太阳能电池基本特性研究实验数据

太阳能电池基本特性研究实验数据
太阳能电池基本特性研究实验数据

五:数据记录与处理 1

表一 负载电压和电流记录表

由上图可知:当R 小于某一值时,负载电流几乎不变,此时,可视为恒流源;当R 大于某一值时,负载电流近乎按指数形式减小。

从图中可知:mA I SC 58.3= V U SC 61.1= 当R 增加时,P 先增加,后减小,UI P = 由图可看出,当R=449.72Ω时,P m =5.728mW 故填充因子:F f =

OC SC U I P max =61

.158.3728

.5?=0.994

且F f 值越大,太阳能电池对光的利用率越高,光转化率越高.

电压U/v 0 0.19 0.40 0.60 0.78 1.00 1.20 1.41 1.61 电流I/mA 4.38 4.37 4.34 4.31 4.24 4.22 4.09 3.89 3.58 电阻R/Ω 0 43.48 92.17 139.21 183.96 236.97 293.40 362.47 449.72 功率P/mw 0

0.830 0.174 2.586 3.307 4.22 4.908 5.485 5.728

1.79 1.99

2.19 2.25 2.26 2.27 2.29 2.30 2.35 2.40 2.45

3.14 2.57 1.71 1.41 1.33 1.28 1.18 1.13 0.86 0.57 0.24 570.06 77

4.32 1280.70 159

5.74 1699.25 1773.44 1940.68 2035.40 2732.56 4210.53 10208.3

5.621 5.114

3.745

3.173

3.006

3.133

2.702

2.599

2.021

1.368

0.588

2, 表二太阳能电池正向偏压与电流数据表

由图可知,短路电流随开路电压的增大而增大,曲线近似于指数曲线。在做实验过程中可能由于实验误差导致。没

有接近于理想二极管。 求I o 和B :

在图中取两点A (0.62,0.0375)B (1.29,0.1885) 带入公式)1(-=βμ

e

I I o j 可得方程组 0.0375=I o (e 0.62μ—1)

0.1885=I o (e 0.1.29μ—1) 解方程组可得:I o =7.5 β=0.02 所以经验公式为:)1(5.702.0-=μ

e

I j

3:

表三不同光强下太阳能电池开路电压及短路电流

U1/v U2/v I/mA U/v 0 0 0 0 0.20 0.06 0.01949 0.14 0.40 0.14 0.03547 0.26 0.60 0.22 0.05847 0.38 0.80 0.32 0.10720 0.48 1.00 0.42 0.17542 0.58 1.20 0.53 0.21563 0.67 1.40 0.65 0.26314 0.75 1.60 0.78 0.35085 0.82 1.80 0.91 0.43718 0.89 2.00 1.05 0.49306 0.95 2.20 1.20 0.58475 1.00 2.40 1.35 0.72119 1.05 2.60 1.50 0.80776 1.10 2.80 1.66 0.85763 1.14 3.00 1.82 0.99407 1.18 3.20 1.99 1.14025 1.21 3.40 2.15 1.2245 1.25 3.60 2.32 1.29619 1.28 3.80 2.49 1.45212 1.31 4.00

2.66

1.61780

1.34

有曲线可知,在不通光照下,随光照的增强,开路电压和短路电流也随之增强。短路电流呈线性变化,开路电压开始增加较快,后趋于水平。 求OC SC U I 和:

在图中取两点A (1.90,1)B (2.22,2)带入)1ln(1

O

SC

OC I I U +

=

β

可得方程组: )00.11ln(1

90.1O I +

=

β

)00

.21(ln 122.2O

I +=β 解方程组可得 I=3.92mA β=0.233

所以,)0392

.001ln 29.4SC

OC OC SC I U U I +=(

:之间的近似函数关系为和

4:

Isc/mA 4.34 3.88 2.83 1.83 0.98 0.67 Uoc/v 2.45

2.42

2.33

2.17

1.87

1.67

表四不同角度光照下电池开路电压及短路电流

角度 5 10 15 20 25 30 35 40 45 50

Isc/mA 4.64 4.62 4.58 4.46 4.33 4.14 3.88 3.59 3.20 2.70

Uoc/v 2.44 2.43 2.43 2.43 2.42 2.41 2.40 2.37 2.35 2.31

P/mW 11.322 11.227 11.129 10.838 10.479 9.977 9.312 8.508 7.52 4.62

在一定光照下随角度的逐渐增大,太阳能电池的输出功率逐渐减小。

5:

表五太阳能电池串并联特性

1号多晶2号多晶3号单晶4号单晶多晶串联多晶并联单晶串联单晶并联Isc/mA 4.57 4.65 5.08 5.11 4.58 8.60 5.10 9.89 Uoc/v 2.39 2.41 2.39 2.39 4.75 2.41 4.74 3.39

因为电阻不是无限大,开路电压实际是有电流通过的;因为总电阻不为零,短路电流也不是理论中的无限大。

有机太阳能电池实验报告

有机太阳能电池实验报告 实验项目名称P3HT-PC61BM 体异质结聚合物太阳能 电池器件制作与性能测试 实验日期 指导老师 实验者 学号 专业班级 第一部分:实验预习报告 一、实验目的 通过在实验室现场制作P3HT-PC61BM 聚合物体异质结太阳能电池器件以及开展电池性能测试,了解有机太阳能电池的制作工艺与流程,熟悉相关的加工处理与分析测试设备工作原理与使用方法,加深对有机太阳能电池的感性认识,提高学生的实际操作能力,培养学生对科学研究的兴趣。 二、实验仪器 电子分析天平、加热磁力搅拌器、超声仪、紫外臭氧清洗系统、旋涂仪、 惰性气体操作系统、真空蒸镀系统、太阳光模拟器、数字源表、台阶仪 三、实验要求 1、严格按照实验室要求与规范开展实验,未经允许不得随意触摸或按动设备开关或按钮以及设备控制系统。 2、实验期间保持室内安静,保持实验室内清洁卫生。 3、熟悉有机太阳能电池加工与测试相关设备、原理与方法。 四、实验内容与实验步骤 1.聚合物体异质结加工溶液的配制(活性层P3HT:PCBM 溶液的配制) 在手套箱外称取所需的P3HT 5、6mg 与PCBM 5、6mg,混合好装入带有磁子的5mL 瓶子中,转移到手套箱中;用一次性注射器吸取0、33mL oDCB(邻二氯苯)溶剂,配成17mg mL-1的溶液,放到加热台(加热台需要 5 分钟的稳定时间)上,设置温度为85℃,搅拌1h 后,冷却至室温待用。 2.导电玻璃表面清洁与处理。 A.首先确认ITO 面,用万用电表(打到Ω档)测试其表面电阻,有电阻的一面为ITO,在其反面的边缘处刻‘上’字(见下图)。将ITO 依次放到去离子水、丙酮与异丙醇中超声清洗10 分钟。每次超声完毕,用镊子取出ITO,用同样的溶剂反复冲洗两面三次,之后用氮气枪迅速吹干,立刻放到盛有下一种溶剂的容器中清洗。最后将用氮气枪吹干的ITO 转移到六孔板中转移至紫外/臭氧清洗机(操作详见其说明)中,将ITO面朝上,表面清洁处理10 分钟后,将ITO 取出并置于六孔板中待旋涂PEDOT:PSS(ITO 面朝下)。

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。 为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线 2. 测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF 3. 测量太阳能电池的短路电流SC I 、开路电压OC U 与相对光强0J J 的关系,求出它们的近似函数关系。 【实验仪器】 光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱

【实验原理】 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为 ??? ? ??-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。(可令nKT q =β) 由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。 当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。 电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。 光电流示意图 太阳能电池的基本技术参数除短路电流SC I 和开路电压OC U 外, 还有最大输出功率max P 和填充因子FF 。最大输出功率max P 也就是IU 的最大值。填充因子FF 定义为 OC SC U I P FF m ax = (2) FF 是代表太阳能电池性能优劣的一个重要参数。FF 值越大,说明太阳能电池对光的利用率越高。

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

太阳能电池基本特性实验讲义

太阳能电池基本特性测定 目前人类所消耗的能源的70%来自煤、石油、天然气等化石燃料,在现有技术条件下,化石能源的大量使用给地球环境造成了严重危害,使人类生存空间受到了极大的威胁。科学家预言,尽管化石燃料能源未来仍将占有相当大比重,但其一统天下的局面将逐渐结束(地球上2亿年形成的化石燃料,大体只够人类使用300余年),可再生的清洁能源可望撑起未来世界能源供给的半壁江山。 太阳能的利用和研究是21世纪新型能源开发的重点课题之一。太阳能电池能够吸收光的能量,并将所吸收的光子能量转换为电能。目前硅太阳能电池应用领域除人造卫星和宇宙飞船外,已应用于许多民用领域:如太阳能汽车、太阳能游艇、太阳能收音机、太阳能计算机、太阳能乡村电站等。太阳能是一种清洁、“绿色”能源。因此,世界各国十分重视对太阳能电池的研究和利用。 一、实验目的 1、学习掌握硅光电池的工作原理。 2、学习掌握硅光电池的基本特性及其测试方法。 3、了解硅光电池的基本应用。 二、实验仪器 1.光功率计 2.测试仪 3.光源 4.光电二极管(用专用连接线与光功率计相连接) 5.样品架(用于放置光电二极管传感器,以及待测太阳能电池样品,含遮光罩) 6. 导轨 7.单晶硅样品 7.多晶硅样品 图1 太阳能电池特性测试仪

1、太阳能电池:单晶硅和多晶硅各1块:60×60mm 2,有效面积50×45mm 2 ,开路电压不低于4V ,闭路电流不小于15mA ;2、光功率计:三位半数显,量程200uw 、2mw 和20mW 三档,数字按键档位切换;光功率计传感器采用高灵敏度光电二极管;3、精密电阻负载:0~99999.9Ω;4、测试仪:电压表:2.000V 和20.00V 两档;电流表:2.000mA 和200.0mA 两档;0-5V 可调直流电源,带限流输出功能;5、光源功率:100W ;6、导轨:长75cm ; 三、实验原理 太阳能电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I 的关系式为: )1(-=U o e I I β (1) (1)式中,I为通过二极管的电流,o I 和β是常数,o I 为反向饱和电流。 由半导体理论,二极管主要是由能隙为E C -E V 的半导体构成,如图2所示。E C 为半导体电带,E V 为半导体价电带。当入射光子能量大于能隙时,光子会被半导体吸收,产生电子和空穴对。电子和空穴对会分别受到二极管之内电场的 假设太阳能电池的理论模型是由一理想电流源(光照产生光电流的电流源)、一个理想二极管、一个并联电阻R Sh 与一个电阻R S 所组成,如图3所示。 图3中,I Ph 为太阳能电池在光照时该等效电源输出电流,I d 为光照时,通过太阳能电池内部二极管的电流。由基尔霍夫定律得: 0)(=---+sh d ph s R I I I U IR (2) (2)式中,I 为太阳能电池的输出电流,U 为输出电压。由(1)式可得, d sh ph sh s I R U I R R I --=+ )1( (3)

光伏特性曲线实验报告

绪论 一实验目的 本实验课程的目的,旨在通过课内实验教学,使学生掌握太阳能发电技术方面的基本实验方法和实验技能,帮助和培养学生建立利用所学理论知识测试、分析和设计一般光伏发电电路的能力,使学生巩固和加深太阳能发电技术理论知识,为后续课程和新能源光伏发电技术相关专业中的应用打好基础。 二实验前预习 每次实验前,学生须仔细阅读本实验指导书的相关内容,明确实验目的、要求;明确实验步骤、测试数据及需观察的现象;复习与实验内容有关的理论知识;预习仪器设备的使用方法、操作规程及注意事项;做好预习要求中提出的其它事项。三注意事项 1、实验开始前,应先检查本组的仪器设备是否齐全完备,了解设备使用方法及线路板的组成和接线要求。 2、实验时每组同学应分工协作,轮流接线、记录、操作等,使每个同学受到全面训练。 3、接线前应将仪器设备合理布置,然后按电路图接线。实验电路走线、布线应简洁明了、便于测量。 4、完成实验系统接线后,必须进行复查,按电路逐项检查各仪表、设备、元器件的位置、极性等是否正确。确定无误后,方可通电进行实验。 5、实验中严格遵循操作规程,改接线路和拆线一定要在断电的情况下进行。绝对不允许带电操作。如发现异常声、味或其它事故情况,应立即切断电源,报告指导教师检查处理。 6、测量数据或观察现象要认真细致,实事求是。使用仪器仪表要符合操作规程,切勿乱调旋钮、档位。注意仪表的正确读数。. 7、未经许可,不得动用其它组的仪器设备或工具等物。 8、实验结束后,实验记录交指导教师查看并认为无误后,方可拆除线路。最后,应清理实验桌面,清点仪器设备。 9、爱护公物,发生仪器设备等损坏事故时,应及时报告指导教师,按有关实验管理规定处理。 10、自觉遵守学校和实验室管理的其它有关规定。 四实验总结 每次实验后,应对实验进行总结,即实验数据进行整理,绘制波形和图表,分析实验现象,撰写实验报告。实验报告除写明实验名称、日期、实验者姓名、同组实验者姓名外,还包括: 1.实验目的; 2.实验仪器设备(名称、型号); 3.实验原理; 4.实验主要步骤及电路图; 5.实验记录(测试数据、波形、现象); 6.实验数据整理(按每项实验的实验报告要求进行计算、绘图、误差分析等);.回答每项实验的有关问答题。7.

太阳能电池探究亮特性光照强度关系

扬州大学物理科学与技术学院 大学物理综合实验训练论文实验名称:太阳能电池探究亮特性光照强度关系 班级:物教1201班 姓名:郑清华 学号:120801117 指导老师:李俊来

太阳能电池探究亮特性光照强度关系 物教1201 郑清华指导老师:李俊来 摘要:本文介绍了太阳能电池研究背景、实验原理等。在不同光强条件对单晶硅太阳电尺进行了测试.研究发现,当光强为3433.56—10617.33W/2 m时,开路电压随着光强的增加呈对数关系增加,短路电流几乎呈线性变化。效率随着光强的增加先增加后减小,最大效率值1、21%。填充因子随着光强的增加减小。 关键词:太阳能电池;输出特性;光强特性。 一、研究背景 随着经济社会的不断发展,能量与能源问题的重要性日益凸显。人类对能源的需求,随着社会经济而急剧膨胀,专家估计目前每年能源总消耗量为200亿吨标准煤,并且其中90%左右为不可再生的化石能源来维持。就目前情况,全球化石能源储备只能维持100年左右。太阳能以其清洁、长久、无害等优点自然而然成为人类可持续发展不得不考虑的能源方式。太阳每年通过大气向地球输送的能量高达3×1024焦耳,而地球上人类一年的能源总需求达到约4.363×1020焦耳,也就是说,如果我们可以收集其中的万分之一到万分之二就足够我们的需求。太阳能是最为清洁的能源,并且不受任何地域限制,随处可取。此外,将太阳能转换为电能后,电能又是应用范围最广,输送最方便的一种能源。 太阳能一般指太阳光的辐射能量。我们知道在太阳内部无时无刻不在进行着氢转变为氦的热核反应,反应过程中伴随着巨大的能量释放到宇宙空间。太阳释放到宇宙空间的所有能量都属于太阳能的范畴。太阳能电池是目前太阳能利用的关键环节,核心概念是pn结和光生伏特效应 晶体硅太阳电池在如今的光伏市场中占据了绝对主导的地位,而且这一地位在今后很长一段时间内不会改变,因此提高晶体硅太阳电池效率,降低生产成本, 使晶体硅太阳电池能与常规能源进行竞争成为现今光伏时代的主题.太阳能是最具发展潜力的新能源。光伏发电是解决能源危机,实现能源可持续发展的重要途径之一。硅太阳能电池是当今市场的主流产品,其最高效率是24.7%,由新南威尔士大学马丁·格林教授研制的PERL单晶硅电池取得单并保持至今。继续提高转换效率十分困难,但电池的效率会随温度和光强变化而变化。因此,研究温度和光强对太阳能电池的影响是必要的。 二、太阳能光伏电池实验 (一)实验目的 1.了解pn结的基本结构与工作原理。 2.了解太阳能电池组件的基本结构,理解其工作原理。

太阳能电池光伏特性研究

太阳能光伏电池特性实验研究 太阳能光伏电池的输出具有非线性,这种非线性受到外部环境(包括日照强度、温度等)以及本身技术指标(如输出阻抗)的影响,从而使得太阳能电池的输出功率发生变化,其实际转换效率受到一定限制。因此,对太阳能光伏电池输出特性的研究成为了一个重要课题[1]。与跟踪式太阳能光伏系统相比,固定式太阳能光伏系统有着结构简单、成本低廉等优点。太阳能光伏电池表面温度将随辐射能的增强而升高,在一定程度上影响了太阳能电板的输出功率。本文主要对固定式单晶硅太阳能电池输出功率等进行了实验研究。 1、理论分析 理想的太阳能电池可以看做是一个产生光生电流I ph 的恒流源与一个处于正向偏置的二极管并联,如图1所示。如果负载R L 短路了,电路只有光生电流I ph ,光强越强,电子-空穴对的产生率越高,光生电流I ph 越大,即短路电流I sc 为: sc ph I I =- (1) I I 图1 理想太阳能电池等效电路[2] 如果负载R L 不短路,那么P-N 结内流过的电流I d 方向与光生电流方向相反,会抵消部分光生电流,使少数载流子注入和扩散。太阳能电池输出的净电流I 是光生电流I ph 和二极管电流I d 之差,故太阳能电池的光伏I-V 特性可表示为: ph d ph exp 1O qV I I I I I nkT ?? ??=-=-- ?????? ? (2) 式中:I o ——反向饱和电流;n ——理想因子,由半导体材料和制造技术决定, n=1~2;V ——二极管电压;k ——波尔兹曼常数;q ——电子电量;T ——二极管绝对温度。 当电流I =0时,这意味着产生的光生电流I ph 正好等于光电压V oc 产生的二极管电流I d ,即I ph =I d 。从式(2)可得出V oc 为: ph 01OC I nkT V In q I ?? =+???? (3)

硅光电池特性的研究实验报告2

硅光电池基本特性的研究 太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱范围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。 [实验目的] 1.测量太阳能电池在无光照时的伏安特性曲线; 2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压 U OC、最大FF 3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系; [实验原理] 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,

太阳能电池基本特性测定试验

太阳能电池基本特性测定实验 太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,规模生产时的效率为15%。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。 太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线; UI U I曲线图;并测量太阳能变化关系,画出2. 有光照时,测量电池在不同负载电阻下,对IUP FF;及填充因子电池的短路电流、开路电压、最大输出功率SCaxOCm IU L的关系,求出它们的近似函数关系。与光照度 3. 测量太阳能电池的短路电流、开路电压SCOC 【实验仪器】 白炽灯源、太阳能电池板、光照度计、电压表、电流表、滑线变阻器、稳压电源、单刀开关 连接导线若干 供参考. 】【实验原理 区,pn区流向结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由太阳光照在半导体

太阳能电池特性研究_实验报告参考

E I I 圏&全暗吋太阳能电池在外加偏压吋的伏安特性测量电路之二 四、实验步骤 1 ?在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性,用实验测得的正向偏压时I ~ U关

系数据,画出I ~ U曲线并求得常数1和I。的值。 2?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。注意此时光源到太阳能电池距离保持为20cm。 (1 )画出测量实验线路图。 (2)测量太阳能电池在不同负载电阻下,|对U变化关系,画出I ~ U曲线图。 (3)用外推法求短路电流| sc和开路电压U oc。 (4)求太阳能电池的最大输出功率及最大输出功率时负载电阻。 (5)计算填充因子[FF =P m/(l sc ?U°c)]。 五、实验数据和数据处理 1.在没有光源(全黑)的条件下,测量太阳能电池施加正向偏压时的I ~ U特性。 表1 图-(b)全暗情况下太阳能电池外加偏压时的伏安特性半对数曲线 二V ,丨0二mA,相关系数0.9996,电流与电压的指数关系得到验证。

2 ?在不加偏压时,用白色光源照射,测量太阳能电池一些特性。

图9恒定光强无偏压时太阳能电池输出功率与负载电阻关系曲线 太阳能电池的最大输出功率 P m 二 ,最大输出功率时负载电阻 R L 二 1. 2 I (inA) 3在恒定光照下太阳能电池不加偏压时的伏安特性曲线

填充因子[FF 二P m/(l sc ?U°c)]= = 。 六.实验结果 - V ' , I o = mA, 短路电流l sc= ,开路电压U OC=。 填充因子[FF =P m/(l sc ?U°c)]= 七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等) 八.思考题

太阳能电池特性的测量实验报告

竭诚为您提供优质文档/双击可除太阳能电池特性的测量实验报告 篇一:太阳能电池特性测量实验 本科学生实验报告 学号姓名 学院物电学院专业、班级12级光电子班 实验课程名称太阳能电池特性测量实验教师及职称 开课学期学期填报时间日 云南师范大学教务处编印 一、实验设计方案 篇二:实验报告--太阳能电池伏安特性的测量 实验报告 姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期: 太阳能电池伏安特性的测量 【实验目的】 1.了解太阳能电池的工作原理及其应用 2.测量太阳能

电池的伏安特性曲线 【实验原理】 1.太阳电池的结构 以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图 2.光伏效应 图二太阳电池发电原理示意图 当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电

纳米二氧化钛太阳能电池的制备及其性能的测试实验报告

华南师范大学实验报告 学生姓名学号 专业化学(师范) 班级12化教五班 课程名称化学综合实验实验项目纳米二氧化钛太阳能电池的 制备及其性能测试 实验类型□验证□设计□综合实验时间2016 年 4 月21 日实验指导老师李红老师实验评分 纳米二氧化钛太阳能电池的制备及其性能测试 一、前言 1.实验目的 (1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。 (2)掌握实合成纳米二氧化钛溶胶、组装成电池的方法与原理。 (3)学会评价电池性能的方法。 2.实验意义 能源问题是制约目前世界经济发展的首要问题,太阳能作为一种取之不尽用之不竭无污染洁净的天然绿色能源而成为最有希望的能源之一。目前研究和应用最广泛的太阳能电池主要是硅系太阳能电池。但硅系电池原料成本高、生产工艺复杂、效率提高潜力有限(其光电转换效率的理论极限值为30%),限制了其民用化,急需开发低成本的太阳能电池。 1991 年,Gratzal等[1]将纳米多孔TiO2薄膜应用于一种新型的,基于光电化学过程的太阳电池-染料敏化纳米薄膜电池中,光电转换效率达到7.1%-7.9%,引起了世人的广泛关注。随后,该小组

[2]开发了光电能量转换效率达10-11%的DSSC,其光电流密度大于12 mA/cm2,。目前,染料敏化纳米二氧化钛太阳能电池的光电转换效率已达到了11.18%。染料敏化纳米二氧化钛太阳能电池在世界范围内已经成为了研究的热点。 DSSC与传统的太阳电池相比有以下一些优势: (1) 寿命长:使用寿命可达15-20年; (2) 结构简单、易于制造,生产工艺简单,易于大规模工业化生产; (3) 制备电池耗能较少,能源回收周期短; (4) 生产成本较低,仅为硅太阳能电池的1/5~1/10,预计每蜂瓦的电池的成本在10元以内。 (5) 生产过程中无毒无污染; 3.文献综述与总结 蓝鼎等[3]采用溶胶2凝胶、浆体涂敷、磁控溅射等方法制备了二氧化钛单层以及多层膜。结果表明:以磁控溅射薄膜为基底制备的复合膜太阳电池性能一般优于溶胶-凝胶薄膜为基底制备的复合膜太阳电池性能,利用单层纳米粉可以实现效率较高的太阳电池。 王瑞斌等[4]提出:控制热处理温度,可得到不同粒径和不同晶相比例的纳米TiO2,这对染料敏化纳米薄膜电池的光电转换效率影响很大。这是因为不同性能的纳米TiO2薄膜对染料的吸收程度不同,从而导致纳米TiO2膜对光的吸收、透过、反射性能也不同。而且,纳米TiO2薄膜的不同性能对载流子的传输有较大影响,合适的纳米TiO2膜可以有效地减少载流子复合,这些因素都将最终影响到太阳电池的光电转换效率。 黄娟茹等[5]在概述染料敏化太阳能电池工作原理基础上, 着重分析电池光阳极TiO2薄膜的特性,并指出该薄膜在电池中所起的作用:负载染料、收集光生电子、分离电荷和传输光生电子;继而从表面修饰、离子掺杂、量子点敏化、制备复合薄膜、设计微观有序空间结构、设计核壳结构以及多手段共改性等方面对TiO2薄膜改性手段进行综述, 并详细分析改性手段优化染料敏化太阳能电池性能的原因。作者认为应把优化光阳极TiO2薄膜制备工艺及探讨薄膜接触面工作机理等作为今后的研究重点。

太阳能电池特性实验仪实验报告

太阳能电池特性实验仪 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO2已经超过500亿吨。我国能源消费以煤为主,CO2的排放量占世界的15%,仅次于美国,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。推广使用太阳辐射能、水能、风能、生物质能等可再生能源是今后的必然趋势。 广义地说,太阳光的辐射能、水能、风能、生物质能、潮汐能都属于太阳能,它们随着太阳和地球的活动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。太阳的光辐射可以说是取之不尽、用之不竭的能源。太阳与地球的平均距离为1亿5千万公里。在地球大气圈外,太阳辐射的功率密度为1.353kW /m2,称为太阳常数。到达地球表面时,部分太阳光被大气层吸收,光辐射的强度降低。在地球海平面上,正午垂直入射时,太阳辐射的功率密度约为1kW /m2,通常被作为测试太阳电池性能的标准光辐射强度。太阳光辐射的能量非常巨大,从太阳到地球的总辐射功率比目前全世界的平均消费电力还要大数十万倍。每年到达地球的辐射能相当于49000亿吨标准煤的燃烧能。太阳能不但数量巨大,用之不竭,而且是不会产生环境污染的绿色能源,所以大力推广太阳能的应用是世界性的趋势。 太阳能发电有两种方式。光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成蒸气,再驱动汽轮机发电,太阳能热发电的缺点是效率很低而成本很高。光—电直接转换方式是利用光生伏特效应而将太阳光能直接转化为电能,光—电转换的基本装置就是太阳能电池。 与传统发电方式相比,太阳能发电目前成本较高,所以通常用于远离传统电源的偏远地区,2002年,国家有关部委启动了“西部省区无电乡通电计划”,通过太阳能和小型风力发电解决西部七省区无电乡的用电问题。随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验内容 1.太阳能电池的暗伏安特性测量 2.测量太阳能电池的开路电压和光强之间的关系 3.测量太阳能电池的短路电流和光强之间的关系 4.太阳能电池的输出特性测量

太阳能电池的基本特性研究

太阳能电池的基本特性研究 贺超1,2,3 (1,孙越崎学院.2,2014-2班.3,学号:01140085) 摘要:人类面临着有限常规能源和环境破坏严重的双重压力,能源问题已经成为越来越值得关注的社会与环境问题。太阳能电池是一种将太阳或其他光源的光能直接转化为电能的器件,目前太阳能电池已被应用于许多民用领域。本文主要介绍太阳能电池的基本特性以及基本原理,并设计实验来测量太阳能的开路电压、短路电流以及它们与入射光强度的关系,同时来太阳能电池的输出伏安特性曲线。在此基础上预测太阳能电池的发展趋势。 关键字:太阳能电池输出伏安特性曲线开路电压短路电流 A Study on the basic characteristics of solar cells HE Chao1,2,3 (1,SUN Yueqi Honors College.2,Class 2014-2.3.SID:01140085) Abstract:Human beings are faced with the dual pressures of limited conventional energy and environmental damage. Energy issues has become more and more attention to the social and environmental issues. Solar cell is a device that can directly convert sunlight or other light source into electrical energy, and solar cell has been used in many civil fields. This paper mainly introduces the basic characteristics and basic principles of solar cells, and the design of the experimental measurement of the solar energy, the open circuit voltage, short circuit current and the relationship between them and the incident light intensity, while the output voltage of solar cells.On this basis,we will predict the development trend of solar cells. (一)太阳能电池的简介 太阳能电池是一种在光的照射下产生电动势的半导体元件。光电池的种类很多,常用有硒光电池、硅光电池和硫化铊、硫化银光电池等。主要用于仪表,自动化遥测和遥控方面。有的光电池可以直接把太阳能转变为电能,这种光电池又叫太阳能电池。太阳能电池作为能源广泛应用在人造地卫星、灯塔、无人气象站等处。太阳能电池类型(按材料分)包括:硅系太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极性电池、纳米经化学太阳能电池。硅系太阳能电池可分为以下几类: 1.单晶硅太阳能电池 单晶硅太阳能电池的光电转换效率为17%左右,最高的达到24%,这是所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,大部分厂商一般都是提供25年的质量保证。 单晶柔性太阳能组件:可弯曲太阳能组件也称柔性组件,所谓柔性,是指该电池板可折弯。折弯角度可达30度。单体太阳电池不能直接做电源使用。作电源必须将若干单体电池串、并联连接和严密封装成组件。太阳能电池组件(也叫太阳能电池板)是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。其作用是将太阳能

太阳能电池特性测试实验报告

太阳电池特性测试实验 太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。 太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。 太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 一、 实验目的 1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。 二、 实验原理 (1) 太阳电池板结构 以硅太阳电池为例:结构示意图如图1。硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。为了减小光的反射损失,一般在表面覆盖一层减反射膜。 (2) 光伏效应 当光照射到半导体PN 结上时,半导体PN 结吸 收光能后,两端产生电动势,这种现象称为光生伏特效应。由于P-N 结耗尽区存在着较强的 图1 太阳能电池板结构示意图

太阳能电池基本特性实验报告

竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告 篇一:实验报告--太阳能电池伏安特性的测量 实验报告 姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期: 太阳能电池伏安特性的测量 【实验目的】 1.了解太阳能电池的工作原理及其应用 2.测量太阳能电池的伏安特性曲线 【实验原理】 1.太阳电池的结构 以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属

栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图 2.光伏效应 图二太阳电池发电原理示意图 当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区. 如果外电路处于开 路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结

太阳能电池特性及应用实验仪实验指导说明书

太阳能电池应用实验仪实验指导及操作说明书

太阳能电池应用实验仪 电池行业是21世纪的朝阳行业,发展前景十分广阔。在电池行业中,最没有污染、市场空间最大的应该是太阳能电池,太阳能电池的研究与开发越来越受到世界各国的广泛重视。照射在地球上的太阳能非常巨大,大约40分钟照射在地球上的太阳能,便足以供全球人类一年的能量消费。可以说,太阳能是真正取之不尽,用之不竭的能源。而且太阳能发电绝对干净,不产生公害。所以太阳能发电被誉为最理想的能源。从太阳能获得电力,需通过太阳能电池进行光电变换来实现。它同以往其他电源发电原理完全不同,具有以下特点:①无枯竭危险;②绝对干净;③不受资源分布地域的限制;④可在用电处就近发电;⑤能源质量高;⑥获取能源花费的时间短。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低成本;二是要实现太阳能发电同现在的电网联网。 太阳能发电虽受昼夜、晴雨、季节的影响,但可以分散地进行,所以它适合于各家各户分散进行发电,而且要联接到供电网络上。应用举例:1.光伏并网发电。其应用范围十分广阔,覆盖着从几瓦、几十瓦的小型便携式电源直到几兆瓦的并网发电系统,同时在太阳能照明以及通信系统、水文观测系统、气象和地震台站等中得到了广泛的应用。2.太阳能路灯3. 太阳能电话。巴黎伏德瓦特公司制作的太阳能收费公用电话,耗电量极低,只要在阳光下充电几小时,便足够使用10多天。4. 太阳能冰箱。印度研制出一种仓库用的大型太阳能冰箱,上部装的抛物线镜面将阳光集中在半导体网孔上,把光转换成电流,箱内温度保持在-2℃,可冷藏500公斤食品,每天还可制出25公斤冰来。5. 太阳能空调器。日本夏普电器公司制造的这种空调装置,当天气晴朗时,全部动力都由阳光供给,多云或阴天时才使用一般电源。期间的转换由控制系统自动完成,用它可使一间18平方米的居室室温保持在20℃左右,并较一般空调器节约电费60%以上。6. 太阳能电视机。芬兰研制的太阳能电视机只要白天把半导体硅光电池转换器放在有阳光的窗台上,晚上不需电源便可观看电视。转换器贮存的电能,可供工作电压为12伏的电视机使用3至4小时。7. 太阳能照相机。日本制作的世界上第一架太阳能照相机,重量仅有475克,机内装有先进的太阳能电池系统,其蓄电池可连续使用4年。 实验目的 1、在熟悉太阳能电池基本特性的基础上,学习并掌握太阳能电池的应用原理。 2、了解并掌握太阳能发电系统的组成及工程应用方法。 实验内容 1、太阳能电池板输出伏安特性测试。 2、太阳能电池带载应用实验。 3、太阳能电池充电储能应用实验。 4、太阳能电池实时输出应用实验。 5、太阳能电池电网应用实验。 实验仪器 实验装置如下图1所示:有3部分组成:光源、实验仪和测试仪组成。

相关文档
最新文档