精馏工艺分析

精馏工艺分析

精馏工艺分析

化工生产中,精馏设备——塔设备是应用最广泛的非定型设备。由于用途不同,操作原理不同,所以塔的结构形式、操作条件差异很大。这里主要以精馏塔为例介绍塔的类型、性能、选型原则等。

(1)多组分溶液精馏方案的选择多组分溶液精馏方案按精馏塔中组分分离的顺序不同可以分为:按挥发度递减的顺序采用馏分的流程;按挥发度递增的顺序采用馏分的流程;按不同挥发度交错采用馏分的流程。最佳分离方案的选择对于工艺流程的设计和精馏塔的设计都是非常关键的。一个好的分离方案应当具备合理利用能量、降低能耗,设备的投资少,生产能力大、产品质量稳定及操作安全等特点。

(2)冷凝器的流程与形式常用冷凝器布置形式如图3—1所示,主要有以下三种。

1)整体式。将冷凝器和塔连成一体,优点是占地面积少,节省冷凝器封头。缺点是塔顶结构复杂、检修不便,多用于冷凝器较小或凝液难以用泵输送以及用泵输送有危险的场合。如图3—1(a)、(b)所示。

2)自流式。将冷凝器装在塔顶附近的台架上,其特点与整体式相近,凝液自流入塔,靠改变台架高低来获得回流和采用所需的位差。如图3—1(c)所示。

3)强制循环式。将冷凝器装在离塔顶较远的低处,用泵向塔内提供回流,在冷凝器和泵之间设置回流罐。如图3—1(d)、(e)所示。大规模生产中多采用这种形式。

第 1 页

本文部分内容来自互联网,不为其真实性及所产生的后果负责,如有异议请联系我们及时删除。

精馏工艺流程简述

2.3.1 精馏工序2.3.1.1 脱气系统(回收乙炔) 合成粗醋酸乙烯(反应液:醋酸乙烯39.5%醋酸57.8%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)经预热器(E055301)粗分(T055303)塔气相预热后进入脱气塔(T055301)顶部,通过进料调节阀(LRC055301)控制塔液位,通过蒸汽调节阀(TRC055302)控制中温,使乙炔、部分高级炔烃、CO从塔顶排出,并带了部分乙醛和醋2酸乙烯,经脱气塔馏出冷凝器(E055302)12℃冷却水冷凝后液相回流至脱气塔顶部,气相从第一洗涤塔(T055310)底部进入,该塔用经过循环冷却水32℃冷却器(E055304)和从V055301来的回收液作为冷剂(E055305)冷却后的粗HAC35℃(T055303釜液)喷淋,以吸收脱气塔排出CH气(62%)中的乙醛(5.5%)和VAC(32.5%)。第一洗涤22塔釜液流回脱气塔顶,第一洗涤塔(T055310)顶排出的CH气带有少22量醋酸蒸汽(10%),进入第二洗涤塔(T055311),用二级脱盐水吸收醋酸,釜出至醋酸精制塔回收醋酸(18%),塔顶排出乙炔气(98%)水(1.6%)经第二洗涤塔气液分离器(Y055301)除液滴后进入乙炔气缓冲槽(V055318)经鼓风机(C055301)送乙炔净化处理。 2.3.1.2 粗馏系统(脱除乙醛) 脱气后的粗醋酸乙烯(醋酸乙烯39%醋酸59%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)由脱气塔釜液泵(P055302)通过流量调节(FRC055303)控制送到脱乙醛塔(T055302);

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。 设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况 自选 ; 回流比 自选; 单板压降 ≤; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1. 原料液及塔顶、塔底产品的摩尔分率 乙醇的摩尔质量 A M =46.07kg/kmol 水的摩尔质量 B M =18.02kg/kmol F x =18.002 .1864.007.4636.007 .4636.0=+= D x =64.002.1818.007.4682.007 .4682.0=+= W x =024.002 .1894.007.4606.007 .4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =×+×=23.07kg/kmol D M =×+×=35.97kg/kmol W M =×+×=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.231000 2000=???kmol/h 总物料衡算 =W D + 水物料衡算 ×=+W

分离乙醇水精馏塔设计含经典工艺流程图和塔设备图

分离乙醇-水的精馏塔设计设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容:

1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算; 5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。

一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分数,下同),其余为 水;产品的乙醇含量不得低于90%;塔顶易挥发组分回收率为99%,生产能力为50000吨/年90%的乙醇产品;每年按330天计,每天24小时连续运行。塔顶压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740 原料乙醇组成 xD0.7788 塔顶易挥发组分回收率90% 平均摩尔质量 MF = 由于生产能力50000吨/年,. 则 qn,F 所以,qn,D 2)塔板数的确定:

原油蒸馏的工艺流程精编WORD版

原油蒸馏的工艺流程精 编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

原油蒸馏的工艺流程 第一节石油及其产品的组成和性质 一、石油的一般性状、元素组成、馏分组成 (一)石油的一般性状 石油是一种主要由碳氢化合物组成的复杂混合物。世界各国所产石油的性质、外观都有不同程度的差异。大部分石油是暗色的,通常呈黑色、褐色或浅黄色。石油在常温下多为流动或半流动的粘稠液体。相对密度在0.8~0.98g/cm3之间,个别的如伊朗某石油密度达到1.016,美国加利福尼亚州的石油密度低到0.707。 (二)石油的元素组成 石油的组成虽然及其复杂,不同地区甚至不同油层不同油井所产石油,在组成和性质上也可能有很大的差别。但分析其元素,基本上是由碳、氢、硫、氧、氮五种元素所组成。其中碳、氢两中元素占96%~99%,碳占到83%~87%,氢占11%~14%。其余的硫、氧、氮和微量元素含量不超过1%~4%。石油中的微量元素包括氯、碘、磷、砷、硅等非金属元素和铁、钒、镍、铜、铅、钠、镁、钛、钴、锌等微量金属元素。 (三)石油的馏分组成 石油的沸点范围一般从常温一直到500℃以上,蒸馏也就是根据各组分的沸点差别,将石油切割成不同的馏分。一般把原油从常压蒸馏开始镏出的温度(初馏点)到180℃的轻馏分成为称为汽油馏分,180℃~350℃的中间馏分称为煤柴油馏分,大于350℃的馏分称为常压渣油馏分。 二、石油及石油馏分的烃类组成

石油中的烃类包括烷烃、环烷烃、芳烃。石油中一般不含烯烃和炔烃,二次加工产物中常含有一定数量的烯烃。各种烃类根据不同的沸点范围存在与对应的馏分中。 三、石油中的非烃化合物 石油的主要组成使烃类,但石油中还含有相当数量的非烃化合物,尤其在重质馏分油中含量更高。石油中的硫、氧、氮等杂元素总量一般占1%~4%,但石油中的硫、氧、氮不是以元素形态存在而是以化合物的形态存在,这些化合物称为非烃化合物,他们在石油中的含量非常可观,高达10%~20%。 (一)含硫化合物(石油中的含硫量一般低于0.5%) 含硫化合物在石油馏分中的分布一般是随着石油馏分的沸点升高而增加,其种类和复杂性也随着馏分沸点升高而增加。石油中的含硫化合物给石油加工过程和石油产品质量带来许多危害。 1、腐蚀设备 在石油炼制过程中,含硫化合物受热分解产生H 2 S、硫醇、元素硫等活性硫化物,对 金属设备造成严重的腐蚀。石油中通常还含有MgCl 2、CaCl 2 等盐类,含硫含盐化合物相互 作用,对金属设备造成的腐蚀将更为严重。石油产品中含有硫化物,在储存和使用过程中 同样腐蚀设备。含硫燃料燃烧产生的SO 2、SO 3 遇水后生成H 2 SO 3 、H 2 SO 4 会强烈的腐蚀金属 机件。 2、影响产品质量 硫化物的存在严重的影响油品的储存安定性,是储存和使用中的油品容易氧化变质,生成胶质,影响发动机的正常工作。

甲醇精馏工艺流程

甲醇精馏工艺流程 由合成工序闪蒸槽来的粗甲醇在正常情况下直接进入本工序的粗甲醇预热器(E11101)预热至65℃后进入预精馏塔(T11101)(在非正常情况下,粗甲醇来自甲醇罐区粗甲醇储槽,经粗甲醇泵加压后进粗甲醇预热器预热。粗甲醇预热器的热源来自常压塔再沸器出来的精甲醇冷凝液温度。)预精馏塔(T11101)作用是除去溶解在粗甲醇中的气体和沸点低于甲醇的含氧有机物,以及C10以下的烷烃。预精馏塔顶部出来的甲醇蒸汽温度为73.6℃,压力为0.0448MPa,塔顶出来进入预塔冷凝器Ⅰ(E11103),塔顶蒸汽中所含的大部分甲醇在第一冷凝器中被冷凝下来,流入预塔回流槽(V11103)经预塔回流泵(P11102AB)打回流。未冷凝的少部分甲醇蒸汽,低沸点的组分和不凝气进入塔顶冷凝器Ⅱ(E11104)继续冷凝,冷凝液可进入网流槽也可作为杂醇采出,不凝气经排放槽中的脱盐水吸收其中的甲醇后放空排放。用不凝气的排放量控制预精馏塔(T11101)塔顶压力,排放槽吸收液达到一定浓度后作为杂醇送入杂醇储槽或返回粗甲醇储槽重新精馏。预塔再沸器(E11102)的热源采用0.5MPa的低压饱和蒸汽。蒸汽冷凝液回冷凝液水槽(V11112)经冷凝水泵(P11110AB)送往动力站循环使用。为中和粗甲醇中的少量有机酸,在配碱槽中加入定量固体NaOH配置碱溶液储存在配碱槽(V11101)中。经碱液泵(P11101AB)进入扬碱器(V11110AB)再进入预塔回流槽(V11103)经过预塔回流泵(P11102AB)沿预精馏塔(T11101)进料管线加入预塔,控制预塔塔釜溶液PH值为9—10,预精馏塔(T11101)塔釜维持一定液位,塔釜甲醇溶液经加压塔进料泵(P11103AB)加压后进入加压塔进料预热器(E11105)预热后的甲醇进入加压塔(T11102)进料口,塔顶出来的甲醇气体温度121℃压力约0.574MPa 进过常压塔再沸器(E11107)将甲醇冷凝下来,冷凝后的甲醇液进入加压塔回流槽(V11111)。回流槽中的甲醇一部分经加压塔回流泵(P11104AB)后打回流入加压精馏塔(T11102),其余部分经粗甲醇预热器(E11101)与粗甲醇换热降温后再经精甲醇冷却器(E11110)冷却作为产品送往精甲醇中间槽(V11106)。加压塔再沸器的热源采用0.5MPa饱和蒸汽,蒸汽冷凝液回冷凝液水槽(V11112)经P11110AB冷凝水泵送往动力站循环使用。 常压塔部分:加压精馏塔(T11102)塔釜维持一定液位,甲醇溶液靠自压进入常压精馏塔(T11103)进料口,从常压精馏塔(T11103)塔顶出来的甲醇蒸汽温度气体温度为66℃,压力为0.008MPa,经常压塔冷凝器(E11108)冷凝,冷凝下来的甲醇进入常压塔回流槽(V11104),一部分经常压塔回流泵(P11105AB)打回流进入精馏塔(T11103),其余作为产品进入精甲醇冷却器(E11110)冷却到40℃送往精甲醇中间槽(V11106),另有一部分

精馏工艺流程简述word版本

2.3.1 精馏工序 2.3.1.1 脱气系统(回收乙炔) 合成粗醋酸乙烯(反应液:醋酸乙烯39.5%醋酸57.8%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)经预热器(E055301)粗分(T055303)塔气相预热后进入脱气塔(T055301)顶部,通过进料调节阀(LRC055301)控制塔液位,通过蒸汽调节阀(TRC055302)控制中温,使乙炔、部分高级炔烃、CO2从塔顶排出,并带了部分乙醛和醋酸乙烯,经脱气塔馏出冷凝器(E055302)12℃冷却水冷凝后液相回流至脱气塔顶部,气相从第一洗涤塔(T055310)底部进入,该塔用经过循环冷却水32℃冷却器(E055304)和从V055301来的回收液作为冷剂(E055305)冷却后的粗HAC35℃(T055303釜液)喷淋,以吸收脱气塔排出C2H2气(62%)中的乙醛(5.5%)和VAC(32.5%)。第一洗涤塔釜液流回脱气塔顶,第一洗涤塔(T055310)顶排出的C2H2气带有少量醋酸蒸汽(10%),进入第二洗涤塔(T055311),用二级脱盐水吸收醋酸,釜出至醋酸精制塔回收醋酸(18%),塔顶排出乙炔气(98%)水(1.6%)经第二洗涤塔气液分离器(Y055301)除液滴后进入乙炔气缓冲槽(V055318)经鼓风机(C055301)送乙炔净化处理。 2.3.1.2 粗馏系统(脱除乙醛) 脱气后的粗醋酸乙烯(醋酸乙烯39%醋酸59%乙醛1%水0.2%乙炔1%高沸物0.2%丙酮0.02%其他0.18%)由脱气塔釜液泵(P055302)通过流量调节(FRC055303)控制送到脱乙醛塔(T055302); 脱乙醛塔顶气相(72℃)经脱乙醛塔循环水分凝器(E055306)部分冷凝,冷凝液进入脱乙醛塔馏出槽(V05555302)与回收液槽(V055301)送来的回收液混合,由脱乙醛塔馏出泵(P055303)送出,通过流量控制(FRC05312)进行回流,通过(LRCA05332)调节分凝器冷却水量控制脱乙醛塔馏出槽(V055302)液位;分凝器(E055306)未凝气体72℃进入脱乙醛塔12℃冷却水全凝器(E055307)冷凝,冷凝液进

精馏塔操作规程完整

精馏操作基本知识 1、何为相和相平衡: 答:相就是指在系统中具有相同物理性质和化学性质的均匀部分,不同相之间往往有一个相界面,把不同的相分别开。系统中相数的多少与物质的数量无关。如水和冰混合在一起,水为液相,冰为固相。一般情况下,物料在精馏塔内是气、液两相。 在一定的温度和压力下,如果物料系统中存在两个或两个以上的相,物料在各相的相对量以及物料中各组分在各个相中的浓度不随时间变化,我们称系统处于平衡状态。平衡时,物质还是在不停地运动,但是,各个相的量和各组分在各项的浓度不随时间变化,当条件改变时,将建立起新的相平衡,因此相平衡是运动的、相对的,而不是静止的、绝对的。比如:在精馏系统中,精馏塔板上温度较高的气体和温度较低的液体相互接触时,要进行传热、传质,其结果是气体部分冷凝,形成的液相中高沸点组分的浓度不断增加。塔板上的液体部分气化,形成的气相中低沸点组分的浓度不断增加。但是这个传热、传质过程并不是无止境的,当气液两相达到平衡时,其各组分的两相的组成就不再随时间变化了。 2、何为饱和蒸汽压? 答:在一定的温度下,与同种物质的液态(或固态)处于平衡状态的蒸汽所产生的压强叫饱和蒸汽压,它随温度的升高而增加。众所周知,放在杯子里的水,会因不断蒸发变得愈来愈少。如果把纯水放在一个密闭容器里,并抽走上方的空气,当水不断蒸发时,水面上方气相的压力,即水的蒸汽所具有的压力就不断增加。但是,当温度一定时,气相压力最中将稳定在一个固定的数值 专业资料可编上,这时的压力称为水在该温 度下的饱和蒸汽压。

应当注意的是,当气相压力的数值达到饱和蒸汽压力的数值是,液相的水分子仍然不断地气化,气相中的水分子也不断地冷凝成液体,只是由于水的气化速度等于水蒸汽的冷凝速度,液体量才没有减少,气体量也没有增加,气体和液体达到平衡状态。所以,液态纯物质蒸汽所具有的压力为其饱和蒸汽压时,气液两相即达到了相平衡。 3、何为精馏,精馏的原理是什么? 答:把液体混合物进行多次部分汽化,同时又把产生的蒸汽多次部分冷凝,使混合物分离为所要求组分的操作过程称为精馏o 为什么把液体混合物进行多次部分汽化同时又多次部分冷凝,就能分离为纯或比较纯的组分呢?对于一次汽化,冷凝来说,由于液体混合物中所含的组分的沸点不同,当其在一定温度下部分汽化时,因低沸点物易于气化,故它在气相中的浓度较液相高,而液相中高沸点物的浓度较气相高。这就改变了气液两相的组成。当对部分汽化所得蒸汽进行部分冷凝时,因高沸点物易于冷凝,使冷凝液中高沸点物的浓度较气相高,而为冷凝气中低沸点物的浓度比冷凝液中要高。这样经过一次部分汽化和部分冷凝,使混合液通过各组分浓度的改变得到了初步分离。如果多次的这样进行下去,将最终在液相中留下的基本上是高沸点的组分,在气相中留下的基本上是低沸点的组分。由此可见,多次部分汽化和多次部分冷凝同时进行,就可以将混合物分离为纯或比较纯的组分。 液体气化要吸收热量,气体冷凝要放出热量。为了合理的利用热量,我们可以把气体冷凝时放出的热量供给液体气化时使用,也就是使气液两相直接接触,在传热同时进行传质。为了满足这一要求,在实践中,这种多次部分汽化 专业资料可编伴随多次部分冷凝的过程是逆 流作用的板式设备中进行的。所谓逆 流,就是因液体受热而产生的温度较高

基于DCS的精馏塔工艺流程

第一章绪论 1.1 课题研究的目的和意义 随着现代化工的飞速发展,生产规模的不断扩大,工艺过程越趋复杂,对工艺流程前后工序相互关联紧密,充分利用能源等提出的要求,DCS控制系统已发展为过程控制的主流。它在工业过程控制领域发挥了越来越重要的作用,广发应用于各种行业的生产过程中。生产设备自动化程度的提高有利于降低工厂生产成本,促进生产线的柔性化和集成化,有利于提高产品的质量,产量以及产品的竞争力。从某种意义上说,DCS控制技术为我们创造了不可忽视的经济效益和社会效益。 精馏塔作为石油化工生产过程的一个十分重要的环节,对其实现科学的控制直接决定着产品的质量、产量和能耗。这也是工业自动化领域里的一个长期的研究课题。 1.2本课题的主要研究内容 本课题的主要内容是根据精馏塔的工艺流程,控制系统要求等,分析影响精馏塔控制的主要参数,提出合理的控制方案并绘出其相应的控制流程图,最后,应用JX-300XP DCS控制系统实现精馏塔的过程监视,数据收集,数据处理,数据存储,报警和登陆,过程控制等功能。

第二章工艺过程分析 2.1精馏系统工艺过程分析 2.1.1工艺流程简介 本设计流程是利用精馏方法,在精馏塔中将乙醇从塔釜混合物中分离出来。精馏是将液体混合物部分气化,利用其中各组分相对挥发度的不同,通过液相和气相间的质量传递来实现对混合物的分离。本装置中将由于乙醇的沸点较低,易挥发,故采用加热精馏,经气化的乙醇蒸汽经冷凝,可得到较高纯度的乙醇。 原料(乙醇和水及少量杂的混合物)经进料管由精馏塔进料板处流入塔内,开始精馏操作;当釜中的料液建立起适当液位时,再沸器进行加热,使之部分气化返回塔内。气相沿塔上升直至塔顶,由塔顶冷凝器将其进行全部或部分冷凝。将塔顶蒸汽凝液部分作为塔顶产品取出,称为馏出物。另一部分凝液作为回流返回塔顶。回流液从塔顶沿塔流下,在下降过程中与来自塔顶的上升蒸汽多次逆向接触和分离。当流至塔底时,被再沸器加热部分气化,其气相返回塔内作为气相回流,而其液相则作为塔底产品采出。 2.1.2工艺过程分析 精馏塔的操作是从物料平衡,热量平衡,相平衡及精馏塔的性能等几个方面考虑的,通过控制系统建立并调节塔的操作条件,使精馏塔满足分离要求。 精馏塔操作控制的典型参数中,有六个流量参数:进料量,塔顶和塔釜产品流量,冷凝量,蒸发量和回流量。此外,还有压力,塔釜液位,回流罐液位,塔顶产品组成和塔釜产品组成等参数。 压力和液位控制是为了建立稳定操作条件。液位恒定阻止了液位积累,压力恒定阻止了气体积累。对于一个连续系统,若不组织积累就不可能取得稳定操作,也就不可能稳定。压力是精馏塔操作的主要控制参数,压力除影响气体积累外,还影响冷凝,蒸发,温度,组成,相对挥发度等塔内发生的几乎所有过程。 产品组成控制可以直接使用产品组成测定值,也可以采用代表产品组成的物性,如密度,蒸汽压,最常用的是采用灵敏点温度。 1.压力控制 精馏塔对压力的平衡要求很严格。一旦压力大幅度波动,塔釜液位,回流液位紧跟着波动,进而影响物料平衡,热量平衡,相平衡三大平衡,从而使整个操作系统处于不平稳状态,影响到产品质量及产量。例如从提高产品质量来说,压力越高,沸点越接近,气液两相越难分离,显然降低压力可以提高产品质量。但

分离乙醇水精馏塔设计(含经典工艺流程图和塔设备图)

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容:

1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算; 5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计

二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分 数,下同),其余为水;产品的乙醇含量不得低于90%;塔 顶易挥发组分回收率为99%,生产能力为50000吨/年90% 的乙醇产品;每年按330天计,每天24小时连续运行。塔顶 压强 4kPa (表压)进料热状态自选回流比自选加热蒸汽 压力低压蒸汽(或自选)单板压降≤0.7kPa。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF==0.1740 原料乙醇组成 xD0.7788 塔顶易挥发组分回收率90% 平均摩尔质量 MF = 由于生产能力50000吨/年,. 则 qn,F 所以,qn,D 2)塔板数的确定: 甲醇—水属非理想体系,但可采用逐板计算求理论板数,本设

精馏塔设计图(参考)

1 / 2 ∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料1 2345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

原油蒸馏的工艺流程

原油蒸馏的工艺流程 第一节石油及其产品的组成和性质 一、石油的一般性状、元素组成、馏分组成 (一)石油的一般性状 石油是一种主要由碳氢化合物组成的复杂混合物。世界各国所产石油的性质、外观都有不同程度的差异。大部分石油是暗色的,通常呈黑色、褐色或浅黄色。石油在常温下多为流动或半流动的粘稠液体。相对密度在0.8~0.98g/cm3之间,个别的如伊朗某石油密度达到1.016,美国加利福尼亚州的石油密度低到0.707。 (二)石油的元素组成 石油的组成虽然及其复杂,不同地区甚至不同油层不同油井所产石油,在组成和性质上也可能有很大的差别。但分析其元素,基本上是由碳、氢、硫、氧、氮五种元素所组成。其中碳、氢两中元素占96%~99%,碳占到83%~87%,氢占11%~14%。其余的硫、氧、氮和微量元素含量不超过1%~4%。石油中的微量元素包括氯、碘、磷、砷、硅等非金属元素和铁、钒、镍、铜、铅、钠、镁、钛、钴、锌等微量金属元素。 (三)石油的馏分组成 石油的沸点范围一般从常温一直到500℃以上,蒸馏也就是根据各组分的沸点差别,将石油切割成不同的馏分。一般把原油从常压蒸馏开始镏出的温度(初馏点)到180℃的轻馏分成为称为汽油馏分,180℃~350℃的中间馏分称为煤柴油馏分,大于350℃的馏分称为常

压渣油馏分。 二、石油及石油馏分的烃类组成 石油中的烃类包括烷烃、环烷烃、芳烃。石油中一般不含烯烃和炔烃,二次加工产物中常含有一定数量的烯烃。各种烃类根据不同的沸点范围存在与对应的馏分中。 三、石油中的非烃化合物 石油的主要组成使烃类,但石油中还含有相当数量的非烃化合物,尤其在重质馏分油中含量更高。石油中的硫、氧、氮等杂元素总量一般占1%~4%,但石油中的硫、氧、氮不是以元素形态存在而是以化合物的形态存在,这些化合物称为非烃化合物,他们在石油中的含量非常可观,高达10%~20%。 (一)含硫化合物(石油中的含硫量一般低于0.5%) 含硫化合物在石油馏分中的分布一般是随着石油馏分的沸点升高而增加,其种类和复杂性也随着馏分沸点升高而增加。石油中的含硫化合物给石油加工过程和石油产品质量带来许多危害。 1、腐蚀设备 在石油炼制过程中,含硫化合物受热分解产生H2S、硫醇、元素硫等活性硫化物,对金属设备造成严重的腐蚀。石油中通常还含有MgCl2、CaCl2等盐类,含硫含盐化合物相互作用,对金属设备造成的腐蚀将更为严重。石油产品中含有硫化物,在储存和使用过程中同样腐蚀设备。含硫燃料燃烧产生的SO2、SO3遇水后生成H2SO3、H2SO4会强烈的腐蚀金属机件。

分离乙醇水精馏塔设计含工艺流程图和塔设备图

分离乙醇水精馏塔设计含工艺流程图和塔设备 图 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

分离乙醇-水的精馏塔设计 设计人员: 所在班级:化学工程与工艺成绩: 指导老师:日期:

化工原理课程设计任务书 一、设计题目:乙醇---水连续精馏塔的设计 二、设计任务及操作条件 (1)进精馏塔的料液含乙醇35%(质量分数,下同),其余为水; (2)产品的乙醇含量不得低于90%; (3)塔顶易挥发组分回收率为99%; (4)生产能力为50000吨/年90%的乙醇产品; (5)每年按330天计,每天24小时连续运行。 (6)操作条件 a)塔顶压强 4kPa (表压) b)进料热状态自选 c)回流比自选 d)加热蒸汽压力低压蒸汽(或自选) e)单板压降 kPa。 三、设备形式:筛板塔或浮阀塔 四、设计内容:

1、设计说明书的内容 1)精馏塔的物料衡算; 2)塔板数的确定; 3)精馏塔的工艺条件及有关物性数据的计算; 4)精馏塔的塔体工艺尺寸计算; 5)塔板主要工艺尺寸的计算; 6)塔板的流体力学验算; 7)塔板负荷性能图; 8)精馏塔接管尺寸计算; 9)对设计过程的评述和有关问题的讨论; 2、设计图纸要求; 1)绘制生产工艺流程图(A2 号图纸); 2)绘制精馏塔设计条件图(A2 号图纸); 五、设计基础数据: 1.常压下乙醇---水体系的t-x-y 数据; 2.乙醇的密度、粘度、表面张力等物性参数。 一、设计题目:乙醇---水连续精馏塔的设计

二、设计任务及操作条件:进精馏塔的料液含乙醇35%(质量分 数,下同),其余为水;产品的乙醇含量不得低于90%; 塔顶易挥发组分回收率为99%,生产能力为50000吨/年 90%的乙醇产品;每年按330天计,每天24小时连续运 行。塔顶压强 4kPa (表压)进料热状态自选回流比自选 加热蒸汽压力低压蒸汽(或自选)单板压降≤。 三、设备形式:筛板塔 四、设计内容: 1)精馏塔的物料衡算: 原料乙醇的组成 xF== 原料乙醇组成 塔顶易挥发组分回收率90% 平均摩尔质量 MF = 由于生产能力50000吨/年,. 则 qn,F 所以,qn,D 2)塔板数的确定:

精馏塔设计流程图

∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料12345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10 111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

丁烯-1精馏岗位工艺流程说明

丁烯-1精馏岗位工艺流程说明 来自选择性加氢单元的含异丁烯小于0.12%,甲醇小于90ppm,1,3-丁二烯小于40ppm的混合碳四进入第一精馏塔上部(C-1201A))进行精馏,进料中的水、C3以及少量的碳四等一起,作为低沸点共沸物从塔顶馏出,经塔顶冷凝器(E-1201)冷凝去回流罐(V-1201),被冷凝下来的废水去BD。由第一精馏塔回流泵(P-1201A/B)一部分打回流一部分采出去FB1403罐。回流比一般控制在115左右,塔顶压力0.6±0.05MPaG,温度50±2℃,部分不凝气经调节阀排入火炬。 C-1201B气相物料通过管线引入上塔(C-1201A)底部作为上升气相物流,C-1201A塔釜液体从塔釜由中间泵(P-1203A/B)送入第一精馏塔下部塔C-1201B顶做内回流,C-1201B塔釜的包括丁烯-1在内的较重组分由釜液泵(P-1202A/B)送往脱重组份的第二精馏塔(C-1202B)。塔釜温度控制57±3℃。 从C-1201B塔来含丁烯-1的碳四物料从第二精馏塔进行分离,脱除其中的重组份(丁烯-2,正丁烷等),塔釜物料是以正丁烷和丁烯-2为主的重组分由第二精馏塔釜液泵(P-1205A/B)抽出,经丁烯-2冷却器(E-1205)冷却至常温后送往FB1403。塔釜温度53±3℃。 C-1202B气相物料通过管线引入上塔C-1202A底部作为上升气相物流,C-1202A塔釜液体从塔釜由中间泵(P-1206A/B)送入C-1202B顶做内回流。 第二精馏塔上塔C-1202A塔顶气体经塔顶冷凝器(E-1203)冷凝后去回流罐(V-1202),然后由回流泵P-1204A/B加压后,一部分作为回流打入第二精馏塔塔顶,,一部分作为丁烯-1产品(纯度≥99%)送入丁烯-1产品中间罐(V1203A/B),化验合格后的产品采出送往产品罐FB1402;不合格的产品送入界区外,如可以回炼进FB1404,或进FB1403罐。塔顶压力0.39±0.03MPa,塔顶温度40±2℃,回流比25。 C-1201AB塔的调整 操作人员要根据原料组分,通过计算算出塔顶、塔底理论采出值。 控制目标: C-1201A塔顶压力PIC1203 回流罐V1201罐液位LIC1203 回流量FIC1206

PVA精馏工艺流程

第六章醋酸乙烯的精制工艺流程 本节介绍的是年产2万吨醋酸乙烯的精制工艺流程。由合成工段送来的反应液,除含醋酸乙烯外,还含有未反应的醋酸,溶解的乙炔,副产物乙醛、丁烯醛、醋酐等,其组成见表30。 表30 反应液的组成 蒸馏工段的作用为: 1、把反应液中的醋酸乙烯分离出来,使纯度达到聚合级(用活性度来衡量),供聚合使用。 2、把反应液中的醋酸分离出来,并除去其中的杂质(如高沸物等),再送回合成工段,供醋酸乙烯的合成使用。 3、在聚合工段,由于醋酸乙烯的聚合率只有50~60%,未聚合的醋酸乙烯分出后,送往本工段,进一步除去其中的杂质,再返回聚合工段供聚合使用。 4、把溶解在反应液中的乙炔解吸出来,送往合成工段,水洗后可供醋酸乙烯的合成用。 5、将反应液中的副产物分离出来,其中的乙醛送往乙醛氧化制醋酸的装置;丁烯醛送往残渣烧场烧掉,或者将来增设精制装置,把所含的醋酸回收回来,精制后的丁烯醛出售。 此外,在蒸馏工段,还处理合成工段气体分离塔第一循环液,即用过滤的方 1

法除去其中夹带的催化剂粉末,滤液与反应液一并进行精制。 醋酸乙烯精制的工艺流程见图38。 图38 醋酸乙烯精制工艺流程图 10—过滤器11—第1残渣蒸发器12—第2残渣蒸发器*--物料流向TDA—硫叉二苯胺 反应液用泵送至第一精馏塔1中,该塔的目的是脱除比醋酸乙烯沸点低的轻组份,例如乙醛、溶解的乙炔。 合成工段气体分离塔的第一循环液,经过过滤,除去催化剂粉末后,也加入第一精馏塔。 合成工段乙炔回收部分的吸收液,要定期更新,取出的吸收液也加入第一精馏塔。 本工段萃取塔的萃取液,以及尾气冷凝器中回收液体也加入第一精馏塔。 该塔为了将乙醛等轻组份尽量从塔顶分离出去,所以塔顶温度控制较高,一般在65℃,因此,有部分醋酸乙烯必然从塔顶蒸出。塔顶蒸汽经过冷凝冷却后,部分回流,部分采出送往萃取塔7。不凝气体主要是乙炔和乙醛,送往合成工段的水洗塔。 2

相关文档
最新文档