,无多余约束。 超静定结构:几何不变,有多余约束。 (2)多余约束 多余约束的选取方案不唯一,但是多余约束的总数目是不变的。 (3)超静定次数 多余约束的个数是超静定次数。 判断方法:去掉多余约束使原结构变成静定结构。

2. 力法原理 力法是计算超静定结构最基本的方法 (1)将原结构变为基本结构 (2)位移条件: (3)建立力法方程

3.用力法求解超静定梁和刚架例:二次超静定结构 (1)原结构变为基本结构 (2)位移条件 (3)力法方程

(3)绘弯矩图 4. 用力法计算超静定桁架和组合结构 注意各杆的受力特点:二力杆只有轴力,受弯杆的内力有弯矩、剪力和轴力。 例:超静定组合结构 (1)原结构变为基本结构 (2)位移条件

(3)力法方程 (4)绘弯矩图 5. 了解温度变化、支座移动时超静定结构的内力计算 (1)温度变化时,超静定结构的内力计算 原结构变为基本结构 位移条件 力法方程

(2)支座移动时,超静定结构的内力计算 原结构变为基本结构 位移条件 二. 用位移法计算超静定结构 (一)复习重点 1. 了解位移法基本概念及位移法与力法的区别 2. 掌握用位移法计算超静定结构(具有一个及两个结点位移) 3. 掌握计算对称结构的简化方法 (二)小结 1. 了解位移法基本概念及位移法与力法的区别 位移法是求解超静定结构的又一基本方法,适用于求解超静定次数较高的连续梁和刚架。 位移法的前提假设:对于受弯的杆件,可略去轴向变形和剪切变形的影响,且弯曲变形是微 2. 掌握用位移法求解超静定结构(具有一个及两个结点位移的结构) 例:求连续梁的内力 解:(1)确定基本未知量及基本体系

相关文档
最新文档